5,840 research outputs found

    Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    Get PDF
    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes

    Convenient total variation diminishing conditions for nonlinear difference schemes

    Get PDF
    Convenient conditions for nonlinear difference schemes to be total-variation diminishing (TVD) are reviewed. It is shown that such schemes share the TVD property, provided their numerical fluxes meet a certain positivity condition at extrema values but can be arbitrary otherwise. The conditions are invariant under different incremental representations of the nonlinear schemes, and thus provide a simplified generalization of the TVD conditions due to Harten and others

    Detection of Edges in Spectral Data II. Nonlinear Enhancement

    Get PDF
    We discuss a general framework for recovering edges in piecewise smooth functions with finitely many jump discontinuities, where [f](x):=f(x+)f(x)0[f](x):=f(x+)-f(x-) \neq 0. Our approach is based on two main aspects--localization using appropriate concentration kernels and separation of scales by nonlinear enhancement. To detect such edges, one employs concentration kernels, Kϵ()K_\epsilon(\cdot), depending on the small scale ϵ\epsilon. It is shown that odd kernels, properly scaled, and admissible (in the sense of having small W1,W^{-1,\infty}-moments of order O(ϵ){\cal O}(\epsilon)) satisfy Kϵf(x)=[f](x)+O(ϵ)K_\epsilon*f(x) = [f](x) +{\cal O}(\epsilon), thus recovering both the location and amplitudes of all edges.As an example we consider general concentration kernels of the form KNσ(t)=σ(k/N)sinktK^\sigma_N(t)=\sum\sigma(k/N)\sin kt to detect edges from the first 1/ϵ=N1/\epsilon=N spectral modes of piecewise smooth f's. Here we improve in generality and simplicity over our previous study in [A. Gelb and E. Tadmor, Appl. Comput. Harmon. Anal., 7 (1999), pp. 101-135]. Both periodic and nonperiodic spectral projections are considered. We identify, in particular, a new family of exponential factors, σexp()\sigma^{exp}(\cdot), with superior localization properties. The other aspect of our edge detection involves a nonlinear enhancement procedure which is based on separation of scales between the edges, where Kϵf(x)[f](x)0K_\epsilon*f(x)\sim [f](x) \neq 0, and the smooth regions where Kϵf=O(ϵ)0K_\epsilon*f = {\cal O}(\epsilon) \sim 0. Numerical examples demonstrate that by coupling concentration kernels with nonlinear enhancement one arrives at effective edge detectors
    corecore