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E P I D E M I O L O G Y

Scaling of mortality in 742 metropolitan areas 
of the Americas
Usama Bilal1,2*, Caio P. de Castro3,4, Tania Alfaro5, Tonatiuh Barrientos-Gutierrez6, 
Mauricio L. Barreto3,7, Carlos M. Leveau8,9, Kevin Martinez-Folgar1,2, J. Jaime Miranda10,11, 
Felipe Montes12, Pricila Mullachery1, Maria Fatima Pina13,14, Daniel A. Rodriguez15, 
Gervasio F. dos Santos3,16, Roberto F. S. Andrade3,4, Ana V. Diez Roux1,2

We explored how mortality scales with city population size using vital registration and population data from 
742 cities in 10 Latin American countries and the United States. We found that more populated cities had lower 
mortality (sublinear scaling), driven by a sublinear pattern in U.S. cities, while Latin American cities had similar 
mortality across city sizes. Sexually transmitted infections and homicides showed higher rates in larger cities 
(superlinear scaling). Tuberculosis mortality behaved sublinearly in U.S. and Mexican cities and superlinearly in 
other Latin American cities. Other communicable, maternal, neonatal, and nutritional deaths, and deaths due to 
noncommunicable diseases were generally sublinear in the United States and linear or superlinear in Latin America. 
Our findings reveal distinct patterns across the Americas, suggesting no universal relation between city size and 
mortality, pointing to the importance of understanding the processes that explain heterogeneity in scaling behavior 
or mortality to further advance urban health policies.

INTRODUCTION
More than 50% of the global population lives in cities, and by 2050, 
this figure is expected to reach 70% (1). The process of urbanization 
has been especially intense in Latin America, a region that has under-
gone a rapid urbanization process in a brief period of time. North 
America also exhibits high levels of urbanization, making the Americas 
the most urbanized region in the world (2). Cities are complex systems 
of interacting agents that give rise to emergent phenomena, including 
levels and distributions of population health (3–6). Although much re-
search has evidenced contrasting levels of health between urban and 
rural areas, findings have been mixed partly due to the heterogeneity 
of urban areas themselves (6). Our knowledge of what specific fea-
tures of urban areas or cities affect population health, and of the 
processes through which they do so, is still limited (7).

Like biological organisms, as cities grow the complexity of their 
processes also grows (4, 5, 8). Population size can be conceptualized 
as an indicator of multiple socioenvironmental mechanisms linked 
to the agglomeration and intense interaction of people, which can 
result in advantages or disadvantages depending on the outcome in 
question. Some processes scale superlinearly with the population 

size of cities, including socially generated outcomes such as wealth 
and crime, meaning that they occur at a higher rate in larger cities, 
potentially due to network effects and increased social interactions 
(4, 5). Other processes scale sublinearly, meaning that they increase 
at a slower rate than the population; for instance, infrastructure 
characteristics such as the road network length scale sublinearly 
(4, 5), leveraging economies of scale, such as the ability of roads to 
accommodate a higher number of users. Last, a number of outputs 
scale linearly, meaning that they occur at similar rates across the 
continuum of population size (4, 5). Exploring the specific process-
es that link health outcomes and population size in cities may shed 
light into underlying mechanisms that could be harnessed to im-
prove population health in urban areas.

To date, a number of studies have examined how population size 
relates to health in cities (4, 9–19). Here, we report on a comprehen-
sive examination of how mortality scales with city population size 
across the universe of 742 metropolitan areas of 100,000 residents 
or more in the United States and 10 Latin American countries. We 
advance and innovate on previous work in three ways. First, by inves-
tigating cities across 11 very different countries, we can draw more 
generalizable inferences regarding the urban scaling of mortality. 
Second, we provide an exhaustive examination of both fine-grained 
and coarse classifications of causes of death. Third, we conduct the 
analyses taking into consideration key epidemiologic and demo-
graphic aspects that may drive differences in mortality linked to city 
size, including age differentials across cities and coding differences 
across countries. These results provide a comprehensive under-
standing of how health indicators scale with city size. Knowledge of 
the fundamental drivers of health in cities is critical to identifying 
the strategies that can be used to promote health in urban areas.

RESULTS
Urban scaling of all-cause mortality
We first explored the scaling properties of all-cause and cause-specific 
mortality in 742 cities pooling data from 2010 to 2016. We found 
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that all-cause mortality scaled sublinearly, with  = 0.94 [95% con-
fidence interval (CI), 0.92 to 0.96] (Fig. 1, Table 1, and fig. S1). In 
other words, more populated cities have a relatively lower mortality 
rate compared to smaller cities. After adjusting for age and country, 
the sublinear scaling coefficient was minimally attenuated ( = 0.97; 
95% CI, 0.96 to 0.97), indicating that, even after considering the 
different distribution of ages across cities among the entire region 
of the Americas, larger cities had lower all-cause mortality. We also 
found that this pattern differed by region. Specifically, after adjusting 

for age and country, the scaling coefficient for all-cause mortality 
was sublinear in U.S. cities ( = 0.94; 95% CI, 0.93 to 0.95) but linear 
in Latin American cities ( = 1.00; 95% CI, 0.99 to 1.01). Therefore, 
the health advantage of living in larger cities was present in U.S. cities 
and was absent in Latin American cities. The scaling pattern for 
Latin American cities was similar in cities of the two largest coun-
tries, Mexico ( = 1.01; 95% CI, 0.98 to 1.03) and Brazil ( = 1.00; 
95% CI, 0.99 to 1.01), and other Latin American countries ( = 0.99; 
95% CI, 0.97 to 1.01).
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Fig. 1. Scaling of all-cause and cause-specific mortality relative to city population size in U.S. and Latin American cities. Solid blue lines are linear fits of log(deaths) 
on log(population); red dashed lines are reference lines ( = 1). Coefficients (95% CI) are unadjusted coefficients of log(deaths) on log(population), stratified by region. 
CMNN, communicable, maternal, neonatal, and nutritional conditions; NCDs, noncommunicable diseases.

Table 1. Scaling coefficients (, 95% CI) by cause of death for all U.S. and Latin American cities. CMNN, communicable, maternal, neonatal, and nutritional 
diseases; CVD/NCDs, cardiovascular disease and other noncommunicable diseases. 

Cause/group Unadjusted Adjusted* United States† Latin America† BR† MX† Latin America 
(no MX/BR)†

All-cause mortality 0.94 (0.92–0.96) 0.97 (0.96–0.97) 0.94 (0.93–0.95) 1.00 (0.99–1.01) 1.00 (0.99–1.01) 1.01 (0.98–1.03) 0.99 (0.97–1.01)

CMNN 0.96 (0.93–0.99) 0.97 (0.95–0.99) 0.95 (0.92–0.97) 1.01 (0.98–1.03) 1.01 (0.98–1.04) 0.99 (0.95–1.03) 1.02 (0.98–1.07)

Cancer 0.94 (0.91–0.97) 0.98 (0.97–0.99) 0.95 (0.94–0.97) 1.01 (1.00–1.03) 1.01 (1.00–1.03) 1.01 (0.98–1.04) 1.00 (0.97–1.03)

CVD/NCDs 0.93 (0.91–0.96) 0.96 (0.95–0.97) 0.94 (0.92–0.95) 1.00 (0.99–1.01) 0.99 (0.98–1.01) 1.02 (0.99–1.04) 0.99 (0.96–1.01)

Nonviolent 
injuries 0.91 (0.89–0.93) 0.93 (0.91–0.94) 0.92 (0.90–0.94) 0.93 (0.90–0.95) 0.93 (0.90–0.97) 0.94 (0.90–0.99) 0.90 (0.85–0.95)

Suicides 0.88 (0.84–0.93) 0.92 (0.89–0.94) 0.94 (0.92–0.97) 0.88 (0.84–0.92) 0.88 (0.83–0.93) 0.91 (0.82–1.00) 0.87 (0.79–0.95)

Homicides 1.14 (1.07–1.22) 1.12 (1.07–1.16) 1.12 (1.07–1.18) 1.10 (1.04–1.17) 1.17 (1.09–1.25) 0.97 (0.80–1.13) 1.01 (0.91–1.12)

*Adjusted model is adjusted by age structure and country.     †Stratified models are run only on the indicated sample (e.g., Latin America is ran with all Latin 
American cities), all adjusted by age structure and country (where relevant). For Latin American cities, the main analysis includes the 366 cities in 10 countries, 
while BR includes Brazilian cities (n = 152), MX includes Mexican cities only (n = 92), and “no BR/MX” includes all Latin American cities except for those in BR and 
MX (n = 122).
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Urban scaling of large groupings of causes of death
Next, to determine whether these overall scaling patterns of all-
cause mortality obscure differing patterns by cause, we explored 
whether the sublinear (for the United States) and linear (for Latin 
America) scaling of all-cause mortality applied to the six large 
groupings of causes of death (Table 1). The three large disease 
groupings [CMNN (communicable, maternal, neonatal, and nutri-
tional condition), cancer, and NCDs (noncommunicable diseases)] 
had sublinear scaling in U.S. cities ( = 0.95, 0.95, and 0.94) and 
linear scaling in Latin American cities ( = 1.00, 1.01, and 1.01). In 
contrast, nonviolent injuries ( = 0.92 in the United States and 
0.93 in Latin America) and suicides ( = 0.94 and 0.88) had a sub-
linear pattern in both regions, while homicides had a superlinear 
pattern ( = 1.12 and 1.10). The sublinear pattern for nonviolent 
injuries and suicides for Latin America was similar for Brazilian, 
Mexican, and all other Latin American cities ( = 0.93, 0.94, and 
0.90 for nonviolent injuries and  = 0.88, 0.91, and 0.87 for sui-
cides). However, the superlinear pattern for homicides varied widely, 
being superlinear only for Brazilian cities ( = 1.17) and linear for 
Mexican and other Latin American cities ( = 0.97 and 1.01).

Of note, model fit for most outcomes by region was very good, 
with all R2 above 80% and most above 90%, with the exception of 
homicides in Mexico (R2 = 65%, compared to 81% in the United 
States, 83% for all cities in Latin America, 87% for Brazil, and 89% 
for all other Latin American cities; see table S2), indicating a higher 
variability in homicide rates across cities in Mexico after accounting 
for city size, suggesting stronger place-based (city-specific) effects 
in Mexico. Later in this section, we will describe a more compre-
hensive exploration of the relationship between this variability in 
outcomes and scaling behaviors. Figure 2 summarizes the ordering 
of scaling coefficients by model, with causes of death that are more 
superlinear on top. We note that, irrespectively of the superlinear, 
linear, or sublinear character of the results, the ordering of the six 
large groupings of causes of death was similar for U.S. and Latin 
American cities as a whole. This means that, while the specific 

scaling coefficients varied by region, the ordering of causes from 
most to least superlinear was mostly conserved. The only exception 
was suicides, which were the most sublinear cause in Latin America 
and the fourth most sublinear cause in U.S. cities. Brazilian cities 
followed a very similar pattern to Latin American cities as a whole. 
In contrast, in Mexican cities, homicides ranked only fifth in terms 
of superlinearity (as compared to first in U.S. cities, Latin American 
cities as a whole, and Brazilian cities). NCDs (which were linear for 
the Latin American region as a whole) were weakly superlinear in 
Mexico and ranked first in terms of superlinearity (as compared to 
fifth, fourth, and fifth in U.S. cities, Latin American cities as a whole, 
and Brazilian cities, respectively).

Urban scaling of detailed causes of death
Given the heterogeneity in causes of death within these large six 
groupings, we also conducted a more fine-grained analysis focused 
on specific death causes (see Figs. 3 and 4 and tables S3 to S5 
for results).

Communicable, maternal, neonatal, 
and nutritional conditions
Among the four communicable disease conditions [sexually trans-
mitted diseases (STDs) and HIV/AIDS, tuberculosis, respiratory 
infections, and all other infectious diseases], we found different pat-
terns by region and cause. STDs and HIV/AIDS had a superlinear 
behavior for U.S. cities, Latin American cities as a whole, Brazilian 
cities, and all other Latin American cities ( = 1.24, 1.07, 1.07, and 
1.17, respectively), but they were sublinear in Mexico ( = 0.90). 
STDs and HIV/AIDS were actually the most superlinear cause of 
death in U.S. cities and in Latin American cities excluding Brazil and 
Mexico, but they were the second most sublinear cause in Mexico.

On the other hand, tuberculosis had a very different pattern in 
U.S. and Latin American cities (Fig. 4A): It was the second most 
superlinear cause in Latin American cities but the second most sub-
linear cause in U.S. cities ( = 1.10 and 0.88 for Latin American and 
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U.S. cities, respectively). The pattern in Latin American cities was 
driven by Brazil and all other Latin American cities ( = 1.18 and 
1.09, respectively), as tuberculosis was the most sublinear cause in 
Mexican cities ( = 0.83). In general, all other communicable dis-
ease conditions, along with maternal, neonatal, and nutritional 
conditions, had a sublinear behavior in U.S. cities (ranking among 
the most sublinear causes of death) and a linear behavior in Latin 

American cities, with two exceptions: Maternal conditions were 
superlinear ( = 1.09) in Brazilian cities, and respiratory infections 
were superlinear in Mexican cities ( = 1.10).

Noncommunicable diseases
We observed that mortality from most cancers showed a sublinear 
(13 of the 21 subcategories) or linear (7 of 21) pattern in U.S. cities. 

Suicide
0.88 (0.83–0.93)

Road traffic accidents
0.89 (0.85–0.92)

Esophagus cancer
0.94 (0.89–1.00)

Nutritional conditions
0.95 (0.86–1.03)

Other cancer
0.96 (0.92–1.00)

Cirrhosis of the liver
0.96 (0.93–1.00)

Respiratory diseases
0.97 (0.94–1.00)

Diabetes mellitus 
0.98 (0.93–1.03)

Other unintentional injuries
0.99 (0.95–1.03)

Genitourinary diseases
0.99 (0.95–1.03)

Brain and nervous system cancers
0.99 (0.96–1.02)

Cardiovascular diseases
1.00 (0.98–1.02)

Respiratory infections
1.00 (0.95–1.05)

Prostate cancer
1.00 (0.97–1.04)

Trachea, bronchus, lung cancers
1.01 (0.97–1.05)

Melanoma and other skin cancers
1.01 (0.95–1.07)

Leukemia
1.01 (0.98–1.04)

Digestive diseases
1.01 (0.98–1.04)

Perinatal conditions
1.01 (0.97–1.05)

Neuropsychiatric disorders
1.01 (0.98–1.05)

Mouth and oropharynx cancers
1.02 (0.97–1.06)

Congenital anomalies
1.02 (0.99–1.04)

Liver cancer
1.02 (0.98–1.06)

Stomach cancer
1.03 (0.99–1.07)

Corpus uteri cancer
1.03 (0.96–1.10)

Infectious diseases
1.03 (0.98–1.09)

Kidney and ureter cancer
1.03 (0.98–1.09)

Pancreas cancer
1.04 (1.00–1.08)

Larynx cancer
1.05 (0.99–1.10)

Bladder cancer
1.05 (1.00–1.10)

STDs and HIV/AIDS
1.07 (1.00–1.13)

Colon and rectum cancers
1.07 (1.04–1.11)

Lymphomas, multiple myeloma
1.08 (1.04–1.12)

Breast cancer
1.09 (1.05–1.12)

Other NCD
1.09 (1.04–1.14)

Maternal conditions
1.09 (1.02–1.17)

Gallbladder and biliary tract cancer
1.10 (1.04–1.15)

Ovary cancer
1.11 (1.06–1.16)

Cervix uteri cancer
1.14 (1.06–1.21)

Violence
1.17 (1.09–1.25)

Tuberculosis
1.18 (1.10–1.27)

Suicide
0.88 (0.84–0.92)

Road traffic accidents
0.89 (0.86–0.92)

Esophagus cancer
0.95 (0.91–0.99)

Nutritional conditions
0.96 (0.91–1.02)

Other unintentional injuries
0.96 (0.93–0.99)

Cirrhosis of the liver
0.97 (0.94–1.00)

Other cancer
0.98 (0.96–1.00)

Stomach cancer
0.99 (0.95–1.02)

Genitourinary diseases
0.99 (0.96–1.02)

Perinatal conditions
0.99 (0.96–1.03)

Respiratory diseases
1.00 (0.97–1.02)

Melanoma and other skin cancers
1.00 (0.96–1.04)

Diabetes mellitus 
1.00 (0.97–1.03)

Digestive diseases
1.00 (0.98–1.02)

Cardiovascular diseases
1.00 (0.98–1.02)

Brain and nervous system cancers
1.01 (0.98–1.03)

Liver cancer
1.01 (0.98–1.04)

Neuropsychiatric disorders
1.01 (0.98–1.04)

Prostate cancer
1.01 (0.99–1.04)

Corpus uteri cancer
1.01 (0.97–1.06)

Maternal conditions
1.02 (0.97–1.07)

Congenital anomalies
1.02 (1.00–1.04)

Trachea, bronchus, lung cancers
1.02 (0.99–1.06)

Leukaemia
1.02 (1.00–1.04)

Respiratory infections
1.02 (0.99–1.05)

Mouth and oropharynx cancers
1.03 (0.99–1.07)

Infectious diseases
1.03 (0.99–1.08)

Gallbladder and biliary tract cancer
1.04 (1.00–1.08)

Larynx cancer
1.05 (1.00–1.10)

Colon and rectum cancers
1.05 (1.02–1.08)

Pancreas cancer
1.05 (1.02–1.08)

Kidney and ureter cancer
1.06 (1.02–1.10)

Other NCD
1.06 (1.03–1.10)

Lymphomas, multiple myeloma
1.07 (1.04–1.09)

Cervix uteri cancer
1.07 (1.02–1.11)

Bladder cancer
1.07 (1.03–1.11)

STDs and HIV/AIDS
1.07 (1.01–1.13)

Breast cancer
1.08 (1.05–1.11)

Ovary cancer
1.08 (1.05–1.12)

Tuberculosis
1.10 (1.02–1.17)

Violence
1.10 (1.04–1.17)

Road traffic accidents
0.85 (0.79–0.91)

Suicide
0.87 (0.79–0.95)

Oesophagus cancer
0.93 (0.85–1.00)

Stomach cancer
0.93 (0.86–0.99)

Other unintentional injuries
0.93 (0.87–0.99)

Digestive diseases
0.94 (0.90–0.99)

Maternal conditions
0.95 (0.86–1.04)

Genitourinary diseases
0.97 (0.91–1.02)

Corpus uteri cancer
0.97 (0.90–1.04)

Gallbladder and biliary tract cancer
0.98 (0.90–1.06)

Melanoma and other skin cancers
0.98 (0.90–1.06)

Other cancer
0.99 (0.94–1.03)

Perinatal conditions
0.99 (0.92–1.06)

Cardiovascular diseases
0.99 (0.96–1.02)

Neuropsychiatric disorders
1.00 (0.93–1.06)

Liver cancer
1.00 (0.95–1.05)

Cirrhosis of the liver
1.00 (0.94–1.05)

Respiratory diseases
1.00 (0.95–1.05)

Diabetes mellitus 
1.00 (0.96–1.05)

Cervix uteri cancer
1.00 (0.94–1.07)

Prostate cancer
1.01 (0.96–1.05)

Brain and nervous system cancers
1.01 (0.95–1.07)

Nutritional conditions
1.01 (0.92–1.11)

Violence
1.01 (0.91–1.12)

Other NCD
1.02 (0.94–1.10)

Congenital anomalies
1.02 (0.97–1.07)

Colon and rectum cancers
1.02 (0.98–1.07)

Respiratory infections
1.02 (0.98–1.07)

Infectious diseases
1.03 (0.94–1.11)

Leukemia
1.03 (0.99–1.07)

Ovary cancer
1.04 (0.98–1.09)

Trachea, bronchus, lung cancers
1.04 (0.97–1.10)

Pancreas cancer
1.05 (0.99–1.11)

Mouth and oropharynx cancers
1.06 (0.98–1.14)

Lymphomas, multiple myeloma
1.06 (1.02–1.11)

Bladder cancer
1.08 (0.99–1.16)

Breast cancer
1.08 (1.03–1.13)

Tuberculosis
1.09 (0.97–1.21)

Kidney and ureter cancer
1.09 (1.02–1.17)

Larynx cancer
1.10 (1.00–1.20)

STDs and HIV/AIDS
1.17 (1.06–1.28)

Tuberculosis
0.83 (0.63–1.03)

STDs and HIV/AIDS
0.90 (0.75–1.04)

Suicide
0.91 (0.82–1.00)

Road traffic accidents
0.92 (0.84–1.01)

Nutritional conditions
0.94 (0.83–1.05)

Cervix uteri cancer
0.95 (0.89–1.01)

Other unintentional injuries
0.96 (0.90–1.02)

Perinatal conditions
0.97 (0.90–1.03)

Liver cancer
0.97 (0.88–1.05)

Violence
0.97 (0.80–1.13)

Larynx cancer
0.97 (0.87–1.07)

Stomach cancer
0.98 (0.92–1.04)

Oesophagus cancer
0.98 (0.91–1.05)

Cirrhosis of the liver
0.98 (0.91–1.06)

Maternal conditions
0.99 (0.91–1.06)

Trachea, bronchus, lung cancers
1.00 (0.91–1.09)

Brain and nervous system cancers
1.01 (0.95–1.07)

Cardiovascular diseases
1.01 (0.97–1.04)

Other cancer
1.02 (0.98–1.05)

Diabetes mellitus 
1.02 (0.97–1.07)

Prostate cancer
1.02 (0.96–1.08)

Mouth and oropharynx cancers
1.02 (0.92–1.13)

Melanoma and other skin cancers
1.02 (0.95–1.10)

Leukaemia
1.03 (0.98–1.08)

Neuropsychiatric disorders
1.04 (0.98–1.09)

Congenital anomalies
1.04 (1.00–1.08)

Respiratory diseases
1.04 (0.99–1.09)

Infectious diseases
1.04 (0.98–1.11)

Colon and rectum cancers
1.05 (0.99–1.10)

Corpus uteri cancer
1.05 (0.96–1.13)

Breast cancer
1.05 (0.99–1.10)

Gallbladder and biliary tract cancer
1.05 (0.97–1.12)

Genitourinary diseases
1.05 (1.00–1.10)

Lymphomas, multiple myeloma
1.06 (1.00–1.11)

Kidney and ureter cancer
1.06 (0.99–1.13)

Digestive diseases
1.06 (1.02–1.11)

Pancreas cancer
1.09 (1.03–1.15)

Ovary cancer
1.10 (1.03–1.16)

Bladder cancer
1.10 (1.00–1.20)

Other NCD
1.10 (1.05–1.15)

Respiratory infections
1.10 (1.04–1.17)

Road traffic accidents
0.88 (0.85–0.91)

Tuberculosis
0.88 (0.82–0.95)

Respiratory diseases
0.90 (0.88–0.92)

Other NCD
0.90 (0.88–0.92)

Nutritional conditions
0.90 (0.87–0.94)

Digestive diseases
0.91 (0.89–0.93)

Respiratory infections
0.91 (0.88–0.94)

Genitourinary diseases
0.92 (0.88–0.95)

Trachea, bronchus, lung cancers
0.92 (0.90–0.94)

Maternal conditions
0.92 (0.86–0.99)

Diabetes mellitus 
0.93 (0.90–0.95)

Oesophagus cancer
0.93 (0.91–0.95)

Congenital anomalies
0.93 (0.91–0.96)

Other cancer
0.94 (0.92–0.95)

Suicide
0.94 (0.92–0.97)

Infectious diseases
0.94 (0.91–0.97)

Kidney and ureter cancer
0.94 (0.93–0.96)

Other unintentional injuries
0.94 (0.92–0.97)

Cardiovascular diseases
0.95 (0.93–0.96)

Larynx cancer
0.96 (0.91–1.00)

Colon and rectum cancers
0.96 (0.94–0.97)

Cirrhosis of the liver
0.96 (0.93–0.99)

Neuropsychiatric disorders
0.96 (0.94–0.98)

Leukaemia
0.97 (0.95–0.98)

Melanoma and other skin cancers
0.97 (0.95–0.99)

Lymphomas, multiple myeloma
0.97 (0.96–0.98)

Prostate cancer
0.97 (0.96–0.99)

Brain and nervous system cancers
0.97 (0.96–0.99)

Mouth and oropharynx cancers
0.98 (0.95–1.01)

Pancreas cancer
0.98 (0.97–0.99)

Ovary cancer
0.98 (0.96–1.00)

Bladder cancer
0.99 (0.97–1.01)

Breast cancer
0.99 (0.98–1.01)

Gallbladder and biliary tract cancer
1.00 (0.96–1.03)

Cervix uteri cancer
1.00 (0.96–1.04)

Perinatal conditions
1.02 (0.98–1.05)

Corpus uteri cancer
1.02 (0.99–1.05)

Liver cancer
1.02 (1.00–1.05)

Stomach cancer
1.04 (1.02–1.07)

Violence
1.12 (1.07–1.18)

STDs and HIV/AIDS
1.24 (1.17–1.31)

US LA BR MX LA (−BR/MX)

C
au

se
s 
of
 d
ea
th
 s
or
te
d 
in
 d
es
ce
nd

in
g 
or
de

r
(h
ig
he

r =
 m

or
e 
su

pe
rli
ne

ar
, l
ow

er
 =
 m

or
e 
su

bl
in
ea
r)

CMNN Cancer NCDs Injuries

Fig. 3. Causes of death sorted by scaling exponent and region. Fully colored cells indicate a statistically significant superlinear or sublinear pattern; cells with a solid 
outline indicate a superlinear pattern; cells with a dashed outline indicate a sublinear pattern; non–fully colored cells with no outline indicate a coefficient whose 95% CI 
crosses the null of linearity.
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In contrast, cancer deaths showed a linear (10 of 21) or superlinear 
(10 of 21) pattern in Latin American cities. Specifically, and as seen 
in Fig. 4B, we found a group of cancer types that showed sublinear 
patterns in the United States and superlinear patterns in Latin 
America: kidney, colon/rectum, larynx, lymphomas and multiple 
myelomas, ovary, and pancreas; a second group of cancer types 
showed a sublinear pattern in the United States but a linear pattern 
in Latin America (lung and trachea, prostate, melanoma, leukemia, 
and brain), while esophagus cancer showed a sublinear pattern in 
both regions. Stomach cancer showed a superlinear pattern in the 
United States and a linear pattern in Latin America, while liver, 
uterus, and mouth/oropharynx cancers had a linear pattern in both 
regions. Last, breast, bladder, cervix, and gallbladder cancer had 
a superlinear pattern in Latin America and a linear pattern in the 
United States.

Cardiovascular and other NCDs were clustered into three groups 
(Fig. 4C). The first group included cirrhosis of the liver, which 
showed a sublinear pattern in both regions. However, its rank with 
respect to other NCDs varied by region (Fig. 3), as cirrhosis was the 
second least sublinear NCD in U.S. cities while being the most sub-
linear NCD in Latin American cities as a whole, and in Brazilian 
and Mexican cities. A second group included several other NCDs 

(oral diseases, musculoskeletal conditions, skin diseases, and sense 
organ diseases), which had a clear superlinear pattern (and were the 
most superlinear NCD) in Latin American, Brazilian, and Mexican 
cities ( = 1.06, 1.09, 1.10, respectively) while having a clear sublinear 
pattern in U.S. cities ( = 0.90), ranking as the second most sublinear 
NCD. The last group, including seven of the nine NCDs (cardio-
vascular, neuropsychiatric, congenital anomalies, diabetes, genito-
urinary, digestive, and respiratory diseases), were sublinear in U.S. cities 
and linear in Latin American cities as a whole. However, the ordering 
of these causes was similar by region, as neuropsychiatric and cardio-
vascular diseases and congenital anomalies were among the least 
sublinear NCDs in both regions, while genitourinary, digestive, and 
respiratory diseases were among the most sublinear NCDs in both 
regions (Fig. 3). Again, as with other causes of death, these patterns 
held for Latin American cities as a whole and Brazilian cities, but 
differed for cities of Mexico, where digestive, genitourinary, and re-
spiratory diseases were among the most superlinear NCDs.

Injuries
In the case of injury deaths, patterns were mostly consistent between 
U.S. and Latin American cities (Figs. 3 and 4D). Suicides, road traffic 
deaths, and other unintentional injuries showed a sublinear pattern 
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in both regions, with a similar magnitude ( = 0.94 and 0.88 for 
suicides,  = 0.88 and 0.89 for road traffic deaths, and  = 0.94 and 
0.96 for other unintentional injuries in U.S. and Latin American 
cities, respectively). However, their ranking with respect to other 
causes varied, as they represented some of the most sublinear causes 
in Latin American cities (including the group of Brazilian cities, 
Mexican cities, and all other cities excluding Brazil and Mexico), 
while only road traffic accidents had a similar behavior in the United 
States, as suicides and other intentional injuries (which include falls 
and drug overdoses) had an average rank (but were still sublinear). 
On the other hand, homicides followed a superlinear scaling pattern 
in both regions ( = 1.12 and 1.10 for U.S. and Latin American cities, 
respectively). As described above, the only exception to these pat-
terns was for homicides in Mexican and other Latin American cities, 
which followed a linear pattern [ = 0.97 (95% CI, 0.80 to 1.13) and 
 = 1.01 (95% CI, 0.91 to 1.12) for Mexican and other Latin American 
cities, respectively]. Homicides ranked among the most sublinear 
causes of death for Mexican cities (Fig. 3).

Secondary analyses
We also explored the association between the levels and variance of 
each outcome and their respective scaling coefficient (Fig. 5). We 

found a negative correlation between scaling exponents and levels 
(intercepts in the models) ( = −0.58 and −0.67 for U.S. and Latin 
American cities, respectively), indicating that causes of death that 
are more frequent (higher intercepts) tend to be more sublinear, 
while causes of death that are less frequent (lower intercepts) tend 
to be superlinear, similarly across both regions (Fig. 5A). We found 
a weak positive correlation between scaling exponents and the 
square root of the mean squared error ( = 0.40 and 0.31 for U.S. and 
Latin American cities, respectively), indicating that causes of death 
that vary more tend to be more superlinear, while those that have 
lower variability tend to be more sublinear (Fig. 5B). Sensitivity 
analyses testing two alternative definitions for U.S. cities, com-
muting zones and an ad hoc definition based on which counties 
overlap with the urban area of the city, and adding an indicator 
to the main model indicating whether the city was the largest in 
its country all rendered similar results as our main analyses (figs. 
S2 and S3).

DISCUSSION
Our analysis of 366 Latin American and 376 U.S. cities (encompass-
ing over 560 million residents) revealed a heterogeneous scaling 
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landscape of mortality across the continent. While in the United 
States all-cause mortality was relatively lower in larger cities and did 
not differ by size in Latin American cities, the relation between city 
size and mortality differed by cause of death and region. Nonviolent 
injury deaths were sublinear in both regions, whereas homicides and 
deaths due to STDs/AIDS were superlinear in both regions. NCDs 
and cancer were generally sublinear (or linear for some cancers) in 
the United States and mostly linear or superlinear in Latin Ameri-
ca. Deaths from CMNN (other than AIDS/STDs) were sublinear in 
the United States and linear in Latin America.

To date, a number of studies have examined the scaling properties 
of population health outcomes, most of which focus on single con-
ditions, including STDs and injuries, or cities from a single country. 
Studies in the United States and Brazil have shown that both HIV/
AIDS and STDs scale superlinearly (4, 10, 11, 13), consistent with 
our findings in both the United States and Latin America. In the 
case of injuries, several studies in the United States and Latin America 
are consistent with our findings of an overall superlinear scaling 
pattern of homicides, sublinear scaling pattern of suicides, and sublinear 
or linear scaling pattern for road traffic injuries (4, 14, 16, 20–24). 
Rocha et al. (12) examined a wider variety of outcomes in U.S. counties, 
as well as Swedish and Brazilian municipalities, but did not do so in 
metropolitan areas. Choi et al. (17) also examined the scaling of 
mortality by four large NCD groupings in U.S. counties, finding a 
superlinear pattern for endocrine and metabolic diseases and a sub-
linear pattern for other NCDs when considering the largest counties.

Some causes of death show a consistent scaling pattern 
across regions
The consistency of findings regarding sublinear scaling of nonvio-
lent injury deaths and superlinear scaling of homicides and deaths 
due to STDs/AIDS across both regions and a diverse set of cities is 
notable in terms of its consistency, suggesting that some underlying 
common dynamics may play a role, irrespective of cross-country 
differences. For example, the sublinear scaling of nonviolent deaths 
may be because larger cities may have attributes such as more or 
better public transportation, lower traffic speeds, or sidewalk infra-
structure (25) that may be linked to lower rates of traffic-related 
deaths, an important contributor to nonviolent deaths. The sublinear 
pattern of pedestrian deaths, a component of road traffic deaths, has 
been reported before in the United States (16) and Brazil (20), linked 
to a shorter road traffic network in larger cities (26) and higher traffic 
congestion leading to lower speeds (16).

The superlinear scaling of homicides may be linked to differences 
in social conditions and inequality by city size. Larger cities are often 
characterized by large inequalities and social exclusion (27), origi-
nating from both segregation and self-sorting (28–31) and differential 
migration to/from cities (30, 32, 33). On the other hand, larger cities 
also display wider diversity of economic activities, which may result 
in improved social and economic outcomes (32, 34). Combinations 
of some of these factors, along with increased social interactions 
(35), may be linked to higher homicide rates in larger cities, consis-
tent with previous research in the United States and Latin America 
(14). Consistent with these findings, other studies have documented 
higher rates of crime in larger cities (4, 14), including homicides. 
The superlinearity of HIV/AIDS and STDs, reported in several pre-
vious studies (4, 10, 11), is likely to emerge from a combination of 
increased social contacts in larger cities and social, economic, and 
behavioral differences between cities of different sizes, which leads 

to increased incidence of both syphilis, gonorrhea, and chlamydia 
(10, 11) and HIV/AIDS (4, 13).

Other infectious diseases, and maternal, neonatal, 
and nutritional conditions display different 
patterns by region
Deaths from other CMNN conditions were sublinear in the United 
States and linear or even superlinear in Latin America. This high-
lights that the distribution of factors driving these conditions is 
different in both regions. For example, tuberculosis is strongly sub-
linear in the United States and superlinear in Latin America, 
especially in Brazilian and other Latin American cities excluding 
Mexico. Large cities in low and middle income countries show very 
wide heterogeneity (36) in the conditions that give rise to tuber-
culosis, including poverty and overcrowding, and may also differ in 
access to high-quality health care services (37). In contrast, cities 
in high-income countries may have better infrastructure. This was 
shown in a recent study that highlighted that deaths due to condi-
tions for which the health care system can prevent new cases, which 
include tuberculosis, were especially high in large cities of Latin 
America (38). Migration may be another factor behind the sublinear 
pattern of tuberculosis mortality in the United States. In 2011, 62% 
of reported tuberculosis cases in the United States occurred among 
foreign-born people, mainly Hispanic and Asian individuals (39). 
Barriers to accessing care associated with immigration status can be 
one of the main factors preventing adherence to treatment, espe-
cially among non–English-speaking migrants (40). This phenome-
non may be more frequent in small and medium-sized cities, given 
the geographic dispersion of Hispanic immigration (41).

The scaling of NCDs varies widely by specific cause
The different scaling of cancer and NCDs in Latin America (mostly 
linear) and United States (mostly sublinear) may be related to dif-
ferential associations of chronic disease risks factors with city size in 
both regions, particularly considering that most of Latin America 
has swiftly transitioned toward a predominance of urban areas and 
the accompanying epidemiological and nutritional transitions that 
are still in progress (42–44). Smoking, excessive alcohol consump-
tion, and obesity are more prevalent in smaller compared to larger 
cities of the United States (45). To our knowledge, very few studies 
have compared NCD risk factor levels across the spectrum of ur-
banization in Latin America. In an analysis of NCD risk factors by 
province-level urbanicity in Argentina, Rodríguez López et al. (46) 
found that more urbanized provinces had a higher prevalence of 
smoking but a lower prevalence of hypertension, but these patterns 
held only for women. Rural to urban comparisons have been more 
frequent, finding a consistently higher prevalence of NCD risk 
factors in urban compared to rural areas of Latin America (47–49). 
Various environmental and policy features linked to the prevalence 
of these risks factors [including factors such as air pollution, access to 
healthier and processed foods, walkability, and green spaces (50, 51)] 
may be strongly linked to city size in the United States and not so 
strongly linked to city size in Latin America, as has been observed in 
a comparison of U.S. and Indian and Chinese cities, which show 
very different scaling patterns for air pollution (52). However, an 
analysis of our same sample of 366 Latin American cities has shown 
that larger cities of Latin America have higher levels of air pollution, as 
measured by PM2.5 levels (53). Larger cities of both regions may also 
have higher health care capacity (54–58), although a recent study in 
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Latin American cities showed that deaths due to conditions for which 
the health care system should prevent cases are more frequent in 
larger cities, while deaths due to chronic conditions requiring sub-
stantial care are lower in larger cities (38).

The mostly sublinear scaling observed for cancers in the United 
States could also reflect better cancer survival in larger cities (59) as 
cancer mortality rates are especially sensitive to survival differences. 
Diagnostic capabilities may also be associated with city size, and 
these associations may be different in the United States and Latin 
America. We explored the scaling properties of ill-defined deaths, a 
marker of quality of coding of causes of death and potentially to 
improved diagnostic capabilities, and found them to be similarly 
sublinear in both regions ( = 0.95).

Implications
Our findings have implications for understanding the phenomenon 
of urban scaling and for prevailing urban scaling theories, which see 
the phenomenon as driven by common universal mechanisms rath-
er than place-specific effects. The inclusion of cities in 10 different 
countries of Latin America and the United States and the study of 
multiple causes of death allowed us to explore heterogeneities by 
region and cause of death. Although we found some commonalities, 
we also observed important differences in the scaling behavior of 
specific causes of death and, in some cases, in the scaling behavior 
of a given cause of death across regions or countries. These differ-
ences were reflected in different values of scaling coefficients, their 
rankings within country or region, or both. We posit three possible 
explanations for these patterns.

First, and as outlined in the previous sections, the associations of 
health-relevant city characteristics including social, environmental, 
health care–related, and behavioral factors with city size may differ 
by domain and by region, and these features may relate differently 
to different causes of death. In other words, because different pro-
cesses link city size to different health outcomes and the links be-
tween the drivers of these processes and city size may additionally 
vary by region, it is not surprising that the scaling of mortality varies 
by specific cause and region.

Second, and as proposed by Arcaute et al. (60) and Pumain (61), 
scaling patterns may be affected by path dependencies (historical 
contingencies) that influence specific features of cities regardless of 
their size (e.g., the role of San Francisco as a technological hub, de-
spite its relatively small size compared to other cities). As a result, 
the context in which each city grew to its current size may affect the 
consequences of that growth and, therefore, the currently observed 
relationship between city size and mortality. Relatedly, Jedwab and 
Vollrath (62) have proposed a model of megacity growth, where 
they posit that current features of megacities vary depending on 
whether these cities grew before or after the transition to the current 
low mortality regime.

Third, as suggested by Gomez-Lievano et al. (32), scaling may 
also be a function of the nature of multifactorial causal processes at 
work. According to Gomez-Lievano et al. (32), outcomes that re-
quire the presence of multiple different factors (and that are there-
fore less common and have more variability) are more likely to 
occur in larger cities (behave superlinearly) because these multiple 
factors are more likely to co-occur in larger cities. Consistent with 
this hypothesis, we found that less common and more variable 
causes of death tended to be more superlinear. However, these asso-
ciations do not necessarily prove the theory as, for example, it is not 

immediately obvious that homicide and STD/AIDS deaths (strong-
ly superlinear in our data) require more factors to co-occur than 
nonviolent injury deaths (which were strongly sublinear).

The stage of the epidemiological transition (63) of each country 
could affect scaling of health through each of the three explanations 
for scaling behaviors that we describe: through context and outcome-
specific processes, through their histories and path dependencies, 
and by altering the relative prevalence of outcomes that require 
multiple factors to occur. The heterogeneity in stages of the epide-
miologic transition reflected in countries we analyzed (64–66) 
could thus also explain heterogeneities in scaling coefficients across 
regions and countries.

Regardless of the processes that drive the scaling phenomena we 
observed, these relations have implications for public health inter-
ventions and urban policy. Knowing whether certain health out-
comes scale with city size, and how, may allow for more precise 
resource allocation. For example, if two diseases show opposing 
scaling patterns, resources to prevent one with superlinear scaling 
could be focused on larger cities, while resources to prevent one 
with sublinear scaling could be focused on smaller cities. Moreover, 
a greater understanding of the drivers of the scaling phenomena 
could provide insights on whether there is an optimal city size 
(an important consideration for urban policy), a topic that has been 
extensively studied from a productivity perspective (67, 68), but 
rarely analyzed for population health optimization (69).

Caveats and limitations
There are some concerns regarding the quality of mortality data 
obtained from vital registration. First, there is a known underregis-
tration of death counts that varies by country and subnationally 
(65, 70), which we addressed by applying an ensemble of state-of-
the-art demographic methods to address this at the city level for 
Latin American cities, as reported elsewhere (65, 71). Second, a 
number of deaths are coded using ill-defined causes [International 
Classification of Diseases International Classification of Diseases 
(10th version) (ICD-10) codes R00 to R94 and R96 to R99], which 
we addressed by redistributing ill-defined deaths into more specific 
categories, based on age, sex, country, and year, as done in other 
studies (65). Ill-defined diseases scaled sublinearly in both U.S. cities 
and Latin American cities ( = 0.95), indicating improved coding of 
causes of death in larger cities, as compared to smaller cities, al-
though the CIs crossed linearity in both cases (95% CI, 0.89 to 1.02 
and 0.87 to 1.03 in U.S. and Latin American cities, respectively). 
Moreover, the coding of causes of death, and our grouping of causes 
of death, also has limitations. For example, our categorization of deaths 
due to communicable, maternal, neonatal, and nutritional condi-
tions proved to be highly heterogeneous, as an analysis with more 
detailed causes of death showed very different scaling coefficients. 
This classification is rooted in the idea of epidemiologic transitions 
(63), which has been criticized (72) for, among other things, ignoring 
the potential emergence of new infectious diseases [such as HIV/
AIDS or, more recently, coronavirus disease 2019 (COVID-19)]. 
Improvements in the categorization of causes of death may provide 
for more consistent results of the scaling patterns of deaths by cause.

A third caveat to our findings is related to the sensitivity of urban 
scaling properties to the definition of what constitutes a city and its 
boundaries (60). However, our sensitivity analysis exploring three 
alternative definitions for U.S. cities and our addition of an adjust-
ment covariate for the largest city in each country [to control for the 
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“dragon-king” cities described by Arcaute et al. (60)] showed no 
changes to scaling patterns. Fourth, we are analyzing data for 11 
countries, with their own regional differences in their urban sys-
tems. Historical factors have influenced the population and charac-
teristics of cities in each country, resulting in potential challenges 
comparing cities of the same size across different countries. For 
example, job opportunities and the most advanced health care facilities 
in each country tend to concentrate in their largest cities (54–58). 
However, the size of these largest cities varies widely by country: 
The largest cities in the United States, Brazil, Mexico, and Argentina 
are all above 15 million, the largest cities in Chile, Colombia, and 
Peru have between 6 and 10 million residents, while the largest cit-
ies in Costa Rica, Guatemala, El Salvador, and Panama are all below 
3.2 million residents. Therefore, if the likelihood of death increases 
(or decreases) with city size, as size approaches the largest city in a 
country, cities in smaller countries may not be comparable to simi-
larly sized cities in larger countries. We controlled our main analysis 
for country, by adding a dummy covariate specific to each country, 
but we cannot rule out regional differences in each country that 
may not be captured by this adjustment. Last, our results are drawn 
from a cross-sectional sample and should not be interpreted directly 
as a measure of how much a city should grow (or shrink) to achieve 
that optimal size. That assertion assumes that cross-sectional asso-
ciations reflect longitudinal associations and also requires the 
assumption of ergodicity, or lack of path dependence (61), which 
assumes that a given outcome depends only on the current state of 
the city, with no consideration to the path it took to get there, which 
may (73) or may not hold for cities (61, 74). Future studies should 
leverage longitudinal data that allow for the exploration of how city 
features change over time.

As the world continues urbanizing and as the COVID-19 pan-
demic brings scrutiny to the assumption that urban living translates 
into population-wide benefits, including better health profiles, it is 
especially important to deepen our understanding of how city size is 
related to health. Sublinear scaling of some causes of death indicates 
that larger cities can benefit from efficiency in services, from educa-
tional and job opportunities, and from environments and policies 
that may promote health. In contrast, superlinear scaling highlights 
the potentially negative correlates of larger cities, such as crowding, 
pollution, violence, and inequality.

Our results characterizing a comprehensive set of mortality patterns 
across a wide range of cities in the entire region of the Americas 
support the idea that there is no unique relation between city size 
and different health conditions, and that the application of urban 
scaling theories, which see the phenomenon as driven by common 
universal mechanisms (4, 5), to health outcomes, may need to be 
adapted to explain this heterogeneity. The inclusion of a large num-
ber of Latin American cities in our study advances the field by ex-
ploring the phenomenon of urban scaling in countries at varying 
income levels. Our findings raise questions about how city attri-
butes can be leveraged to be health promoting while minimizing 
any adverse consequences. Understanding the processes that ex-
plain the heterogeneity in scaling behavior of mortality that we ob-
served could be useful for health and urban policy.

It is possible that the ability of cities to maximize beneficial 
health, social, physical, and service environments declines above a 
certain size. Identifying the presence of a tipping point and under-
standing the historically and socially situated factors that drive its 
location are crucial for planning purposes and for public health 

preparedness and responsiveness. This task requires considering 
health, energy efficiency, environmental, and economic impacts, 
much in line with the global interconnected targets set forth as the 
Sustainable Development Goals. An optimal city size could be an 
important universal social goal, minimizing adverse environmental 
impacts, maximizing health benefits, and sustaining an increased 
level of creativity and innovation that has long been a major charac-
teristic of cities and the reason for its success to become the pre-
ferred shelter for the human population.

MATERIALS AND METHODS
Study setting
We used data on 366 Latin American and 376 U.S. cities. Latin 
American cities were defined as urban agglomerations of adminis-
trative units (municipios, comunas, distritos, partidos, etc.) that 
overlapped with the urban extent of the city, in 10 countries (65, 71): 
Argentina, Brazil, Chile, Colombia, Costa Rica, El Salvador, Mexico, 
Peru, and Panama. U.S. cities were defined as core-based statistical 
areas or the agglomeration of counties adjacent (and connected through 
commuting patterns) or part of a core area with at least 10,000 people. 
To make analyses comparable across both settings, we restricted our 
analysis to Latin American and U.S. cities with more than 100,000 peo-
ple in 2010. We pooled data for the 2012–2016 period except for El 
Salvador (2010–2014), due to data availability.

Data sources
Data for Latin America were obtained from the Salud Urbana en 
America Latina (SALURBAL) study, which has compiled and har-
monized vital registration and other health data (65, 71). Data for 
the United States were obtained from the National Vital Statistics 
System (75) and the Census Bureau. In all cases, we obtained all 
mortality records for the time frame of the study georeferenced to 
the county or county-equivalent level, with data on cause of death. 
We also obtained intercensal population estimations or postcensal 
projections by county or county-equivalent and age.

Variables
The main exposure investigated was the average yearly city popula-
tion size in the period of the study, henceforth referred as city size. The 
main outcomes investigated are average yearly mortality counts by 
cause by city of residence. We classified causes of death based on the 
categories of the Global Health Estimates classification (76). Causes 
of death were first divided into six large groupings, three group-
ings of diseases, and three groupings of external causes (injuries): 
(i) CMNN, (ii) cancer, (iii) cardiovascular disease and other NCDs 
(CVD/NCDs), (iv) nonviolent injuries (road traffic accidents and other 
unintentional injuries), (v) suicides, and (vi) homicides. We also fur-
ther divided these categories into 41 fine-grained groups. Table S1 con-
tains details on the groupings and corresponding codes of ICD-10.

We addressed three critical challenges of vital registration data. 
First, we imputed missing age and sex (0.2% and 0.05% of deaths in 
Latin American cities and 0.005% and 0% of deaths in U.S. cities 
had missing information on age and sex, respectively) using a pro 
rata redistribution, based on cause of death, sex or age, country, and 
year. Second, we redistributed deaths assigned to ill-defined causes 
(4.1% for Latin American cities and 1.5% for U.S. cities) using a pro 
rata redistribution by age, sex, country, and year. Ill-defined causes 
are causes of death that do not provide useful information on the 
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cause of death for public health purposes, and we define these as 
ICD-10 codes R00-R94 and R96-R99. Third and last, we corrected 
for the underregistration of deaths at the city level by using an en-
semble of death distribution methods. We assumed that U.S. cities 
had complete coverage of death counts and conducted this correc-
tion only for Latin American cities. More details on these three 
steps are available elsewhere (65). We also adjusted for the compo-
sitional effect of different age structures across cities, which have 
been shown to drive some scaling patterns (18) and which have a 
strong effect on mortality patterns. For this, we calculated the pro-
portion of city residents aged 0 to 14, 15 to 39, 40 to 64, and 65 years 
and above, for the years of the study.

Statistical analysis
The basic scaling model (4) used for all analyses is a nonlinear pow-
er law relationship of the form

	​ Y  = ​ Y​ 0​​ * ​N​​ ​​	 (1)

We estimate these parameters by taking the natural logarithm of 
both sides of Eq. 1 and estimating an ordinary least squares (OLS) 
regression of the form

	​ ln (​Y​ ij​​ ) =  +  * ln (​N​ ij​​ ) + ​ϵ​ ij​​ ​	 (2)

where Yij is the number of deaths for the ith city in the jth country, 
 is a constant,  is the scaling exponent ( < 1 representing sublin-
ear scaling,  > 1 superlinear scaling, and  = 1 linear scaling), Nij is 
the population of the city, and  is a residual (4). Data from different 
countries may present the same scaling pattern (same exponent ) 
but different magnitude (different ). Thus, to account for possible 
different levels of mortality rates and coding of causes of death by 
country, and to control for the role of age distribution in mortality, 
we also expanded the model in Eq. 2, based on previous work (33), as

​log (​Y​ ij​​ ) =  +  * log(​N​ ij​​ ) + ​​ 2​​ * ​Country​ j​​ + ​​ 3​​ * Prop ​(15 _ 39)​ ij​​ + 
                ​    ​ 4​​ * Prop ​(40 _ 64)​ ij​​ + ​​ 5​​ * Prop ​(65p)​ ij​​ + ​ϵ​ ij​​​	 (3)

Here, the vector of variables Countryj refers to the country where 
the city is located, and Prop(15_39), Prop(40_64), and Prop(65p) 
represent the percentage of the population in each city aged 15 to 
39, 40 to 64, and 65+. We ran the model in Eq. 3 for all cities com-
bined and also stratified these models by region to separately obtain 
scaling exponents () and intercepts () values for Latin American 
and U.S. cities separately. Last, we also leveraged the large number 
of cities in two Latin American countries to estimate country-
specific scaling coefficients in Brazil (n  =  152 cities), Mexico 
(n = 92), and all other Latin American cities (n = 122). Models for a 
single country (i.e., United States, Brazil, and Mexico) do not in-
clude any adjustment for country, while models for multiple coun-
tries (i.e., the models for all Latin American countries and for all 
Latin American countries minus Brazil and Mexico) include the 
adjustment covariates for country.

Last, to explore whether the general level and variability of each 
type of cause of death was associated with its scaling behavior, we 
followed the approach of Gomez-Lievano et al. (32). For this, we 
compared the scaling exponents () for each cause of death with the 
following: (i) their corresponding intercepts (), which are a metric 
of the general levels of the phenomenon, and (ii) the square root of 

the mean squared error, which are a metric of the variability of 
the phenomenon after accounting for city size, both obtained from 
Eq. 3 above. We explored the correlation between scaling patterns 
and general levels and variability by region, both graphically and by 
calculating Pearson’s correlation coefficient.

We carried two sensitivity analyses. First, to test whether city 
definitions altered the scaling properties of causes of death, we 
explored two alternative definitions in the United States: (i) com-
muting zones (77) and (ii) an ad hoc definition designed to mimic 
the SALURBAL city definition (65, 71). This ad hoc definition was 
obtained by overlaying U.S. urban areas (block-level definition of 
urbanized areas) with U.S. counties and defining cities as agglomer-
ations of counties that overlay with the city urbanized area. Details 
on these city definitions are available in table S6. Second, given the 
heterogeneity of city sizes across countries (78) and the potential 
differential importance of capital cities as economic hubs (60), we 
tested whether adding a covariate to Eq. 3 indicating whether the city 
was the largest in its country changed the inferences we observed in 
our main analysis. All analyses were conducted in R v4.1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl6325

View/request a protocol for this paper from Bio-protocol.
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