74 research outputs found

    Nonlinear analysis of biomagnetic signals recorded from uterine myomas

    Get PDF
    OBJECTIVE: To determine if there is any non-linearity in the biomagnetic recordings of uterine myomas and to find any differences that may be present in the mechanisms underlying their signal dynamics. METHODS: Twenty-four women were included in the study. Sixteen of them were characterised with large myomas and 8 with small ones. Uterine artery waveform measurements were evaluated by use of Pulsatility Index (PI) (normal value PI<1.45). RESULTS: Applying nonlinear analysis to the biomagnetic signals of the uterine myomas, we observed a clear saturation value for the group of large ones (mean = 11.35 ± 1.49) and no saturation for the small ones. CONCLUSION: The comparison of the saturation values in the biomagnetic recordings of large and small myomas may be a valuable tool in the evaluation of functional changes in their dynamic behavior

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the γ\gamma4^4Hept\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γppπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Production of Transgenic Pigs Mediated by Pseudotyped Lentivirus and Sperm

    Get PDF
    Sperm-mediated gene transfer can be a very efficient method to produce transgenic pigs, however, the results from different laboratories had not been widely repeated. Genomic integration of transgene by injection of pseudotyped lentivirus to the perivitelline space has been proved to be a reliable route to generate transgenic animals. To test whether transgene in the lentivirus can be delivered by sperm, we studied incubation of pseudotyped lentiviruses and sperm before insemination. After incubation with pig spermatozoa, 62±3 lentiviral particles were detected per 100 sperm cells using quantitative real-time RT-PCR. The association of lentivirus with sperm was further confirmed by electron microscopy. The sperm incubated with lentiviral particles were artificially inseminated into pigs. Of the 59 piglets born from inseminated 5 sows, 6 piglets (10.17%) carried the transgene based on the PCR identification. Foreign gene and EGFP was successfully detected in ear tissue biopsies from two PCR-positive pigs, revealed via in situ hybridization and immunohistochemistry. Offspring of one PCR-positive boar with normal sows showed PCR-positive. Two PCR-positive founders and offsprings of PCR-positive boar were further identified by Southern-blot analysis, out of which the two founders and two offsprings were positive in Southern blotting, strongly indicating integration of foreign gene into genome. The results indicate that incubation of sperm with pseudotyped lentiviruses can incorporated with sperm-mediated gene transfer to produce transgenic pigs with improved efficiency

    Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    Get PDF
    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis

    First measurement of target and double spin asymmetries for polarized e- polarized p --> e p pi0 in the nucleon resonance region above the Delta(1232)

    Get PDF
    The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.Comment: 13 pages, 13 figure

    Moments of the Position of the Maximum for GUE Characteristic Polynomials and for Log-Correlated Gaussian Processes

    Get PDF
    We study three instances of log-correlated processes on the interval: the logarithm of the Gaussian unitary ensemble (GUE) characteristic polynomial, the Gaussian log-correlated potential in presence of edge charges, and the Fractional Brownian motion with Hurst index H0H \to 0 (fBM0). In previous collaborations we obtained the probability distribution function (PDF) of the value of the global minimum (equivalently maximum) for the first two processes, using the {\it freezing-duality conjecture} (FDC). Here we study the PDF of the position of the maximum xmx_m through its moments. Using replica, this requires calculating moments of the density of eigenvalues in the β\beta-Jacobi ensemble. Using Jack polynomials we obtain an exact and explicit expression for both positive and negative integer moments for arbitrary β>0\beta >0 and positive integer nn in terms of sums over partitions. For positive moments, this expression agrees with a very recent independent derivation by Mezzadri and Reynolds. We check our results against a contour integral formula derived recently by Borodin and Gorin (presented in the Appendix A from these authors). The duality necessary for the FDC to work is proved, and on our expressions, found to correspond to exchange of partitions with their dual. Performing the limit n0n \to 0 and to negative Dyson index β2\beta \to -2, we obtain the moments of xmx_m and give explicit expressions for the lowest ones. Numerical checks for the GUE polynomials, performed independently by N. Simm, indicate encouraging agreement. Some results are also obtained for moments in Laguerre, Hermite-Gaussian, as well as circular and related ensembles. The correlations of the position and the value of the field at the minimum are also analyzed.Comment: 64 page, 5 figures, with Appendix A written by Alexei Borodin and Vadim Gorin; The appendix H in the ArXiv version is absent in the published versio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Challenges and opportunities for integrating lake ecosystem modelling approaches

    Full text link
    corecore