7 research outputs found

    Subtelomeric I-scei-mediated Double-strand Breaks Are Repaired By Homologous Recombination In Trypanosoma Cruzi

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families. © 2016 Chiurillo, Moraes Barros, Souza, Marini, Antonio, Cortez, Curto, Lorenzi, Schijman, Ramirez and da Silveira.7DEC11/51475-3, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo11/51693-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo306591/2015-4, CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Nanomechanical properties of bone around cement-retained abutment implants. A minipig study

    No full text
    Aim The nanomechanical evaluation can provide additional information about the dental implants osseointegration process. The aim of this study was to quantify elastic modulus and hardness of bone around cemented-retained abutment implants positioned at two different crestal bone levels. Materials and methods The mandibular premolars of 7 minipigs were extracted. After 8 weeks, 8 implants were inserted in each animal: crestally on one side of the mandible and subcrestally on the other (crestal and subcrestal groups). Functional loading were immediately provided with abutments cementation and prostheses installation. Eight weeks later, the animals euthanasia was performed and nanoindentation analyses were made at the most coronal newly formed bone region (coronal group), and below in the threaded region (threaded group) of histologic sections. Results The comparisons between subcrestal and crestal groups did not achieve statistical relevance; however the elastic modulus and hardness levels were statistically different in the two regions of evaluation (coronal and threaded). Conclusions The crestal and subcrestal placement of cement-retained abutment implants did not affect differently the nanomechanical properties of the surrounding bone. However the different regions of newly formed bone (coronal and threaded groups) were extremely different in both elastic modulus and hardness, probably reflecting their differences in bone composition and structure

    Industriproduktionens volymindex, november 1975

    Get PDF
    Suomen virallinen tilasto (SVT

    Search for new resonances decaying to a WW or ZZ boson and a Higgs boson in the +bbˉ\ell^+ \ell^- b\bar b, νbbˉ\ell \nu b\bar b, and ννˉbbˉ\nu\bar{\nu} b\bar b channels with pppp collisions at s=13\sqrt s = 13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors, 18 pages (plus author list + cover pages: 36 pages total), 13 figures, 1 table. Submitted to PLB. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-18/International audienceA search is presented for new resonances decaying to a WW or ZZ boson and a Higgs boson in the +bbˉ\ell^+ \ell^- b\bar b, νbbˉ\ell\nu b\bar b, and ννˉbbˉ\nu\bar{\nu} b\bar b channels in pppp collisions at s=13\sqrt s = 13 TeV with the ATLAS detector at the Large Hadron Collider using a total integrated luminosity of 3.2 fb1^{-1}. The search is conducted by looking for a localized excess in the WHWH/ZHZH invariant or transverse mass distribution. No significant excess is observed, and the results are interpreted in terms of constraints on a simplified model based on a phenomenological Lagrangian of heavy vector triplets
    corecore