46 research outputs found

    Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain

    Get PDF
    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal

    Computational Vaccinology: An Important Strategy to Discover New Potential S. mansoni Vaccine Candidates

    Get PDF
    The flatworm Schistosoma mansoni is a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. Several papers on Schistosoma mansoni vaccine and drug development have been published in the past few years, representing an important field of study. The advent of technologies that allow large-scale studies of genes and proteins had a remarkable impact on the screening of new and potential vaccine candidates in schistosomiasis. In this postgenomic scenario, bioinformatic technologies have emerged as important tools to mine transcriptomic, genomic, and proteomic databases. These new perspectives are leading to a new round of rational vaccine development. Herein, we discuss different strategies to identify potential S. mansoni vaccine candidates using computational vaccinology

    The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype

    Get PDF
    "BMC Cancer 2014 14:734"BACKGROUND: Cancer stem cells are hypoxia-resistant and present a preponderant glycolytic metabolism. These characteristics are also found in basal-like breast carcinomas (BLBC), which show increased expression of cancer stem cell markers.Recently, we demonstrated that P-cadherin, a biomarker of BLBC and a poor prognostic factor in this disease, mediates stem-like properties and resistance to radiation therapy. Thus, the aim of the present study was to evaluate if P-cadherin expression was associated to breast cancer cell populations with an adapted phenotype to hypoxia. METHODS: Immunohistochemistry was performed to address the expression of P-cadherin, hypoxic, glycolytic and acid-resistance biomarkers in primary human breast carcinomas. In vitro studies were performed using basal-like breast cancer cell lines. qRT-PCR, FACS analysis, western blotting and confocal microscopy were used to assess the expression of P-cadherin after HIF-1a stabilization, achieved by CoCl2 treatment. siRNA-mediated knockdown was used to silence the expression of several targets and qRT-PCR was employed to evaluate the effects of P-cadherin on HIF-1a signaling. P-cadherin high and low breast cancer cell populations were sorted by FACS and levels of GLUT1 and CAIX were assessed by FACS and western blotting. Mammosphere forming efficiency was used to determine the stem cell activity after specific siRNA-mediated knockdown, further confirmed by western blotting. RESULTS: We demonstrated that P-cadherin overexpression was significantly associated with the expression of HIF-1a, GLUT1, CAIX, MCT1 and CD147 in human breast carcinomas. In vitro, we showed that HIF-1a stabilization was accompanied by increased membrane expression of P-cadherin and that P-cadherin silencing led to a decrease of the mRNA levels of GLUT1 and CAIX. We also found that the cell fractions harboring high levels of P-cadherin were the same exhibiting more GLUT1 and CAIX expression. Finally, we showed that P-cadherin silencing significantly decreases the mammosphere forming efficiency in the same range as the silencing of HIF-1a, CAIX or GLUT1, validating that all these markers are being expressed by the same breast cancer stem cell population. CONCLUSIONS: Our results establish a link between aberrant P-cadherin expression and hypoxic, glycolytic and acid-resistant breast cancer cells, suggesting a possible role for this marker in cancer cell metabolismo.This work was funded by FEDER funds through the COMPETE Program (Programa Operacional Factores de Competitividade) and by national funds through FCT (Portuguese Foundation for Science and Technology, Portugal), mainly in the context of the scientific project PTDC/SAU-GMG/120049/2010-FCOMP-01-0124-FEDER-021209, and partially by PTDC/SAU-FCF/104347/2008. FCT funded the research grants of BS (SFRH/BD/69353/2010), ASR (SFRH/BPD/75705/2011), ARN (grant from the project PTDC/SAU-GMG/120049/2010), CP (SFRH/BPD/69479/2010), AV (SFRH/BPD/90303/2012), as well as JP, with Programa Ciencia 2007 (Contratacao de Doutorados para o SCTN - financiamento pelo POPH - QREN - Tipologia 4.2 - Promocao do Emprego Cientifico, comparticipado pelo Fundo Social Europeu e por fundos nacionais do MCTES) and Programa IFCT (FCT Investigator). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT

    Chromosome copy number changes carry prognostic information independent of KIT/PDGFRA point mutations in gastrointestinal stromal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncogenic point mutations in <it>KIT </it>or <it>PDGFRA </it>are recognized as the primary events responsible for the pathogenesis of most gastrointestinal stromal tumors (GIST), but additional genomic alterations are frequent and presumably required for tumor progression. The relative contribution of such alterations for the biology and clinical behavior of GIST, however, remains elusive.</p> <p>Methods</p> <p>In the present study, somatic mutations in <it>KIT </it>and <it>PDGFRA </it>were evaluated by direct sequencing analysis in a consecutive series of 80 GIST patients. For a subset of 29 tumors, comparative genomic hybridization was additionally used to screen for chromosome copy number aberrations. Genotype and genomic findings were cross-tabulated and compared with available clinical and follow-up data.</p> <p>Results</p> <p>We report an overall mutation frequency of 87.5%, with 76.25% of the tumors showing alterations in <it>KIT </it>and 11.25% in <it>PDGFRA</it>. Secondary <it>KIT </it>mutations were additionally found in two of four samples obtained after imatinib treatment. Chromosomal imbalances were detected in 25 out of 29 tumors (86%), namely losses at 14q (88% of abnormal cases), 22q (44%), 1p (44%), and 15q (36%), and gains at 1q (16%) and 12q (20%). In addition to clinico-pathological high-risk groups, patients with <it>KIT </it>mutations, genomic complexity, genomic gains and deletions at either 1p or 22q showed a significantly shorter disease-free survival. Furthermore, genomic complexity was the best predictor of disease progression in multivariate analysis.</p> <p>Conclusions</p> <p>In addition to <it>KIT/PDGFRA </it>mutational status, our findings indicate that secondary chromosomal changes contribute significantly to tumor development and progression of GIST and that genomic complexity carries independent prognostic value that complements clinico-pathological and genotype information.</p

    Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Hearing loss affects access to spoken language, which can affect cognition and development, and can negatively affect social wellbeing. We present updated estimates from the Global Burden of Disease (GBD) study on the prevalence of hearing loss in 2019, as well as the condition's associated disability. Methods We did systematic reviews of population-representative surveys on hearing loss prevalence from 1990 to 2019. We fitted nested meta-regression models for severity-specific prevalence, accounting for hearing aid coverage, cause, and the presence of tinnitus. We also forecasted the prevalence of hearing loss until 2050. Findings An estimated 1·57 billion (95% uncertainty interval 1·51–1·64) people globally had hearing loss in 2019, accounting for one in five people (20·3% [19·5–21·1]). Of these, 403·3 million (357·3–449·5) people had hearing loss that was moderate or higher in severity after adjusting for hearing aid use, and 430·4 million (381·7–479·6) without adjustment. The largest number of people with moderate-to-complete hearing loss resided in the Western Pacific region (127·1 million people [112·3–142·6]). Of all people with a hearing impairment, 62·1% (60·2–63·9) were older than 50 years. The Healthcare Access and Quality (HAQ) Index explained 65·8% of the variation in national age-standardised rates of years lived with disability, because countries with a low HAQ Index had higher rates of years lived with disability. By 2050, a projected 2·45 billion (2·35–2·56) people will have hearing loss, a 56·1% (47·3–65·2) increase from 2019, despite stable age-standardised prevalence. Interpretation As populations age, the number of people with hearing loss will increase. Interventions such as childhood screening, hearing aids, effective management of otitis media and meningitis, and cochlear implants have the potential to ameliorate this burden. Because the burden of moderate-to-complete hearing loss is concentrated in countries with low health-care quality and access, stronger health-care provision mechanisms are needed to reduce the burden of unaddressed hearing loss in these settings

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma

    Get PDF
    A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)—giving infants only breast-milk for the first 6 months of life—is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization’s Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030
    corecore