372 research outputs found

    Distinct and Conserved Prominin-1/CD133–Positive Retinal Cell Populations Identified across Species

    Get PDF
    Besides being a marker of various somatic stem cells in mammals, prominin-1 (CD133) plays a role in maintaining the photoreceptor integrity since mutations in the PROM1 gene are linked with retinal degeneration. In spite of that, little information is available regarding its distribution in eyes of non-mammalian vertebrates endowed with high regenerative abilities. To address this subject, prominin-1 cognates were isolated from axolotl, zebrafish and chicken, and their retinal compartmentalization was investigated and compared to that of their mammalian orthologue. Interestingly, prominin-1 transcripts—except for the axolotl—were not strictly restricted to the outer nuclear layer (i.e., photoreceptor cells), but they also marked distinct subdivisions of the inner nuclear layer (INL). In zebrafish, where the prominin-1 gene is duplicated (i.e., prominin-1a and prominin-1b), a differential expression was noted for both paralogues within the INL being localized either to its vitreal or scleral subdivision, respectively. Interestingly, expression of prominin-1a within the former domain coincided with Pax-6–positive cells that are known to act as progenitors upon injury-induced retino-neurogenesis. A similar, but minute population of prominin-1–positive cells located at the vitreal side of the INL was also detected in developing and adult mice. In chicken, however, prominin-1–positive cells appeared to be aligned along the scleral side of the INL reminiscent of zebrafish prominin-1b. Taken together our data indicate that in addition to conserved expression of prominin-1 in photoreceptors, significant prominin-1–expressing non-photoreceptor retinal cell populations are present in the vertebrate eye that might represent potential sources of stem/progenitor cells for regenerative therapies

    (Meta-)stable reconstructions of the diamond(111) surface: interplay between diamond- and graphite-like bonding

    Get PDF
    Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the (2×1)(2\times1) Pandey reconstruction in agreement with \emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.Comment: 4 pages + 4 figures, Phys. Rev. B Rapid Comm., in press (15Apr00). For many additional details (animations, xyz files) see electronic supplement to this paper at http://www.sci.kun.nl/tvs/carbon/meta.htm

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    State based model of long-term potentiation and synaptic tagging and capture

    Get PDF
    Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory

    Chlorpromazine versus placebo for schizophrenia

    Get PDF

    Probing the charging mechanisms of carbon nanomaterial polyelectrolytes

    No full text
    Chemical charging of single-walled carbon nanotubes (SWCNTs) and graphenes to generate soluble salts shows great promise as a processing route for electronic applications, but raises fundamental questions. The reduction potentials of highly-charged nanocarbon polyelectrolyte ions were investigated by considering their chemical reactivity towards metal salts/complexes in forming metal nanoparticles. The redox activity, degree of functionalisation and charge utilisation were quantified via the relative metal nanoparticle content, established using thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS). The fundamental relationship between the intrinsic nanocarbon electronic density of states and Coulombic effects during charging is highlighted as an important area for future research

    Attentional Window Set by Expected Relevance of Environmental Signals

    Get PDF
    The existence of an attentional window—a limited region in visual space at which attention is directed—has been invoked to explain why sudden visual onsets may or may not capture overt or covert attention. Here, we test the hypothesis that observers voluntarily control the size of this attentional window to regulate whether or not environmental signals can capture attention. We have used a novel approach to test this: participants eye-movements were tracked while they performed a search task that required dynamic gaze-shifts. During the search task, abrupt onsets were presented that cued the target positions at different levels of congruency. The participant knew these levels. We determined oculomotor capture efficiency for onsets that appeared at different viewing eccentricities. From these, we could derive the participant's attentional window size as a function of onset congruency. We find that the window was small during the presentation of low-congruency onsets, but increased monotonically in size with an increase in the expected congruency of the onsets. This indicates that the attentional window is under voluntary control and is set according to the expected relevance of environmental signals for the observer's momentary behavioral goals. Moreover, our approach provides a new and exciting method to directly measure the size of the attentional window

    Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    Get PDF
    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits

    Spatially distributed dendritic resonance selectively filters synaptic input

    Get PDF
    © 2014 Laudanski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.An important task performed by a neuron is the selection of relevant inputs from among thousands of synapses impinging on the dendritic tree. Synaptic plasticity enables this by strenghtening a subset of synapses that are, presumably, functionally relevant to the neuron. A different selection mechanism exploits the resonance of the dendritic membranes to preferentially filter synaptic inputs based on their temporal rates. A widely held view is that a neuron has one resonant frequency and thus can pass through one rate. Here we demonstrate through mathematical analyses and numerical simulations that dendritic resonance is inevitably a spatially distributed property; and therefore the resonance frequency varies along the dendrites, and thus endows neurons with a powerful spatiotemporal selection mechanism that is sensitive both to the dendritic location and the temporal structure of the incoming synaptic inputs.Peer reviewe

    Is bisexuality invisible? A review of sexualities scholarship 1970–2015

    Get PDF
    This article provides a review of sexualities scholarship within the social sciences between 1970 and 2015. It takes an innovative approach by focusing on the way in which bisexuality is addressed in this body of literature. The article reveals the marginalisation, under-representation and invisibility of bisexuality within and across the social sciences in relation to both bisexual experience and identity. Reasons for this varied across the different eras, including the heterosexist nature of the literature, the impact of gay and lesbian-focused identity politics, and queer deconstructionism. In addition, patterns of bisexual erasure and invisibility were uneven, with some scholarship taking inclusive approaches or criticising prejudice against bisexuality. The initial findings of the review were enriched by critical commentary from key relevant sociologists and political scientists. The article concludes that future sexualities scholarship could be enhanced by greater consideration of bisexuality
    • …
    corecore