276 research outputs found

    New Experimental Limit on Photon Hidden-Sector Paraphoton Mixing

    Get PDF
    We report on the first results of a search for optical-wavelength photons mixing with hypothetical hidden-sector paraphotons in the mass range between 10^-5 and 10^-2 electron volts for a mixing parameter greater than 10^-7. This was a generation-regeneration experiment using the "light shining through a wall" technique in which regenerated photons are searched for downstream of an optical barrier that separates it from an upstream generation region. The new limits presented here are approximately three times more sensitive to this mixing than the best previous measurement. The present results indicate no evidence for photon-paraphoton mixing for the range of parameters investigated.Comment: 9 pages, 3 figure

    Critical behavior of the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy

    Full text link
    We study the two-dimensional N-component Landau-Ginzburg Hamiltonian with cubic anisotropy. We compute and analyze the fixed-dimension perturbative expansion of the renormalization-group functions to four loops. The relations of these models with N-color Ashkin-Teller models, discrete cubic models, planar model with fourth order anisotropy, and structural phase transition in adsorbed monolayers are discussed. Our results for N=2 (XY model with cubic anisotropy) are compatible with the existence of a line of fixed points joining the Ising and the O(2) fixed points. Along this line the exponent η\eta has the constant value 1/4, while the exponent ν\nu runs in a continuous and monotonic way from 1 to \infty (from Ising to O(2)). For N\geq 3 we find a cubic fixed point in the region u,v0u, v \geq 0, which is marginally stable or unstable according to the sign of the perturbation. For the physical relevant case of N=3 we find the exponents η=0.17(8)\eta=0.17(8) and ν=1.3(3)\nu=1.3(3) at the cubic transition.Comment: 14 pages, 9 figure

    Magnetic Coordinate Systems

    Get PDF
    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly

    Diverse Beliefs and Time Variability of Risk Premia

    Get PDF
    Why do risk premia vary over time? We examine this problem theoretically and empirically by studying the effect of market belief on risk premia. Individual belief is taken as a fundamental primitive state variable. Market belief is observable; it is central to the empirical evaluation and we show how to measure it. Our asset pricing model is familiar from the noisy REE literature but we adapt it to an economy with diverse beliefs. We derive equilibrium asset prices and implied risk premium. Our approach permits a closed form solution of prices; hence we trace the exact effect of market belief on the time variability of asset prices and risk premia. We test empirically the theoretical conclusions. Our main result is that, above the effect of business cycles on risk premia, fluctuations in market belief have significant independent effect on the time variability of risk premia. We study the premia on long positions in Federal Funds Futures, 3- and 6-month Treasury Bills (T-Bills). The annual mean risk premium on holding such assets for 1-12 months is about 40-60 basis points and we find that, on average, the component of market belief in the risk premium exceeds 50% of the mean. Since time variability of market belief is large, this component frequently exceeds 50% of the mean premium. This component is larger the shorter is the holding period of an asset and it dominates the premium for very short holding returns of less than 2 months. As to the structure of the premium we show that when the market holds abnormally favorable belief about the future payoff of an asset the market views the long position as less risky hence the risk premium on that asset declines. More generally, periods of market optimism (i.e. "bull" markets) are shown to be periods when the market risk premium is low while in periods of pessimism (i.e. "bear" markets) the market's risk premium is high. Fluctuations in risk premia are thus inversely related to the degree of market optimism about future prospects of asset payoffs. This effect is strong and economically very significant

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore