43 research outputs found

    Concentrations of Nicotine, Nitrosamines, and Humectants in Legal and Illegal Cigarettes in Mexico

    Get PDF
    Background: Article 10 of the World Health Organization Framework Convention on Tobacco Control states the need for industry disclosure of tobacco contents and emissions. Currently, the profiles of key tobacco compounds in legal and illegal cigarettes are largely unknown. We aimed to analyze and compare concentrations of nicotine, nitrosamines, and humectants in legal and illegal cigarettes collected from a representative sample of smokers. Methods: Participants of the International Tobacco Control cohort provided a cigarette pack of the brand they smoked during the 2014 wave. Brands were classified as legal or illegal according to the Mexican legislation. Nicotine, nitrosamines, glycerol, propylene glycol, and pH were quantified in seven randomly selected packs of each brand. All analyses were done blinded to legality status. Average concentrations per brand and global averages for legal and illegal brands were calculated. Comparisons between legal and illegal brands were conducted using t tests. Results: Participants provided 76 different brands, from which 6.8% were illegal. Legal brands had higher nicotine (15.05 ± 1.89 mg/g vs 12.09 ± 2.69 mg/g; p \u3c 0001), glycerol (12.98 ± 8.03 vs 2.93 ± 1.96 mg/g; p \u3c 0.001), and Nnitrosanatabine (NAT) (1087.5 ± 127.0 vs 738.5 ± 338 ng/g; p = 0.006) concentrations compared to illegal brands. For all other compounds, legal and illegal brands had similar concentrations. Conclusion: Compared to illegal cigarettes, legal brands seem to have higher concentrations of nicotine, NAT, and glycerol. Efforts must be made to implement and enforce Article 10 of the Framework Convention on Tobacco Control to provide transparent information to consumers, regulators, and policy-makers; and to limit cigarette engineering from the tobacco industry

    Characterising variability and predictors of infant mortality in urban settings: findings from 286 Latin American cities.

    Get PDF
    BACKGROUND: Urbanisation in Latin America (LA) is heterogeneous and could have varying implications for infant mortality (IM). Identifying city factors related to IM can help design policies that promote infant health in cities. METHODS: We quantified variability in infant mortality rates (IMR) across cities and examined associations between urban characteristics and IMR in a cross-sectional design. We estimated IMR for the period 2014-2016 using vital registration for 286 cities above 100 000 people in eight countries. Using national censuses, we calculated population size, growth and three socioeconomic scores reflecting living conditions, service provision and population educational attainment. We included mass transit availability of bus rapid transit and subway. Using Poisson multilevel regression, we estimated the per cent difference in IMR for a one SD (1SD) difference in city-level predictors. RESULTS: Of the 286 cities, 130 had 5 million. Overall IMR was 11.2 deaths/1000 live births. 57% of the total IMR variability across cities was within countries. Higher population growth, better living conditions, better service provision and mass transit availability were associated with 6.0% (95% CI -8.3 to 3.7%), 14.1% (95% CI -18.6 to -9.2), 11.4% (95% CI -16.1 to -6.4) and 6.6% (95% CI -9.2 to -3.9) lower IMR, respectively. Greater population size was associated with higher IMR. No association was observed for population-level educational attainment in the overall sample. CONCLUSION: Improving living conditions, service provision and public transportation in cities may have a positive impact on reducing IMR in LA cities

    Scaling of mortality in 742 metropolitan areas of the Americas.

    Get PDF
    We explored how mortality scales with city population size using vital registration and population data from 742 cities in 10 Latin American countries and the United States. We found that more populated cities had lower mortality (sublinear scaling), driven by a sublinear pattern in U.S. cities, while Latin American cities had similar mortality across city sizes. Sexually transmitted infections and homicides showed higher rates in larger cities (superlinear scaling). Tuberculosis mortality behaved sublinearly in U.S. and Mexican cities and superlinearly in other Latin American cities. Other communicable, maternal, neonatal, and nutritional deaths, and deaths due to noncommunicable diseases were generally sublinear in the United States and linear or superlinear in Latin America. Our findings reveal distinct patterns across the Americas, suggesting no universal relation between city size and mortality, pointing to the importance of understanding the processes that explain heterogeneity in scaling behavior or mortality to further advance urban health policies

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Environmental tobacco smoke exposure, respiratory and cardiovascular health in restaurant and bar workers in Mexico

    No full text
    Environmental tobacco smoke (ETS) is a well established health hazard, being causally associated to lung cancer and cardiovascular disease. ETS regulations have been developed worldwide to reduce or eliminate exposure in most public places. Restaurants and bars constitute an exception. Restaurants and bar workers experience the highest ETS exposure levels across several occupations, with correspondingly increased health risks. In Mexico, previous exposure assessment in restaurants and bars showed concentrations in bars and restaurants to be the highest across different public and workplaces. Recently, Mexico developed at the federal level the General Law for Tobacco Control restricting indoors smoking to separated areas. AT the local level Mexico City developed the Law for the Protection of Non-smokers Health, completely banning smoking in restaurants and bars. Studies to assess ETS exposure in restaurants and bars, along with potential health effects were required to evaluate the impact of these legislative changes and to set a baseline measurement for future evaluations. A large cross-sectional study conducted in restaurants and bars from four Mexican cities was conducted from July to October 2008, to evaluate the following aims: Aim 1) Explore the potential impact of the Mexico City ban on ETS concentrations through comparison of Mexico City with other cities. Aim 2). Explore the association between ETS exposure, respiratory function indicators and respiratory symptoms. Aim 3). Explore the association between ETS exposure and blood pressure and heart rate. Three cities with no smoking ban were selected: Colima (11.5% smoking prevalence), Cuernavaca (21.5% smoking prevalence) and Toluca (27.8% smoking prevalence). Mexico City (27.9% smoking prevalence), the only city with a ban at the time of the study, was also selected. Restaurants and bars were randomly selected from municipal records. A goal of 26 restaurants and 26 bars per city was set, 50% of them under 100 m2. Each establishment was visited during the highest occupancy shift, and managers and workers answered to a questionnaire. Vapor-phase nicotine was measured using passive monitors, that were activated at the beginning and deactivated at the end of the shift. Also, workers participated at the beginning and end of the shift in a short physical evaluation, comprising the measurement of Forced Expiratory Volume in the first second (FEV1) and Peak Expiratory Flow (PEF), as well as blood pressure and heart rate. A total of 371 establishments were invited, 219 agreed to participate for a 60.1% participation rate. In them, 828 workers were invited, 633 agreed to participate for a 76% participation rate. Mexico City had at least 4 times less nicotine compared to any of the other cities. Differences between Mexico City and other cities were not explained by establishment characteristics, such as ventilation or air extraction. However, differences between cities disappeared when ban mechanisms, such as policy towards costumer\u27s smoking, were considered in the models. An association between ETS exposure and respiratory symptoms (cough OR=1.27, 95%CI=1.04, 1.55) and respiratory illness (asthma OR=1.97, 95%CI=1.20, 3.24; respiratory illness OR=1.79, 95%CI=1.10, 2.94) was observed. No association between ETS and phlegm, wheezing or respiratory infections was observed. No association between ETS and any of the spirometric indicators was observed. An association between ETS exposure and increased systolic and diastolic blood pressure at the end of the shift was observed among non-smokers (systolic blood pressure beta=1.51, 95%CI=0.44, 2.58; diastolic blood pressure beta=1.50, 95%CI=0.72, 2.28). The opposite effect was observed in heavy smokers, were increased ETS exposure was associated with lower blood pressure at the end of the shift (systolic blood pressure beta=1.90, 95%CI=-3.57, -0.23; diastolic blood pressure beta=-1.46, 95%CI=-2.72, -0.02). No association in light smokers was observed. No association for heart rate was observed. Results from this dissertation suggest Mexico City\u27s smoking ban has had a larger impact on ETS exposure. Ventilation or air extraction, mechanisms of ETS control suggested frequently by tobacco companies to avoid smoking bans were not associated with ETS exposure. This dissertation suggests ETS exposure could be linked to changes in blood pressure and to increased respiratory symptoms. Evidence derived from this dissertation points to the potential negative health effects of ETS exposure in restaurants and bars, and provides support for the development of total smoking bans in this economic sector

    Explaining the increment in coronary heart disease mortality in Mexico between 2000 and 2012

    Get PDF
    Background Mexico is still in the growing phase of the epidemic of coronary heart disease (CHD), with mortality increasing by 48% since 1980. However, no studies have analyzed the drivers of these trends. We aimed to model CHD deaths between 2000 and 2012 in Mexico and to quantify the proportion of the mortality change attributable to advances in medical treatments and to changes in population-wide cardiovascular risk factors. Methods We performed a retrospective analysis using the previously validated IMPACT model to explain observed changes in CHD mortality in Mexican adults. The model integrates nationwide data at two-time points (2000 and 2012) to quantify the effects on CHD mortality attributable to changes in risk factors and therapeutic trends. Results From 2000 to 2012, CHD mortality rates increased by 33.8% in men and by 22.8% in women. The IMPACT model explained 71% of the CHD mortality increase. Most of the mortality increases could be attributed to increases in population risk factors, such as diabetes (43%), physical inactivity (28%) and total cholesterol (24%). Improvements in medical and surgical treatments together prevented or postponed 40.3% of deaths; 10% was attributable to improvements in secondary prevention treatments following MI, while 5.3% to community heart failure treatments. Conclusions CHD mortality in Mexico is increasing due to adverse trends in major risk factors and suboptimal use of CHD treatments. Population-level interventions to reduce CHD risk factors are urgently needed, along with increased access and equitable distribution of therapiesPeer reviewe

    Adolescent Tobacco Exposure in 31 Latin American Cities before and after the Framework Convention for Tobacco Control

    No full text
    Our objective was to describe the prevalence and changes in tobacco use and tobacco control policies in Latin American countries and cities before and after ratification of the 2003 Framework Convention on Tobacco Control (FCTC). Country-level tobacco policy data came from reports on the global tobacco epidemic (World Health Organization, 2007–2014). Global Youth Tobacco Survey data, 2000–2011, came from six countries (Argentina, Brazil, Chile, Colombia, Mexico, Peru), 31 cities and 132,065 students. Pre- and post-FCTC prevalence and relative changes were estimated. All countries showed improvements in tobacco control policies but Mexico and Peru showed the smallest improvements. In general, adolescents reduced their tobacco use, reported less exposure to smoking at home, more tobacco education, and more retailer refusals to sell them cigarettes. Adolescents reported smaller reductions in secondhand smoke exposure outside the home and no change in exposure to tobacco media/promotions. Pre-FCTC prevalence and relative changes during the post-FCTC period were more heterogeneous across cities than across countries. Despite overall improvements in tobacco policies and the decline in exposure to tobacco, policies related to media/promotions and secondhand smoke need strengthening. There was wide variation in adolescent exposure to tobacco between cities (within countries), which suggested major heterogeneity of policy implementation at the local level

    Concentrations of nicotine, nitrosamines, and humectants in legal and illegal cigarettes in Mexico

    Get PDF
    Abstract Background Article 10 of the World Health Organization Framework Convention on Tobacco Control states the need for industry disclosure of tobacco contents and emissions. Currently, the profiles of key tobacco compounds in legal and illegal cigarettes are largely unknown. We aimed to analyze and compare concentrations of nicotine, nitrosamines, and humectants in legal and illegal cigarettes collected from a representative sample of smokers. Methods Participants of the International Tobacco Control cohort provided a cigarette pack of the brand they smoked during the 2014 wave. Brands were classified as legal or illegal according to the Mexican legislation. Nicotine, nitrosamines, glycerol, propylene glycol, and pH were quantified in seven randomly selected packs of each brand. All analyses were done blinded to legality status. Average concentrations per brand and global averages for legal and illegal brands were calculated. Comparisons between legal and illegal brands were conducted using t tests. Results Participants provided 76 different brands, from which 6.8% were illegal. Legal brands had higher nicotine (15.05 ± 1.89 mg/g vs 12.09 ± 2.69 mg/g; p < 0001), glycerol (12.98 ± 8.03 vs 2.93 ± 1.96 mg/g; p < 0.001), and N-nitrosanatabine (NAT) (1087.5 ± 127.0 vs 738.5 ± 338 ng/g; p = 0.006) concentrations compared to illegal brands. For all other compounds, legal and illegal brands had similar concentrations. Conclusion Compared to illegal cigarettes, legal brands seem to have higher concentrations of nicotine, NAT, and glycerol. Efforts must be made to implement and enforce Article 10 of the Framework Convention on Tobacco Control to provide transparent information to consumers, regulators, and policy-makers; and to limit cigarette engineering from the tobacco industry
    corecore