18 research outputs found

    4MOST Scientific Operations

    Full text link
    The 4MOST instrument is a multi-object spectrograph that will address Galactic and extragalactic science cases simultaneously by observing targets from a large number of different surveys within each science exposure. This parallel mode of operation and the survey nature of 4MOST require some distinct 4MOST-specific operational features within the overall operations model of ESO. The main feature is that the 4MOST Consortium will deliver, not only the instrument, but also contractual services to the user community, which is why 4MOST is also described as a facility. This white paper concentrates on information particularly useful to answering the forthcoming Call for Letters of Intent.Comment: Part of the 4MOST issue of The Messenger, published in preparation of 4MOST Community Workshop, see http://www.eso.org/sci/meetings/2019/4MOST.htm

    ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction

    Get PDF

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    4MOST: Project overview and information for the First Call for Proposals

    Get PDF
    We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R=λ/Δλ6500R = \lambda/\Delta\lambda \sim 6500), and 812 fibres transferring light to the high-resolution spectrograph (R20000R \sim 20\,000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations

    4MOST - 4-metre Multi-Object Spectroscopic Telescope

    No full text
    The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R~5000 ({\lambda}=390-1000 nm) and more than 2 million spectra at R~20,000 (395-456.5 nm and 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. We consider two fibre positioner concepts, a well-known Phi-Theta system and a new R-Theta concept with a large patrol area. The spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. Mock catalogues with template spectra from seven Design Reference Surveys are simulated to verify the science requirements of 4MOST. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments

    4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    No full text
    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey
    corecore