1,473 research outputs found

    A study on clinical attachment loss and gingival inflammation as etiologic factors in pathologic tooth migration

    Get PDF
    Background: Several etiologic factors have been listed for pathologic migration of periodontally involved teeth based mainly on clinical observations with scarce scientific evidence. Present study was carried out to find out relationship of clinical attachment loss and gingival inflammation with pathologic tooth migration.Materials and Methods: A total of 37 patients having 50 pairs of migrated and non-migrated contralateral teeth were taken into consideration.Results: Mean total attachment loss per tooth in migrated and non migrated tooth is 13.32 ± 0.74 S.E. and 8.34 ± 0.58 S.E., respectively (P < 0.001), which reveals a positive correlation. There seems to be an association between frequency of migration and severity of attachment loss since highest percentage of migrations were seen in maximum total attachment loss group. Relationship could not be established between severity of attachment loss and severity of migration for which more data may be required. Also, it was seen that gingival index was significantly higher in migrated group.Conclusion: Findings suggest that there exists a direct relationship between pathologic migration and clinical attachment loss as well as gingival inflammation. Clinical relevance: Results emphasize the importance of early treatment of periodontitis to curb inflammation, which seems to be more important since it is completely reversible, and attachment loss also in order to prevent unaesthetic complications. Moreover bleeding along with recent change in position of teeth should be considered as important sign of active, moderate to severe periodontal disease by general dentists and hygienists so that they can refer for specialist consultation

    The Effect of Oligomerization on A Solid-Binding Peptide Binding to Silica-Based Materials.

    Full text link
    The bifunctional linker-protein G (LPG) fusion protein comprises a peptide (linker) sequence and a truncated form of Streptococcus strain G148 protein G (protein G). The linker represents a multimeric solid-binding peptide (SBP) comprising 4 × 21-amino acid sequence repeats that display high binding affinity towards silica-based materials. In this study, several truncated derivatives were investigated to determine the effect of the SBP oligomerization on the silica binding function of LPG (for the sake of clarity, LPG will be referred from here on as 4 × LPG). Various biophysical characterization techniques were used to quantify and compare the truncated derivatives against 4 × LPG and protein G without linker (PG). The derivative containing two sequence repeats (2 × LPG) showed minimal binding to silica, while the truncated derivative with only a single sequence (1 × LPG) displayed no binding. The derivative containing three sequence repeats (3 × LPG) was able to bind to silica with a binding affinity of KD = 53.23 ± 4.5 nM, which is 1.5 times lower than that obtained for 4 × LPG under similar experimental conditions. Circular dichroism (CD) spectroscopy and fluorescence spectroscopy studies indicated that the SBP degree of oligomerization has only a small effect on the secondary structure (the linker unravels the beginning of the protein G sequence) and chemical stability of the parent protein G. However, based on quartz crystal microbalance with dissipation monitoring (QCM-D), oligomerization is an important parameter for a strong and stable binding to silica. The replacement of three sequence repeats by a (GGGGS)12 glycine-rich spacer indicated that the overall length rather than the SBP oligomerization mediated the effective binding to silica

    Symptomatic snapping knee from biceps femoris tendon subluxation: an unusual case of lateral pain in a marathon runner

    Get PDF
    Snapping biceps femoris syndrome is an uncommon cause of lateral knee pain and may be difficult to diagnose, resulting in unsuccessful surgical intervention. In this report, we present an unusual case of a 37-year-old male marathon runner with unilateral snapping knee secondary to dislocation of the long head of the biceps femoris over the fibular head during knee flexion. The pain was great enough to interfere with his ability to practice sport. Possible causes of symptomatic snapping knee include multiple intra-articular or extra-articular pathology. Biceps femoris snapping over the fibular head is a rare condition. Reported causes include an anomalous insertion of the tendon into the tibia, trauma, and fibular-head abnormality. However, none of those conditions accounted for his symptoms. Failing conservative treatment, the patient underwent surgery for partial resection of the fibular head, with subsequent sudden resolution of symptoms and return to sport. Accurate knowledge and management of this rare condition is mandatory to avoid inappropriate therapy and unnecessary surgical procedures

    From apology to compensation: A multi-level taxonomy of trust reparation for highly automated virtual assistants

    Get PDF
    This paper presents a multi-level taxonomy of reparation levels specifically adapted to virtual assistants in the context of Human-Human-Interaction (HHI) with a specific focus on maintaining trust in the system. This taxonomy ranges from current models of apology to the newly integrated compensation area via a range of case studies specifically developed to address the rising concerns of unsupervised interactions in the context of Virtual Assistants (VA). Based on preliminary research, the author recommends the integration of reparation strategies as a fundamental variable in the ongoing development of VAs, as this element inserts a sense of balance in terms of vulnerability between users and developers to enhance trust in the interactive process. Present and future work is being dedicated to further understand how different contexts may affect integrity in highly automated virtual assistants

    Ethnicity and the first diagnosis of a wide range of cardiovascular diseases: Associations in a linked electronic health record cohort of 1 million patients

    Get PDF
    Background: While the association of ethnic group with individual cardiovascular diseases has been studied, little is known about ethnic differences in the initial lifetime presentation of clinical cardiovascular disease in contemporary populations. Methods and results: We studied 1,068,318 people, aged ≄30 years and free from diagnosed CVD at baseline (90.9% White, 3.6% South Asian and 2.9% Black), using English linked electronic health records covering primary care, hospital admissions, acute coronary syndrome registry and mortality registry (CALIBER research platform). During 5.7 years median follow-up between 1997-2010, 95,224 people experienced an incident cardiovascular diagnosis. 80.2% (77.7% -82.5%) of initial presentation in South Asian <60 yrs were coronary heart disease presentations compared to 66.2% (65.7-66.7) in White and 56.7% (52.1%-61.2%) in Black patients. Compared to White patients, Black patients had significantly lower age-sex adjusted hazard ratios (HRs) for initial lifetime presentation of all the coronary disease diagnoses (stable angina HR 0.80 (95% CI 0.68-0.93); unstable angina – 0.75 (0.59-0.97); myocardial infarction 0.49 (0.40-0.62)) while South Asian patients had significantly higher HRs (stable angina – 1.67 (1.52-1.84); unstable angina 1.82 (1.56-2.13); myocardial infarction – 1.67 (1.49-1.87). We found no ethnic differences in initial presentation with heart failure (Black 0.97 (0.79-1.20); S Asian 1.04(0.87-1.26)). Compared to White patients, Black patients were more likely to present with ischaemic stroke (1.24 (0.97-1.58)) and intracerebral haemorrhage (1.44 (0.97-2.12)). Presentation with peripheral arterial disease was less likely for Black (0.63 (0.50-0.80)) and South Asian patients (0.70 (0.57-0.86)) compared with White patients. Discussion: While we found the anticipated substantial predominance of coronary heart disease presentations in South Asian and predominance of stroke presentations in Black patients, we found no ethnic differences in presentation with heart failure. We consider the public health and research implications of our findings

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore