9 research outputs found

    Production of sulphated glycans by metabolic engineering

    No full text
    La partie oligosaccharidique des glycoconjuguĂ©s, prĂ©sents Ă  la surface des cellules eucaryotes, intervient dans de nombreux processus biologiques de reconnaissance et d'adhĂ©sion cellulaire. L'essor de la glycobiologie au cours des vingt derniĂšres annĂ©es a permis de dĂ©finir, Ă  partir de l'implication de ces structures glycaniques, de nombreuses applications thĂ©rapeutiques potentielles. Cependant la fabrication de nouveaux mĂ©dicaments Ă  partir d'oligosaccharidiques requiert leur disponibilitĂ© en grande quantitĂ© mais leurs obtentions par purification ou par mĂ©thode de synthĂšse chimique et enzymatique restent difficiles et couteuses et donnent un rendement faible. Le laboratoire CERMAV a rĂ©cemment dĂ©veloppĂ© une technologie cellulaire, non polluante, capable de produire rapidement et en grande quantitĂ© un certain nombre d'oligosaccharides d'intĂ©rĂȘt biologique. Le procĂ©dĂ© baptisĂ© « usine cellulaire » repose sur la co-expression de glycosyltransfĂ©rases recombinantes chez la bactĂ©rie Escherichia coli. La sulfatation des glycanes est un Ă©lĂ©ment important de leurs propriĂ©tĂ©s biologiques. Celle-ci dĂ©pend de l'activitĂ© de sulfotransfĂ©rases, dont l'activitĂ© chez Escherichia coli a Ă©tĂ© peu Ă©tudiĂ©e. Par contre, ces enzymes utilisent des accepteurs oligosaccharidiques dont la synthĂšse est maĂźtrisĂ©e par le procĂ©dĂ© d'usine cellulaire. Nous avons exprimĂ© des gĂšnes de sulfotransfĂ©rases afin de permettre in vivo la sulfatation d'accepteurs oligosaccharidiques endogĂšnes produits dans la bactĂ©rie. Les familles de molĂ©cules synthĂ©tisĂ©es dĂ©riveront des motifs GlcAlac, Lacto-N-nĂ©otĂ©traose, et LewisX dont la synthĂšse in vivo est maĂźtrisĂ©e. Nous avons Ă©galement rĂ©alisĂ© une synthĂšse combinĂ©e chimio-enzymatique d'une nĂ©oglycoprotĂ©ine porteuse d'un analogue de l'Ă©pitope HNK-1, dĂ©terminant sulfatĂ© impliquĂ© notamment dans la rĂ©gĂ©nĂ©ration des motoneurones. Finalement nous avons entrepris une Ă©tude prĂ©liminaire d'adaptation du procĂ©dĂ© d'« usine cellulaire » Ă  la synthĂšse de glycanes sulfatĂ©s chez Saccharomyces cerevisiae.The oligosaccharide moety of glycoconjugates, present on the eukaryotic cell surface, is involved in many biological processes of recognition and cell adhesion. The rise of glycobiology over the last twenty years has helped to define, from the involvement of these glycan structures, many potential therapeutic applications. However, the manufacture of new drugs from oligosaccharide requires their availability in large quantities but their varieties by purification or by method of chemical and enzymatic synthesis remain difficult and expensive and lead to low yield. CERMAV has recently developed a clean and fast cell technology, which is able of producing large quantities of several oligosaccharides of biological interest. The process called "cell factory" is based on the co-expression of recombinant glycosyltransferases in Escherichia coli. Sulfation of glycans is an important part of their biological properties and depends on the activity of sulfotransferase, whose activity in Escherichia coli has not been well studied. But these enzymes use oligosaccharide acceptor whose synthesis is controlled by the process of cell factory. We expressed genes of sulfotransferase to allow the in vivo sulfation of endogenous oligosaccharide acceptor produced in the bacterium. Families of molecules synthesized drift patterns of GlcAlac, Lacto-N-neotetraose, and Lewisx whose synthesis in vivo is controlled. We also performed a combined chemo-enzymatic synthesis of a neoglycoprotein bearing an analogue of the epitope HNK-1, involved particularly in the regeneration of motoneurons. Finally we tried to adapt the method of "cell factory” for the synthesis of sulfated glycans in a eukaryotic organism such as yeast Saccharomyces cerevisiae

    SynthÚse de glycannes sulfatés par le procédé d'"usine cellulaire"

    No full text
    The oligosaccharide moety of glycoconjugates, present on the eukaryotic cell surface, is involved in many biological processes of recognition and cell adhesion. The rise of glycobiology over the last twenty years has helped to define, from the involvement of these glycan structures, many potential therapeutic applications. However, the manufacture of new drugs from oligosaccharide requires their availability in large quantities but their varieties by purification or by method of chemical and enzymatic synthesis remain difficult and expensive and lead to low yield. CERMAV has recently developed a clean and fast cell technology, which is able of producing large quantities of several oligosaccharides of biological interest. The process called "cell factory" is based on the co-expression of recombinant glycosyltransferases in Escherichia coli. Sulfation of glycans is an important part of their biological properties and depends on the activity of sulfotransferase, whose activity in Escherichia coli has not been well studied. But these enzymes use oligosaccharide acceptor whose synthesis is controlled by the process of cell factory. We expressed genes of sulfotransferase to allow the in vivo sulfation of endogenous oligosaccharide acceptor produced in the bacterium. Families of molecules synthesized drift patterns of GlcAlac, Lacto-N-neotetraose, and Lewisx whose synthesis in vivo is controlled. We also performed a combined chemo-enzymatic synthesis of a neoglycoprotein bearing an analogue of the epitope HNK-1, involved particularly in the regeneration of motoneurons. Finally we tried to adapt the method of "cell factory” for the synthesis of sulfated glycans in a eukaryotic organism such as yeast Saccharomyces cerevisiae.La partie oligosaccharidique des glycoconjuguĂ©s, prĂ©sents Ă  la surface des cellules eucaryotes, intervient dans de nombreux processus biologiques de reconnaissance et d'adhĂ©sion cellulaire. L'essor de la glycobiologie au cours des vingt derniĂšres annĂ©es a permis de dĂ©finir, Ă  partir de l'implication de ces structures glycaniques, de nombreuses applications thĂ©rapeutiques potentielles. Cependant la fabrication de nouveaux mĂ©dicaments Ă  partir d'oligosaccharidiques requiert leur disponibilitĂ© en grande quantitĂ© mais leurs obtentions par purification ou par mĂ©thode de synthĂšse chimique et enzymatique restent difficiles et couteuses et donnent un rendement faible. Le laboratoire CERMAV a rĂ©cemment dĂ©veloppĂ© une technologie cellulaire, non polluante, capable de produire rapidement et en grande quantitĂ© un certain nombre d'oligosaccharides d'intĂ©rĂȘt biologique. Le procĂ©dĂ© baptisĂ© « usine cellulaire » repose sur la co-expression de glycosyltransfĂ©rases recombinantes chez la bactĂ©rie Escherichia coli. La sulfatation des glycanes est un Ă©lĂ©ment important de leurs propriĂ©tĂ©s biologiques. Celle-ci dĂ©pend de l'activitĂ© de sulfotransfĂ©rases, dont l'activitĂ© chez Escherichia coli a Ă©tĂ© peu Ă©tudiĂ©e. Par contre, ces enzymes utilisent des accepteurs oligosaccharidiques dont la synthĂšse est maĂźtrisĂ©e par le procĂ©dĂ© d'usine cellulaire. Nous avons exprimĂ© des gĂšnes de sulfotransfĂ©rases afin de permettre in vivo la sulfatation d'accepteurs oligosaccharidiques endogĂšnes produits dans la bactĂ©rie. Les familles de molĂ©cules synthĂ©tisĂ©es dĂ©riveront des motifs GlcAlac, Lacto-N-nĂ©otĂ©traose, et LewisX dont la synthĂšse in vivo est maĂźtrisĂ©e. Nous avons Ă©galement rĂ©alisĂ© une synthĂšse combinĂ©e chimio-enzymatique d'une nĂ©oglycoprotĂ©ine porteuse d'un analogue de l'Ă©pitope HNK-1, dĂ©terminant sulfatĂ© impliquĂ© notamment dans la rĂ©gĂ©nĂ©ration des motoneurones. Finalement nous avons entrepris une Ă©tude prĂ©liminaire d'adaptation du procĂ©dĂ© d'« usine cellulaire » Ă  la synthĂšse de glycanes sulfatĂ©s chez Saccharomyces cerevisiae

    Évaluation du rĂŽle pronostique des mutations somatiques des gĂšnes de la famille FGFR chez les patients porteurs d'un carcinome urothĂ©lial mĂ©tastatique

    No full text
    Introduction : le carcinome urothĂ©lial reprĂ©sente > 90% des cas des carcinomes invasifs de l’appareil excrĂ©teur urinaire. Les mutations des oncogĂšnes de la famille FGFR, principalement FGFR3, sont retrouvĂ©es dans 9 Ă  20% des cas selon les sĂ©ries, mais leur rĂŽle pronostique sur la survie reste encore Ă  dĂ©finir clairement en phase mĂ©tastatique, d’autant plus que les dĂ©veloppements rĂ©cents de thĂ©rapies ciblĂ©es anti-FGFR en font une cible de choix dans la prise en charge de ces carcinomes.MĂ©thode : une cohorte rĂ©trospective cas-tĂ©moins de patients pris en charge entre le 1er Janvier 2018 et le 30 juin 2021 au sein des hĂŽpitaux de l’AP-HM et/ou de l’Institut Paoli-Calmettes de Marseille, rĂ©partis selon leur statut NGS, a Ă©tĂ© Ă©tudiĂ©e. Les critĂšres d’inclusion Ă©tait un Ăąge ≄ 18 ans et avoir bĂ©nĂ©ficiĂ© d’une prise en charge pour un carcinome de l’appareil urinaire excrĂ©teur invasif mĂ©tastatique au sein de l’AP-HM et/ou de l’IPC. Les critĂšres d’exclusion Ă©taient : carcinome non urothĂ©lial, absence de mĂ©tastase ou caractĂšre locorĂ©gionalement avancĂ© opĂ©rable, absence d’analyse en NGS de l’ADN tumoral incluant les gĂšnes de la famille FGFR, absence de suivi disponible. L’OSm Ă©tait le CJP, la PFS1, la PFS2 et la SSM Ă©taient les CJS. Des analyses concernant les facteurs pronostiques habituels, l’ñge ou le traitement de premiĂšre ligne ont Ă©galement Ă©tĂ© effectuĂ©es. RĂ©sultats : 131patients ont Ă©tĂ© inclus, dont 28 (21,4%) Ă©taient FGFR-mutĂ©s. Il n’y a pas de diffĂ©rence significative d’OSm entre les deux populations (HR 0,866 ; IC 95% (0,517 ; 1,451) ; p = 0,517), ni de PFS1 (HR 1,18 ; IC95% (0,70 ; 2,01) ; p = 0,530), de PFS2 (HR 0,64 ; IC95% (0,30 ; 1,35), p = 0,239) ou de SSM (18,234 chez les patients mutĂ©s vs 13,207 mois chez les non-mutĂ©s, p=0,26). L’Hb < 10g/dL et le PS au diagnostic apparaissent comme des facteurs pronostiques sur l’OSm, mais pas la prĂ©sence de mĂ©tastases viscĂ©rales. Il n’y a pas de diffĂ©rences de PFS1 sur ces critĂšres, ni de diffĂ©rence d’OSm ni de PFS1 en fonction du traitement de premiĂšre ligne choisi entre les deux sous-groupes. Discussion : le statut FGFR-mutĂ© ne prĂ©sente pas un impact pronostique Ă©vident sur l’OSm en comparaison des critĂšres clinicobiologiques que sont l’état gĂ©nĂ©ral et le taux d’hĂ©moglobine au diagnostic. Il existe un signal en faveur d’une meilleure chimiosensibilitĂ© de ce groupe de patients, tandis que l’efficacitĂ© de l’immunothĂ©rapie semble moins Ă©vidente. Les Ă©tudes en cours sur les nouvelles thĂ©rapeutiques anti-FGFR conduiront Ă  une Ă©volution de leur place dans l’arsenal thĂ©rapeutique et Ă  la nĂ©cessitĂ© d’une recherche de plus en plus prĂ©coce du statut mutationnel de ces tumeurs. Conclusion : les mutations de la famille des gĂšnes FGR n’entrainent pas de diffĂ©rence significative sur l’OSm, ni sur la PFS1, la PFS2 ou la SSM des carcinomes urothĂ©liaux invasifs des voies excrĂ©trices

    SynthÚse de glycannes sulfatés par le procédé d'"usine cellulaire"

    No full text
    La partie oligosaccharidique des glycoconjuguĂ©s, prĂ©sents Ă  la surface des cellules eucaryotes, intervient dans de nombreux processus biologiques de reconnaissance et d'adhĂ©sion cellulaire. L'essor de la glycobiologie au cours des vingt derniĂšres annĂ©es a permis de dĂ©finir, Ă  partir de l'implication de ces structures glycaniques, de nombreuses applications thĂ©rapeutiques potentielles. Cependant la fabrication de nouveaux mĂ©dicaments Ă  partir d'oligosaccharidiques requiert leur disponibilitĂ© en grande quantitĂ© mais leurs obtentions par purification ou par mĂ©thode de synthĂšse chimique et enzymatique restent difficiles et couteuses et donnent un rendement faible. Le laboratoire CERMAV a rĂ©cemment dĂ©veloppĂ© une technologie cellulaire, non polluante, capable de produire rapidement et en grande quantitĂ© un certain nombre d'oligosaccharides d'intĂ©rĂȘt biologique. Le procĂ©dĂ© baptisĂ© usine cellulaire repose sur la co-expression de glycosyltransfĂ©rases recombinantes chez la bactĂ©rie Escherichia coli. La sulfatation des glycanes est un Ă©lĂ©ment important de leurs propriĂ©tĂ©s biologiques. Celle-ci dĂ©pend de l'activitĂ© de sulfotransfĂ©rases, dont l'activitĂ© chez Escherichia coli a Ă©tĂ© peu Ă©tudiĂ©e. Par contre, ces enzymes utilisent des accepteurs oligosaccharidiques dont la synthĂšse est maĂźtrisĂ©e par le procĂ©dĂ© d'usine cellulaire. Nous avons exprimĂ© des gĂšnes de sulfotransfĂ©rases afin de permettre in vivo la sulfatation d'accepteurs oligosaccharidiques endogĂšnes produits dans la bactĂ©rie. Les familles de molĂ©cules synthĂ©tisĂ©es dĂ©riveront des motifs GlcAlac, Lacto-N-nĂ©otĂ©traose, et LewisX dont la synthĂšse in vivo est maĂźtrisĂ©e. Nous avons Ă©galement rĂ©alisĂ© une synthĂšse combinĂ©e chimio-enzymatique d'une nĂ©oglycoprotĂ©ine porteuse d'un analogue de l'Ă©pitope HNK-1, dĂ©terminant sulfatĂ© impliquĂ© notamment dans la rĂ©gĂ©nĂ©ration des motoneurones. Finalement nous avons entrepris une Ă©tude prĂ©liminaire d'adaptation du procĂ©dĂ© d' usine cellulaire Ă  la synthĂšse de glycanes sulfatĂ©s chez Saccharomyces cerevisiae.The oligosaccharide moety of glycoconjugates, present on the eukaryotic cell surface, is involved in many biological processes of recognition and cell adhesion. The rise of glycobiology over the last twenty years has helped to define, from the involvement of these glycan structures, many potential therapeutic applications. However, the manufacture of new drugs from oligosaccharide requires their availability in large quantities but their varieties by purification or by method of chemical and enzymatic synthesis remain difficult and expensive and lead to low yield. CERMAV has recently developed a clean and fast cell technology, which is able of producing large quantities of several oligosaccharides of biological interest. The process called "cell factory" is based on the co-expression of recombinant glycosyltransferases in Escherichia coli. Sulfation of glycans is an important part of their biological properties and depends on the activity of sulfotransferase, whose activity in Escherichia coli has not been well studied. But these enzymes use oligosaccharide acceptor whose synthesis is controlled by the process of cell factory. We expressed genes of sulfotransferase to allow the in vivo sulfation of endogenous oligosaccharide acceptor produced in the bacterium. Families of molecules synthesized drift patterns of GlcAlac, Lacto-N-neotetraose, and Lewisx whose synthesis in vivo is controlled. We also performed a combined chemo-enzymatic synthesis of a neoglycoprotein bearing an analogue of the epitope HNK-1, involved particularly in the regeneration of motoneurons. Finally we tried to adapt the method of "cell factory for the synthesis of sulfated glycans in a eukaryotic organism such as yeast Saccharomyces cerevisiae.SAVOIE-SCD - Bib.Ă©lectronique (730659901) / SudocGRENOBLE1/INP-Bib.Ă©lectronique (384210012) / SudocGRENOBLE2/3-Bib.Ă©lectronique (384219901) / SudocSudocFranceF

    Screening of a Library of Oligosaccharides Targeting Lectin LecB of <i>Pseudomonas Aeruginosa</i> and Synthesis of High Affinity Oligoglycoclusters

    No full text
    The Gram negative bacterium Pseudomonas aeruginosa (PA) is an opportunistic bacterium that causes severe and chronic infection of immune-depressed patients. It has the ability to form a biofilm that gives a selective advantage to the bacteria with respect to antibiotherapy and host defenses. Herein, we have focused on the tetrameric soluble lectin which is involved in bacterium adherence to host cells, biofilm formation, and cytotoxicity. It binds to l-fucose, d-mannose and glycan exposing terminal fucose or mannose. Using a competitive assay on microarray, 156 oligosaccharides and polysaccharides issued from fermentation or from the biomass were screened toward their affinity to LecB. Next, the five best ligands (Lewisa, Lewisb, Lewisx, siayl-Lewisx and 3-fucosyllactose) were derivatized with a propargyl aglycon allowing the synthesis of 25 trivalent, 25 tetravalent and 5 monovalent constructions thanks to copper catalyzed azide alkyne cycloaddition. The 55 clusters were immobilized by DNA Directed immobilization leading to the fabrication of a glycocluster microarray. Their binding to LecB was studied. Multivalency improved the binding to LecB. The binding structure relationship of the clusters is mainly influenced by the carbohydrate residues. Molecular simulations indicated that the simultaneous contact of both binding sites of monomer A and D seems to be energetically possible

    Therapeutic Challenges in Patients with Gynecologic Carcinosarcomas: Analysis of a Multicenter National Cohort Study from the French Prospective TMRG Network

    No full text
    International audienceBackground: Gynecological carcinosarcomas are rare and aggressive diseases, with a poor prognosis. The rarity of these tumors explains the lack of robust and specific data available in the literature. The objective of this study was to investigate the impact of initial adjuvant treatment and recurrent therapeutic strategies. Patients and methods: A multicentric cohort study within the French national prospective Rare Malignant Gynecological Tumors (TMRG) network was conducted. Data from all included carcinosarcomas diagnosed between 2011 and 2018 were retrospectively collected. Results: 425 cases of uterine and ovarian carcinosarcomas (n = 313 and n = 112, respectively) were collected and analyzed from 12 participating centers. At diagnosis, 140 patients (48%) had a FIGO stage III–IV uterine carcinosarcoma (UCS) and 88 patients (83%) had an advanced ovarian carcinosarcoma (OCS) (FIGO stage ≄ III). Two hundred sixty-seven patients (63%) received adjuvant chemotherapy, most preferably carboplatin-paclitaxel regimen (n = 227, 86%). After a median follow-up of 47.4 months, the median progression-free survival (mPFS) was 15.1 months (95% CI 12.3–20.6) and 14.8 months (95% CI 13.1–17.1) for OCS and UCS, respectively. The median overall survival for OCS and UCS was 37.1 months (95% CI 22.2–49.2) and 30.6 months (95% CI 24.1–40.9), respectively. With adjuvant chemotherapy followed by radiotherapy, mPFS was 41.0 months (95% CI 17.0–NR) and 18.9 months (95% CI 14.0–45.6) for UCS stages I–II and stages III–IV, respectively. In the early stage UCS subgroup (i.e., stage IA, n = 86, 30%), mPFS for patients treated with adjuvant chemotherapy (n = 24) was not reached (95% CI 22.2–NR), while mPFS for untreated patients (n = 62) was 19.9 months (95% IC 13.9–72.9) (HR 0.44 (0.20–0.95) p = 0.03). At the first relapse, median PFS for all patients was 4.2 months (95% CI 3.5–5.3). In the first relapse, mPFS was 6.7 months (95% CI 5.1–8.5) and 2.2 months (95% CI 1.9–2.9) with a combination of chemotherapy or monotherapy, respectively (p < 0.001). Conclusions: Interestingly, this vast prospective cohort of gynecological carcinosarcoma patients from the French national Rare Malignant Gynecological Tumors network (i) highlights the positive impact of adjuvant CT on survival in all localized stages (including FIGO IA uterine carcinosarcomas), (ii) confirms the importance of platinum-based combination as an option for relapse setting, and (iii) reports median PFS for various therapeutic strategies in the relapse setting

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore