1,942 research outputs found
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip
Vascular plants rely on differences of osmotic pressure to export sugars from
regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this
process, known as M\"unch pressure flow, the loading of sugars from
photosynthetic cells to the export conduit (the phloem) is crucial, as it sets
the pressure head necessary to power long-distance transport. Whereas most
herbaceous plants use active mechanisms to increase phloem concentration above
that of the photosynthetic cells, in most tree species, for which transport
distances are largest, loading seems to occur via passive symplastic diffusion
from the mesophyll to the phloem. Here, we use a synthetic microfluidic model
of a passive loader to explore the nonlinear dynamics that arise during export
and determine the ability of passive loading to drive long-distance transport.
We first demonstrate that in our device, phloem concentration is set by the
balance between the resistances to diffusive loading from the source and
convective export through the phloem. Convection-limited export corresponds to
classical models of M\"unch transport, where phloem concentration is close to
that of the source; in contrast, diffusion-limited export leads to small phloem
concentrations and weak scaling of flow rates with the hydraulic resistance. We
then show that the effective regime of convection-limited export is predominant
in plants with large transport resistances and low xylem pressures. Moreover,
hydrostatic pressures developed in our synthetic passive loader can reach
botanically relevant values as high as 10 bars. We conclude that passive
loading is sufficient to drive long-distance transport in large plants, and
that trees are well suited to take full advantage of passive phloem loading
strategies
Modifying the Sum Over Topological Sectors and Constraints on Supergravity
The standard lore about the sum over topological sectors in quantum field
theory is that locality and cluster decomposition uniquely determine the sum
over such sectors, thus leading to the usual theta-vacua. We show that without
changing the local degrees of freedom, a theory can be modified such that the
sum over instantons should be restricted; e.g. one should include only
instanton numbers which are divisible by some integer p. This conclusion about
the configuration space of quantum field theory allows us to carefully
reconsider the quantization of parameters in supergravity. In particular, we
show that FI-terms and nontrivial Kahler forms are quantized. This analysis
also leads to a new derivation of recent results about linearized supergravity.Comment: 17 pages, minor change
Delocalized single-photon Dicke states and the Leggett- Garg inequality in solid state systems
We show how to realize a single-photon Dicke state in a large one-dimensional
array of two- level systems, and discuss how to test its quantum properties.
Realization of single-photon Dicke states relies on the cooperative nature of
the interaction between a field reservoir and an array of two-level-emitters.
The resulting dynamics of the delocalized state can display Rabi-like
oscillations when the number of two-level emitters exceeds several hundred. In
this case the large array of emitters is essentially behaving like a
mirror-less cavity. We outline how this might be realized using a
multiple-quantum-well structure and discuss how the quantum nature of these
oscillations could be tested with the Leggett-Garg inequality and its
extensions.Comment: 29 pages, 5 figures, journal pape
Prevalence and clinical characteristics of serum neuronal cell surface antibodies in first-episode psychosis: a case-control study
Psychosis is a common presenting feature in antibody-mediated encephalitis, for which prompt recognition and treatment usually leads to remission. We aimed to investigate whether people with circumscribed schizophrenia-like illnesses have such antibodies—especially antibodies against the N-methyl-D-aspartate receptor (NMDAR)—more commonly than do healthy controls.
We recruited patients aged 14–35 years presenting to any of 35 mental health services sites across England with first-episode psychosis, less than 6 weeks of treatment with antipsychotic medication, and a score of 4 or more on at least one selected Positive and Negative Syndrome Scale (PANSS) item. Patients and controls provided venous blood samples. We completed standardised symptom rating scales (PANSS, ACE-III, GAF) at baseline, and tested serum samples for antibodies against NMDAR, LGI1, CASPR2, the GABAA receptor, and the AMPA receptor using live cell-based assays. Treating clinicians assessed outcomes of ICD diagnosis and functioning (GAF) at 6 months. We included healthy controls from the general population, recruited as part of another study in Cambridge, UK.
Between Feb 1, 2013, and Aug 31, 2014, we enrolled 228 patients with first-episode psychosis and 105 healthy controls. 20 (9%) of 228 patients had serum antibodies against one or more of the neuronal cell surface antibodies compared with four (4%) of 105 controls (unadjusted odds ratio 2·4, 95% CI 0·8–7·3). These associations remained non-significant when adjusted for current cigarette smoking, alcohol consumption, and illicit drug use. Seven (3%) patients had NMDAR antibodies compared with no controls (p=0·0204). The other antibodies did not differ between groups. Antibody-positive patients had lower PANSS positive, PANSS total, and catatonia scores than did antibody-negative patients. Patients had comparable scores on other PANSS items, ACE-III, and GAF at baseline, with no difference in outcomes at 6 months.
Some patients with first-episode psychosis had antibodies against NMDAR that might be relevant to their illness, but did not differ from patients without NMDAR antibodies in clinical characteristics. Our study suggests that the only way to detect patients with these potentially pathogenic antibodies is to screen all patients with first-episode psychosis at first presentation.Medical Research Counci
F-theory on Genus-One Fibrations
We argue that M-theory compactified on an arbitrary genus-one fibration, that
is, an elliptic fibration which need not have a section, always has an F-theory
limit when the area of the genus-one fiber approaches zero. Such genus-one
fibrations can be easily constructed as toric hypersurfaces, and various
and models are presented as examples. To each
genus-one fibration one can associate a -function on the base as well as
an representation which together define the IIB axio-dilaton
and 7-brane content of the theory. The set of genus-one fibrations with the
same -function and representation, known as the
Tate-Shafarevich group, supplies an important degree of freedom in the
corresponding F-theory model which has not been studied carefully until now.
Six-dimensional anomaly cancellation as well as Witten's zero-mode count on
wrapped branes both imply corrections to the usual F-theory dictionary for some
of these models. In particular, neutral hypermultiplets which are localized at
codimension-two fibers can arise. (All previous known examples of localized
hypermultiplets were charged under the gauge group of the theory.) Finally, in
the absence of a section some novel monodromies of Kodaira fibers are allowed
which lead to new breaking patterns of non-Abelian gauge groups.Comment: 53 pages, 9 figures, 6 tables. v2: references adde
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Reversal of stress fibre formation by Nitric Oxide mediated RhoA inhibition leads to reduction in the height of preformed thrombi
Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation and inhibition. We hypothesised that Nitric oxide (NO), a platelet inhibitor, can modulate the actin cytoskeleton reversing platelet spreading, and therefore reduce the capability of thrombi to withstand a high shear environment. Our data demonstrates that GSNO, DEANONOate, and a PKG-activating cGMP analogue reversed stress fibre formation and increased actin nodule formation in adherent platelets. This effect is sGC dependent and independent of ADP and thromboxanes. Stress fibre formation is a RhoA dependent process and NO induced RhoA inhibition, however, it did not phosphorylate RhoA at ser188 in spread platelets. Interestingly NO and PGI2 synergise to reverse stress fibre formation at physiologically relevant concentrations. Analysis of high shear conditions indicated that platelets activated on fibrinogen, induced stress fibre formation, which was reversed by GSNO treatment. Furthermore, preformed thrombi on collagen post perfused with GSNO had a 30% reduction in thrombus height in comparison to the control. This study demonstrates that NO can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling excessive thrombosis
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
The practice of 'doing' evaluation: Lessons learned from nine complex intervention trials in action
Background: There is increasing recognition among trialists of the challenges in understanding how particular 'real-life' contexts influence the delivery and receipt of complex health interventions. Evaluations of interventions to change health worker and/or patient behaviours in health service settings exemplify these challenges. When interpreting evaluation data, deviation from intended intervention implementation is accounted for through process evaluations of fidelity, reach, and intensity. However, no such systematic approach has been proposed to account for the way evaluation activities may deviate in practice from assumptions made when data are interpreted.Methods: A collective case study was conducted to explore experiences of undertaking evaluation activities in the real-life contexts of nine complex intervention trials seeking to improve appropriate diagnosis and treatment of malaria in varied health service settings. Multiple sources of data were used, including in-depth interviews with investigators, participant-observation of studies, and rounds of discussion and reflection.Results and discussion: From our experiences of the realities of conducting these evaluations, we identified six key 'lessons learned' about ways to become aware of and manage aspects of the fabric of trials involving the interface of researchers, fieldworkers, participants and data collection tools that may affect the intended production of data and interpretation of findings. These lessons included: foster a shared understanding across the study team of how individual practices contribute to the study goals; promote and facilitate within-team communications for ongoing reflection on the progress of the evaluation; establish processes for ongoing collaboration and dialogue between sub-study teams; the importance of a field research coordinator bridging everyday project management with scientific oversight; collect and review reflective field notes on the progress of the evaluation to aid interpretation of outcomes; and these approaches should help the identification of and reflection on possible overlaps between the evaluation and intervention.Conclusion: The lessons we have drawn point to the principle of reflexivity that, we argue, needs to become part of standard practice in the conduct of evaluations of complex interventions to promote more meaningful interpretations of the effects of an intervention and to better inform future implementation and decision-making. © 2014 Reynolds et al.; licensee BioMed Central Ltd
- …
