68 research outputs found

    Mesenchymal Stem Cells Delivery in Individuals with Different Pathologies: Multimodal Tracking, Safety and Future Applications

    Get PDF
    Bioluminescence; Radioiodine therapy; TransdifferentiationBioluminiscencia; Terapia con yodo radiactivo; TransdiferenciaciónBioluminescència; Teràpia amb iode radioactiu; TransdiferenciacióDue to their ease of isolation and their properties, mesenchymal stem cells (MSCs) have been widely investigated. MSCs have been proved capable of migration towards areas of inflammation, including tumors. Therefore, they have been suggested as vectors to carry therapies, specifically to neoplasias. As most of the individuals joining clinical trials that use MSCs for cancer and other pathologies are carefully recruited and do not suffer from other diseases, here we decided to study the safety and application of iv-injected MSCs in animals simultaneously induced with different inflammatory pathologies (diabetes, wound healing and tumors). We studied this by in vitro and in vivo approaches using different gene reporters (GFP, hNIS, and f-Luc) and non-invasive techniques (PET, BLI, or fluorescence). Our results found that MSCs reached different organs depending on the previously induced pathology. Moreover, we evaluated the property of MSCs to target tumors as vectors to deliver adenoviruses, including the interaction between tumor microenvironment and MSCs on their arrival. Mechanisms such as transdifferentiation, MSC fusion with cells, or paracrine processes after MSCs homing were studied, increasing the knowledge and safety of this new therapy for cancer.This research was supported by Instituto de Salud Carlos III (ISCIII) (PI19/01007 and DTS21/00130) and by Fondo Europeo de Desarrollo Regional (Feder) “Una manera de hacer Europa”. We also thank CIBER-BBN and CIBERONC an initiative funded by the VI National R&D&i Plan 2008–2011 financed by the Instituto de Salud Carlos III (ISCIII) with the assistance of the European Regional Development Fund. This study was also partially funded by the Aragon Government (Ph.D. Grant No.r B054/12) and cofounded by Aragon/FEDER 2014–2020 “Building Europe from Aragon”. This research was funded by Spanish Ministerio de Economía y Competitividad and European Regional Development Fund (FEDER) SAF2015-69964-R, RTI2018-099343-B-100 and from the CiberOnc by Instituto de Salud Carlos III (to ADlV)

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    Iron deficiency in chronic heart failure:case-based practical guidance

    Get PDF
    In patients with chronic heart failure, iron deficiency, even in the absence of anaemia, can aggravate the underlying disease and have a negative impact on clinical outcomes and quality of life. The 2016 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic heart failure recognize iron deficiency as a co-morbidity in chronic heart failure and recommend iron status screening in all newly diagnosed patients with chronic heart failure. Furthermore, the guidelines specifically recommend considerations of intravenous iron therapy, ferric carboxymaltose, for the treatment of iron deficiency. However, in spite of these recommendations, iron deficiency remains often overlooked and undertreated. This may be due, in part, to the lack of clinical context and practical guidance accompanying the guidelines for the treating physician. Here, we provide practical guidance complemented by a case study to assist and improve the timely diagnosis, treatment, and routine management of iron deficiency in patients with chronic heart failure

    The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy

    Get PDF
    This document is the Accepted Manuscript version of the following article: Colin Moore, Uchini Kosgodage, Sigrun Lange, and Jameel M. Inal, ‘The emerging role of exosome and microvesicle- (EMV-) based cancer therapeutics and immunotherapy’, International Journal of Cancer, Vol. 141 (3): 428-436, August 2017. DOI: https://doi.org/10.1002/ijc.30672. © 2017 UICC. This manuscript version may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.There is an urgent need to develop new combination therapies beyond existing surgery, radio- and chemo-therapy, perhaps initially combining chemotherapy with the targeting specificities of immunotherapy. For this, strategies to limit inflammation and immunosuppression and evasion in the tumour microenvironment are also needed. To devise effective new immunotherapies we must first understand tumour immunology, including the roles of T cells, macrophages, myeloid suppressor cells and of exosomes and microvesicles (EMVs) in promoting angiogenesis, tumour growth, drug resistance and metastasis. One promising cancer immunotherapy discussed uses cationic liposomes carrying tumour RNA (RNA-lipoplexes) to provoke a strong anti-viral-like (cytotoxic CD8+ ) anti-tumour immune response. Mesenchymal stem cell-derived EMVs, with their capacity to migrate towards inflammatory areas including solid tumours, have also been used. As tumour EMVs clearly exacerbate the tumour microenvironment, another therapy option could involve EMV removal. Affinity-based methods to deplete EMVs, including an immunodepletion, antibody-based affinity substrate, are therefore considered. Finally EMV and exosome-mimetic nanovesicles (NVs) delivery of siRNA or chemotherapeutic drugs that target tumours using peptide ligands for cognate receptors on the tumour cells are discussed. We also touch upon the reversal of drug efflux in EMVs from cancer cells which can sensitize cells to chemotherapy. The use of immunotherapy in combination with the advent of EMVs provides potent therapies to various cancers.Peer reviewe

    Glaciation Effects on the Phylogeographic Structure of Oligoryzomys longicaudatus (Rodentia: Sigmodontinae) in the Southern Andes

    Get PDF
    The long-tailed pygmy rice rat Oligoryzomys longicaudatus (Sigmodontinae), the major reservoir of Hantavirus in Chile and Patagonian Argentina, is widely distributed in the Mediterranean, Temperate and Patagonian Forests of Chile, as well as in adjacent areas in southern Argentina. We used molecular data to evaluate the effects of the last glacial event on the phylogeographic structure of this species. We examined if historical Pleistocene events had affected genetic variation and spatial distribution of this species along its distributional range. We sampled 223 individuals representing 47 localities along the species range, and sequenced the hypervariable domain I of the mtDNA control region. Aligned sequences were analyzed using haplotype network, Bayesian population structure and demographic analyses. Analysis of population structure and the haplotype network inferred three genetic clusters along the distribution of O. longicaudatus that mostly agreed with the three major ecogeographic regions in Chile: Mediterranean, Temperate Forests and Patagonian Forests. Bayesian Skyline Plots showed constant population sizes through time in all three clusters followed by an increase after and during the Last Glacial Maximum (LGM; between 26,000–13,000 years ago). Neutrality tests and the “g” parameter also suggest that populations of O. longicaudatus experienced demographic expansion across the species entire range. Past climate shifts have influenced population structure and lineage variation of O. longicaudatus. This species remained in refugia areas during Pleistocene times in southern Temperate Forests (and adjacent areas in Patagonia). From these refugia, O. longicaudatus experienced demographic expansions into Patagonian Forests and central Mediterranean Chile using glacial retreats

    Non-perennial Mediterranean rivers in Europe: Status, pressures, and challenges for research and management

    Full text link

    Uveal vs. cutaneous melanoma. Origins and causes of the differences

    Get PDF
    El pdf del artículo es la versión post-print.-- et al.Melanoma is a malignant tumour derived from melanocytes (dendritic cells originated from the neural crest and capable to produce melanin synthesis) that could be established on the skin or less frequently on the uvea. The cellular origin from both kind of melanoma seems to be the same but the melanocytes migrates to the epithelia for cutaneous melanoma, while for uveal melanoma, they migrate to mesodermic tissues. Despite the common origin, both melanomas show extreme differences in their metastatic potential, clinical response to treatments, immune response and genetic alterations. We will describe some of those differences in this review. © Feseo 2008.Supported by an unrestricted educational grant from GlaxoSmithKline.Peer Reviewe

    Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior.The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. [Methods]: We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. [Results]: Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. [Conclusion]: This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage.This work was supported by FIS (PI080750), DGA (PI041/08, B84, PI086/09), MMA Fund (ICS/08/0050), PROMETEO/2008/163; CTQ-2010-20960-C02-02; S2010/BMD-2349, PIPAMER-0912, and PIPAMER-1214. CB-L was funded by fellowships ICS/08/0050 and DGA PI-086/09, GM by PIPAMER-0912, and PMD by the Araid Fund.Peer Reviewe

    Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo

    Get PDF
    Background: Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior. The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. Methods: We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. Results: Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. Conclusion: This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage

    Using living cells to transport therapeutic genes for cancer treatment

    No full text
    One of the key problems in cancer gene therapy is the inefficient delivery of therapeutic transgenes to tumour sites, after the systemic injection of the viral vector. Hence, new vector discovery is extremely important for the improvement of gene therapy results. Previously, mammalian cells were proposed as new vector systems; however with recent advances in stem cell research this modality makes them more suitable candidates. Tumours are composed of both malignant and benign cells. As >benign> cell types are able to form blood vessels, and stroma, it has been hypothesised that exogenously administrated cells of a different kind would preferentially engraft at the stromal tumour site and could deliver cancer gene therapy vectors to tumours.Work at P.M.D.’s lab is supported by grants from FISs (PI080750), DGA (PI041/08, B84, PI086/09), Fundación MMA (ICS/08/0050) and PIPAMER 0912. C.L.T.R. is funded by grant DGA PI041/08. C.B.L. was funded by grants ICS/08/0050 and DGA PI 086/09.Peer Reviewe
    corecore