624 research outputs found

    Simultaneous temporal trends in dementia incidence and prevalence, 2005–2013 : a population-based retrospective cohort study in Saskatchewan, Canada

    Get PDF
    Original studies published over the last decade regarding time trends in dementia report mixed results. The aims of the present study were to use linked administrative health data for the province of Saskatchewan for the period 2005/2006 to 2012/2013 to: (1) examine simultaneous temporal trends in annual age- and sex-specific dementia incidence and prevalence among individuals aged 45 and older, and (2) stratify the changes in incidence over time by database of identification. Using a population-based retrospective cohort study design, data were extracted from seven provincial administrative health databases linked by a unique anonymized identification number. Individuals 45 years and older at first identification of dementia between April 1, 2005 and March 31, 2013 were included, based on case definition criteria met within any one of four administrative health databases (hospital, physician, prescription drug, and long-term care). Between 2005/2006 and 2012/2013, the 12-month age-standardized incidence rate of dementia declined significantly by 11.07% and the 12-month age-standardized prevalence increased significantly by 30.54%. The number of incident cases decreased from 3,389 to 3,270 and the number of prevalent cases increased from 8,795 to 13,012. Incidence rate reductions were observed in every database of identification. We observed a simultaneous trend of decreasing incidence and increasing prevalence of dementia over a relatively short 8-year time period from 2005/2006 to 2012/2013. These trends indicate that the average survival time of dementia is lengthening. Continued observation of these time trends is warranted given the short study period

    Geodesically smoothed tensor features for pulmonary hypertension prognosis using the heart and surrounding tissues

    Get PDF
    Cardiac magnetic resonance imaging (CMRI) provides non-invasive characterization of the heart and surrounding tissues. It is an important tool for the prognosis of pulmonary arterial hypertension (PAH), a disease with heterogeneous presentation that makes survival likelihood prediction a challenging task. In this paper, we propose a Geodesically Smooothed Tensor feature learning method (GST) that utilizes not only the heart but also its surrounding tissues to characterize disease severity for improving prognosis. Specifically, GST includes structures surrounding the heart by geodesic rings which were incrementally smoothed with Gaussian filters. This provides additive insight while modulating for patient positional differences for a subsequent tensor-based feature learning pipeline. We performed evaluation on Four Chamber and Short Axis CMRI from 150 individuals with confirmed PAH and 1-year mortality census (27 deceased, 123 alive). The proposed GST method improved AUC and Cox difference at 4-years post-imaging (Cox4YD) over the standardized measurement of right ventricular end systolic volume index (RVESVi: AUC: 0.58; Cox4YD: 0.18) on the Four Chamber protocol (AUC: 0.77; Cox4YD: 0.35). Only AUC was improved over RVESVi in the Short Axis scans (AUC: 0.77; Cox4YD: 0.16)

    Whole genome sequencing reveals a 7 base-pair deletion in DMD exon 42 in a dog with muscular dystrophy

    Get PDF
    Dystrophin is a key cytoskeletal protein coded by the Duchenne muscular dystrophy (DMD) gene located on the X-chromosome. Truncating mutations in the DMD gene cause loss of dystrophin and the classical DMD clinical syndrome. Spontaneous DMD gene mutations and associated phenotypes occur in several other species. The mdx mouse model and the golden retriever muscular dystrophy (GRMD) canine model have been used extensively to study DMD disease pathogenesis and show efficacy and side effects of putative treatments. Certain DMD gene mutations in high-risk, the so-called hot spot areas can be particularly helpful in modeling molecular therapies. Identification of specific mutations has been greatly enhanced by new genomic methods. Whole genome, next generation sequencing (WGS) has been recently used to define DMD patient mutations, but has not been used in dystrophic dogs. A dystrophin-deficient Cavalier King Charles Spaniel (CKCS) dog was evaluated at the functional, histopathological, biochemical, and molecular level. The affected dog’s phenotype was compared to the previously reported canine dystrophinopathies. WGS was then used to detect a 7 base pair deletion in DMD exon 42 (c.6051-6057delTCTCAAT mRNA), predicting a frameshift in gene transcription and truncation of dystrophin protein translation. The deletion was confirmed with conventional PCR and Sanger sequencing. This mutation is in a secondary DMD gene hotspot area distinct from the one identified earlier at the 5′ donor splice site of intron 50 in the CKCS breed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-016-9675-2) contains supplementary material, which is available to authorized users

    Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

    Get PDF
    OBJECTIVE: To externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19. DESIGN: Two stage individual participant data meta-analysis. SETTING: Secondary and tertiary care. PARTICIPANTS: 46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021. DATA SOURCES: Multiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published in The BMJ, and through PROSPERO, reference checking, and expert knowledge. MODEL SELECTION AND ELIGIBILITY CRITERIA: Prognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor. METHODS: Eight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters. MAIN OUTCOME MEASURES: 30 day mortality or in-hospital mortality. RESULTS: Datasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al's model (0.96, 0.59 to 1.55, 0.21 to 4.28). CONCLUSION: The prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care

    Climate change adaptation options in farming communities of selected Nigerian ecological zones

    Get PDF
    This chapter examines the impacts of climate change on three tropical crops and assesses the climate change adaptation options adopted by rural farmers in the region. The study was conducted among farming communities settled in three major ecological zones in Nigeria. Over 37 years of data on rainfall and temperature were analyzed to examine climate change impacts on three major crops: rice, maize, and cassava. Farmers' adaptive capacity was assessed with a survey. Climatic data, crop yields, and survey data were analyzed using both descriptive and inferential statistics. The relation between rainfall/temperature and crop yields was examined using the Pearson correlation coefficient. Results show a high variation in the annual rainfall and temperature during the study period. The major findings from this research is that crops in different ecological zones respond differently to climate variation. The result revealed that there is a very strong relationship between precipitation and the yield of rice and cassava at p <0.05 level of significance. The results further showed low level of adaption among the rural farmers. The study concludes that rainfall and temperature variability has a significant impact on crop yield in the study area, but that the adaptive capacity of most farmers to these impacts is low. There is a need for enhancing the adaptation options available to farmers in the region, which should be the focus of government policies

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The polycomb group protein EZH2 is involved in progression of prostate cancer

    Full text link
    Prostate cancer is a leading cause of cancer-related death in males and is second only to lung cancer. Although effective surgical and radiation treatments exist for clinically localized prostate cancer, metastatic prostate cancer remains essentially incurable. Here we show, through gene expression profiling(1), that the polycomb group protein enhancer of zeste homolog 2 (EZH2)(2,3) is overexpressed in hormone-refractory, metastatic prostate cancer. Small interfering RNA (siRNA) duplexes(4) targeted against EZH2 reduce the amounts of EZH2 protein present in prostate cells and also inhibit cell proliferation in vitro. Ectopic expression of EZH2 in prostate cells induces transcriptional repression of a specific cohort of genes. Gene silencing mediated by EZH2 requires the SET domain and is attenuated by inhibiting histone deacetylase activity. Amounts of both EZH2 messenger RNA and EZH2 protein are increased in metastatic prostate cancer; in addition, clinically localized prostate cancers that express higher concentrations of EZH2 show a poorer prognosis. Thus, dysregulated expression of EZH2 may be involved in the progression of prostate cancer, as well as being a marker that distinguishes indolent prostate cancer from those at risk of lethal progression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62896/1/nature01075.pd

    MiR-128 Inhibits Tumor Growth and Angiogenesis by Targeting p70S6K1

    Get PDF
    MicroRNAs are a class of small noncoding RNAs that function as critical gene regulators through targeting mRNAs for translational repression or degradation. In this study, we showed that miR-128 expression levels were decreased in glioma, and identified p70S6K1 as a novel direct target of miR-128. Overexpression of miR-128 suppressed p70S6K1 and its downstream signaling molecules such as HIF-1 and VEGF expression, and attenuated cell proliferation, tumor growth and angiogenesis. Forced expression of p70S6K1 can partly rescue the inhibitory effect of miR-128 in the cells. Taken together, these findings will shed light to the role and mechanism of miR-128 in regulating glioma tumor angiogenesis via miR-128/p70S6K1 axis, and miR-128 may serve as a potential therapeutic target in glioma in the future

    Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    Get PDF
    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersión del editor4,411
    corecore