62 research outputs found

    Lo spirito del male

    Get PDF
    In questo volume Nathalie Zaltzman -membro fondatore del IV Gruppo e co-redattrice della Rivista Topique- esplora il rapporto tra il Kulturarbeit e la dimensione del male, presentandoci il progredire di una riflessione da lungo tempo praticata sulle questioni della civilizzazione e delle sue oscurità. Avvalendosi di appassionanti incursioni nella letteratura, con un procedere dialettico dell’argomentazione in cui le domande sono veri strumenti di pensiero e con una prosa dialogica e a tratti spumeggiante, Zaltzman ci mostra i punti di vulnerabilità del Kulturarbeit, alla ricerca di una leva in grado di scardinare quella resilienza della dimensione del male refrattaria ad ogni progresso di civiltà. Il movimento è circolare: dopo aver isolato le due direzioni di analisi freudiana -civilizzazione e Kulturarbeit- che vanno a tessere la trama del saggio, si entra nel vivo della questione sullo spirito del male che dopo un lungo détour esplorativo -sul rapporto tra le rappresentazioni dell’umano, il progresso dell’opera di civiltà rivelato dalla nascita della nozione di crimine contro l’umanità e la dimensione del male-, viene ripresa ed arricchita dalla proposta di una topica del male. La problematica in gioco, la cui complessità apre più questioni di quante ne possa risolvere -come segnalato dalla scelta di titolare i due ultimi capitoli: Perplessità-, sembra trovare una sortita nel mantenimento del focus sul legame tra ontogenetico e filogenetico, tra individuale e collettivo

    Electro-osmotic Instability of Concentration Enrichment in Curved Geometries for an Aqueous Electrolyte

    Full text link
    We report that an electro-osmotic instability of concentration enrichment in curved geometries for an aqueous electrolyte, as opposed to the well-known one, is initiated exclusively at the enriched interface (anode), rather than at the depleted one (cathode). For this instability, the limitation of unrealistically high material Peclet number in planar geometry is eliminated by the strong electric field arising from the line charge singularity. In a model setup of concentric circular electrodes, we show by stability analysis, numerical simulation, and experimental visualization that instability occurs at the inner anode, below a critical radius of curvature. The stability criterion is also formulated in terms of a critical electric field and extended to arbitrary (2d) geometries by conformal mapping. This discovery suggests that transport may be enhanced in processes limited by salt enrichment, such as reverse osmosis, by triggering this instability with needle-like electrodes.Comment: 5 pages, 4 figure

    Controlling domain patterns far from equilibrium

    Full text link
    A high degree of control over the structure and dynamics of domain patterns in nonequilibrium systems can be achieved by applying nonuniform external fields near parity breaking front bifurcations. An external field with a linear spatial profile stabilizes a propagating front at a fixed position or induces oscillations with frequency that scales like the square root of the field gradient. Nonmonotonic profiles produce a variety of patterns with controllable wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at http://t7.lanl.gov/People/Aric

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Stabilization of Ion Concentration Polarization Using a Heterogeneous Nanoporous Junction

    Get PDF
    We demonstrate a recycled ion-flux through heterogeneous nanoporous junctions, which induce stable ion concentration polarization with an electric field. The nanoporous junctions are based on integration of ionic hydrogels whose surfaces are negatively or positively charged for cationic or anionic selectivity, respectively. Such heterogeneous junctions can be matched up in a way to achieve continuous ion-flux operation for stable concentration gradient or ionic conductance. Furthermore, the combined junctions can be used to accumulate ions on a specific region of the device.Korea Research Foundation (Grant MOEHRD: KRF-2007-331-D00040)Korean Science and Engineering Foundation (Grant MOST: R01-2007-000-20675-0)Korea Research Foundation (Grant MOEHRD: KRF-J03000)National Research Foundation of Korea (Grant NRF-2009- 352-D00034)National Institutes of Health (U.S.) (EB005743)National Science Foundation (U.S.). (CBET-0347348

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore