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Abstract  

Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-

gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic 

neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the 

rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and 

neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and 

furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) 

influences the function of the TRPV1Rs, as both receptor types share endogenous ligands.  

We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal 

day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat 

striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is 

not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and 

serotonergic terminals of the mouse brain.  

Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the 

rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. 

 

 

Abbreviations 

3Rs, replacement, reduction, refinement; 4-AP, 4-aminopyridine; 7D, 14D, 29D, 60D, 7-, 14-, 29- 

and 60-day-old; ACEA, arachidonyl-2'-chloroethylamide; aCSF, artificial cerebrospinal fluid; ARC, 

American Radiolabeled Chemicals; ARRIVE, Animal Research: Reporting In Vivo Experiments; AUC, 

area-under-the-curve; BCA, bicinchoninic acid; BSA, bovine serum albumin; CB1R, cannabinoid 
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receptor type 1; DMSO, dimethyl sulfoxide; DPM, disintegration per minute; DTT, dithiothreitol; ECF, 

Enhanced Chemi-Fluorescence; EDTA, ethylenediaminetetraacetic acid; EGTA, ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-tetraacetic acid; GABA, γ-aminobutyric acid; Felasa, Federation for 

Laboratory Animal Science Associations; FR%, fractional release %; HEPES, N-(2-

hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid); KHR, Krebs-HEPES-Ringer; KO, knockout; 

LiGTP, lithium guanozine triphosphate; MgATP, magnesium adenosine triphosphate; MAO B, 

monoamine oxidase B; NADA, N-arachidonyl dopamine; NO, nitric oxide; PMSF, 

phenylmethanesulfonyl fluoride; PVDF, polyvinylidene difluoride; RTX, resiniferatoxin; SDS, sodium 

dodecyl sufate; SEM, standard error of the mean; sEPSCs, spontaneous excitatory postsynaptic 

currents; TBS-T, Tris-buffered saline with Tween 20; Tris, tris(hydroxymethyl)aminomethane; 

TRPV1R and TRPV4R, transient release potential receptor vanilloid type 4, WT, wild-type.  

 

 

1. Introduction 

A major peripheral transducer of noxious stimuli into neuronal activity is the transient receptor 

potential Na
+
/Ca

2+
 channel subfamily vanilloid member 1 (TRPV1), also termed as the capsaicin 

receptor (Nagy et al., 2008; Di Marzo and De Petrocellis, 2010). TRPV1R channels are also expressed 

in the brain beyond the central endings of the sensory pathways, and are believed to participate in the 

fine-tuning of several types of synapses (Mezey et al., 2000; Roberts et al., 2004; Grueter et al., 2010; 

Matta and Ahern, 2011; Mori et al., 2012). Apart from the (anti)nociceptive pathways, functional 

experiments pointed out presynaptic location for the TRPV1R in the forebrain (see Table 1 as well as 

Matta and Ahern, 2011), while other studies also found it post-synaptically (Tóth et al., 2005; Cristino 

http://www.dmso.org/
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et al., 2006; Marsch et al., 2007; Li et al., 2008; Maccarrone et al., 2008; Mulder et al., 2011; Grueter et 

al., 2010; Zschenderlein et al., 2011). 

The TRPV1R receptor has been shown to directly modulate glutamate release both outside (Matta 

and Ahern, 2011) and inside the forebrain (see Table 1). Interestingly, about one third of the studies 

failed to detect presynaptic TRPV1R-mediated modulation of excitatory amino acid release in the rat 

forebrain (see Table 1). If we compare these studies with the ones reporting TRPV1R-modulation, a 

disparity in the age of the rats used becomes overt: Ignoring variations in strains and brain areas, we 

estimated the mean ± SEM of the age of the rats as 23.3 ± 2.6 days (n=10 studies) for the existence and 

48 ± 1 days (n=5) for the absence of TRPV1R-mediated modulation of excitatory amino acid release 

(see third column in Table 1). In the mice, similar age discrepancies are calculated for glutamate 

release modulation, namely 25 ± 10 (n=3) vs. 59 ± 9 days (n=3). This puts forward the interesting 

hypothesis that the activity of presynaptic TRPV1Rs may decline in the first weeks of post-natal life, 

suggesting a neurodevelopmental role for the TRPV1R.  

GABAergic, dopaminergic and serotonergic terminals are additional purported candidates to be 

modulated by TRPV1Rs, as central TRPV1Rs are implicated in mood disorders, anxiety, panic 

responses, depression and psychosis (Moreira and Wotjak; 2010; Chahl, 2011; Hayase, 2011; Casarotto 

et al., 2012; Moreira et al., 2012, Micale et al., 2013). Yet no direct presynaptic TRPV1R modulation of 

dopamine and GABA release has been observed so far in the adult rodent brain (see Table 1), while to 

our knowledge, presynaptic TRPV1R modulation of serotonergic terminals in the brain has never been 

looked for. 

The TRPV1R receptor can be activated by several endogenous lipids including 

arachidonoylethanolamine (anandamide) and N-arachidonoyl dopamine (NADA) (Di Marzo and De 

Petrocellis, 2010). Interestingly, anandamide and NADA can also activate the metabotropic 
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cannabinoid receptor CB1 (Walker et al., 2002). The CB1 receptor (CB1R) is a major modulator of 

synaptic plasticity (Katona and Freund, 2012), and a growing body of evidence supports that the 

inhibitory metabotropic CB1R and the excitatory ionotropic TRPV1R influence behavior in a 

diametrically opposite manner (Moreira and Wotjak , 2010; Casarotto et al., 2012; Moreira et al., 2012; 

Riebe et al., 2012).  

Theoretically, anandamide and NADA can activate both receptors at the same nerve terminal, 

resulting in inhibition and excitation in the same time. Accordingly, CB1Rs can negatively control 

TRPV1Rs in a Ca
2+

-dependent manner, preventing the contrasting co-activation of the ionotropic 

partner (Marinelli et al., 2005; Oshita et al., 2005; Wu et al., 2005; Mahmud et al., 2009; Yang et al., 

2013). 

With the help of previously optimized techniques, here we sought answer to the possible age- and 

CB1R-dependence of presynaptic TRPV1R function in the neocortex and the striatum.  
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2. Materials and Methods 

2.1. Electrophysiology 

2.1.1. Subjects and slice preparation 

Coronal slices of young Wistar rats of either sex (8-14 days old; 24–30 g weight) at the level of the 

striatum were prepared according to the guidelines, and with the approval, of the Ethical Board of 

Semmelweis University, Budapest, Hungary, based on the Declaration of the European Communities 

Council Directives (86/609/ECC). In brief, rat pups were decapitated. The brain was quickly removed 

and placed in ice-cold, oxygenated (95% O2 plus 5% CO2) artificial cerebrospinal fluid (aCSF, pH 7.4) 

of the following composition (mM): NaCl 126, KCl 2.5, NaH2PO4 1.2, CaCl2 2.4, MgCl2 1.3, NaHCO3 

25 and glucose 11. Two-hundred-µm-thick coronal slices were cut from a block of tissue containing the 

striatum in ice-cold aCSF using an MA752 tissue cutter (Campden Instruments, England). Slices were 

transferred to a holding chamber, where they were equilibrated in oxygenated aCSF for at least 1 h at 

36 ºC, before recordings began. Then, a single slice was placed in a recording chamber and superfused 

with oxygenated aCSF at a rate of 2.5-3 ml/min at room temperature (20-22 ºC). The slices were 

allowed to recover for at least 15 min before the start of individual experiments.  

 

2.1.2. Patch-clamp recording 

Membrane currents of striatal medium spiny neurons were recorded by procedures similar to those 

described by Edwards et al. (1989) and by us (Wirkner et al., 2004). The cells were visualized with an 

upright interference contrast microscope and a ×40 water immersion objective (Axioskop 2 FS; Carl 

Zeiss, Germany). Patch pipettes (tip resistance, 4-7 MΩ) were prepared by a puller (Narishige PP-83, 

Narishige, Japan) from borosilicate capillaries and were filled with intracellular solution of the 

following composition (mM): K-gluconate 140, NaCl 10, MgCl2 1, HEPES [N-(2-
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hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)] 10, EGTA [ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-tetraacetic acid] 11, MgATP 1.5 and LiGTP 0.3; pH 7.3 adjusted with 

KOH. The medium spiny neurons included in the data were selected on the basis of having a diameter 

smaller than 15 µm and a stable resting membrane potential of at least -75 mV (Calabresi et al., 1987). 

Membrane currents and membrane potentials were recorded by means of a patch-clamp amplifier 

(Axopatch 200B, Molecular Devices, USA). After establishing whole cell access the system was left 

for 5-10 min to allow for the settling of diffusion equilibrium between the patch pipette and the cell 

interior, before spontaneous excitatory postsynaptic currents (sEPSCs) were recorded at a holding 

potential of -80 mV in the voltage-clamp mode. Bicuculline (10 µM) was present in the external 

medium to pharmacologically isolate the excitatory postsynaptic currents from the GABA-mediated 

inhibitory currents. A 5-min control period was followed by the application of capsaicin (1 μM; 5 min) 

or its vehicle control, DMSO, and subsequently by a 10-min washout period. DMSO failed to affect 

any of the three parameters (data not shown). 

Currents were filtered at 5-10 kHz with the inbuilt lowpass-filter of the patch-clamp amplifier. Data 

were then sampled at 10 kHz and stored on-line with a PC using the pClamp 10.0 software package 

(Molecular Devices) that was also used for data analysis. Average values of amplitude, half-width and 

frequency of sEPSCs were calculated for the 5-min control (predrug) period and were taken as 100%. 

The same three parameters during the 5-min period of capsaicin perfusion were normalized to the 

predrug period and analyzed as detailed under 2.2.3. 

 

2.2. Neurochemistry 

2.2.1. Subjects  
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All studies were conducted in accordance with the principles and procedures outlined as "3Rs" in 

the guidelines of EU (86/609/EEC), FELASA, and the National Centre for the 3Rs (the ARRIVE; 

Kilkenny et al., 2010), and were approved by the Animal Care Committee of the Center for 

Neuroscience and Cell Biology of Coimbra. We also applied the principles of the ARRIVE guideline 

for the design and the execution of the in vitro pharmacological experiments (see below) as well as for 

data management and interpretation, according to McGrath et al., 2010.  

CB1R null-mutant (knockout) male mice (Ledent et al., 1999) and their wild-type littermates on 

CD-1 background were genotyped by tail snips, housed until 16 weeks of age as detailed above, and 

sacrificed and used in pairs (one WT and one KO). Male Wistar rats (10-14 weeks old) were obtained 

from Charles River (Barcelona, Spain). All rodents were housed under controlled temperature (23 ± 2 

ºC), subject to a fixed 12 h light/dark cycle, with free access to food and water. All efforts were made 

to reduce the number of animals used and to minimize their stress and discomfort. The animals used to 

perform the in vitro studies were deeply anesthetized with halothane (no reaction to handling or tail 

pinch, while still breathing) before decapitation with a guillotine. 

 

2.2.2. Synaptosomal experiments 

Purified nerve terminals, termed synaptosomes (Whittaker et al., 1964), represent excellent tool to 

study presynaptic processes free of polysynaptic and glial influences (Raiteri and Raiteri, 2000).  

 

2.2.2.1. Partially purified synaptosomes (P2 fraction) for release experiments 

This preparation was obtained as previously described (Ferreira et al., 2009, 2012). Briefly, the 

caudate-putamen region without the nucleus accumbens (hereafter simply: striatum) and the frontal 

cortices were quickly dissected out into 2 mL of ice-cold sucrose solution (0.32 M, containing 5 mM 
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HEPES, pH 7.4). After homogenization with a Teflon homogenizer, and centrifugation at 5,000 g for 5 

min, the supernatant was collected and centrifuged at 13,000 g for 10 min to obtain the P2 

synaptosomal fraction. 

 

2.2.2.2. [
3
H]serotonin single label release experiments from cortical synaptosomes, and 

[
3
H]dopamine/ [

14
C]glutamate release assay from striatal nerve terminals 

Synaptosomes were then diluted to 0.5 mL with Krebs-HEPES solution (in mM: NaCl 113, KCl 3, 

KH2PO4 1.2, MgSO4 1.2, CaCl2 2.5, NaHCO3 25, glucose 10, HEPES 15, ascorbic acid 100, pH 7.4, 

37C), containing the MAO B inhibitor, pargyline (10 µM), and besides, for the [
3
H]dopamine/ 

[
14

C]glutamate experiments, the glutamate decarboxylase inhibitor, aminooxyacetic acid (100 µM) to 

prevent [
14

C]glutamate metabolism. Under these conditions, cortical synaptosomes were incubated with 

5-[1,2-
3
H]hydroxytryptamine creatinine sulfate (final concentration, 300 nM) (American Radiolabeled 

Chemicals, [ARC] Inc; Saint Louis, MO, USA) in the presence of reboxetine (30 nM) and GBR12783 

(100 nM) to prevent the uptake of [
3
H]serotonin into noradrenergic and dopaminergic terminals. 

Striatal synaptosomes were co-incubated with L-[
14

C(U)]glutamic acid (final concentration, 30 µM) 

(ARC Inc) and [7,8-
3
H(N)]dopamine (200 nM) (ARC Inc) for 10 min. A 16-microvolume chamber 

perfusion setup was filled with the preloaded synaptosomes (rat, ~0.24 mg protein/65 µL/chamber; 

mouse, ~0.17 mg protein/130 µL/chamber) which were trapped by layers of Whatman GF/B filters and 

superfused continuously at a rate of 0.8 ml/min at 37C until the end of the experiment. After a 10-min 

washout period, 2-min samples were collected for liquid scintillation assay.  

 

2.2.2.2.1. Protocol for rat striatal synaptosomes 
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After collecting three 2-min samples as baseline, the striatal synaptosomes of rats of different age 

(post-natal days 7, 14, 29 and 60; 8 animal/group) were perfused with capsaicin or vehicle (0.1% 

DMSO) for 3 min, and were washed thereafter for more 5 min (see Fig. 2A-C). Major release data 

including resting release levels, S1, S2/S2 values and filter content can be found in Table 2.  

 

2.2.2.2.2. Protocol for mouse cortical and striatal synaptosomes 

After collecting four 2-min samples as baseline, the evoked release of the transmitters was 

stimulated twice with 4-aminopyridine (4-AP; 300 µM) for 2 min, with a 10-min interval (S1, S2; see 

Figs. 3A,B; 4A). Vehicle (0.1% DMSO) or TRPV1R agonists, capsaicin (1 µM) (Tocris), 

resiniferatoxin (100 nM) or arachidonyl-2'-chloroethylamide (ACEA, 1 µM) (Abcam) were added 4 

min before the 2
nd

 stimulation (S2). In parallel channels, no 4-AP-stimulation was applied to test the 

TRPV1R ligands' own effect on the baseline (Fig. 3C,D). Treatments were applied in duplicate, each 

averaged as n = 1. The CB1R antagonists, AM251 (500 nM) (Tocris) and O-2050 (500 nM) (Tocris) 

were given 10 min before sample collection; therefore such treatment has no direct consequence for the 

S2/S1 ratios or for the basal release. Major release data including resting release levels, S1, S2/S2 values 

and filter content can be found in Table 2. In a separate study, we investigated the Ca
2+

 dependence of 

our transmitter release models, measuring both the resting and the KCl (20 mM, 1 min) -evoked release 

of the neurotransmitters in a modified Krebs'-HEPES medium containing 100 nM CaCl2 and 10 mM 

MgCl2. Low calcium diminished the resting [
3
H]dopamine release by 27.1±3.1% (n=12, p<0.001) and 

the KCl-evoked release by 89.5±0.8% (n=12, p<0.001), and also lessened the resting and the KCl-

evoked release of [
14

C]glutamate by 22.1±1. % (n=12, p<0.001) and 73.3±1.5 % (n=12, p<0.001), 

respectively, compared to normocalcemia. As for [
3
H]serotonin, according to our previous publication 
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(Ferreira et al., 2012), the evoked release of [
3
H]serotonin was 47.2±2.4% (n=6, p<0.001) and the 

resting release was 18.2±2.1% (n=6, p<0.01) Ca
2+

-dependent. 

 

2.2.2.2.3. β-counting 

After the experiment, the radioactivity content of each samples and the filters with the trapped 

synaptosomes were counted by a single or a dual-label protocol using a Tricarb β-counter 

(PerkinElmer), and DPM values were expressed as fractional release (FR%), i.e. the percent of actual 

content in the effluent as a function of the total synaptosomal content. 

 

2.2.2.2.4. Release data interpretation 

For the dual-label [
3
H]dopamine/ [

14
C]glutamate experiments in rat striatal synaptosomes since no 

4-AP stimulation was applied, the vehicle control results (FR%) were subtracted from the capsaicin-

stimulated FR% data. The curves obtained are displayed in Fig. 2A-C. Fig. 2D displays the area-under-

the-curve (the sum of deviation from zero FR% changes) for capsaicin's effect. 

For the rest of the release experiments in mice, since there were two types of controls, namely drug-

naïve 4-AP-stimulated and drug-naïve non-stimulated controls, we present instead the original 

mean±SEM FR% plots for 4-AP-stimulated (Figs. 3A,B and 4A) as well as for the unstimulated (Fig. 

3C,D) conditions. 

 Areas under the curve were calculated for the effect of both 4-AP and the TRPV1R agonists. 

TRPV1R agonist effects were statistically compared to a hypothetical value of zero. S2/S1 ratios under 

treatment were normalized to the vehicle control S2/S1 ratio, and then were statistically compared to a 

hypothetical value of 100%. 
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2.2.2.3. Synaptosomes purified by a 45% Percoll gradient for Western blotting 

This preparation was obtained as previously described (Rebola et al., 2005). Briefly, the two striata 

from one animal were homogenized in an ice-cold sucrose-HEPES medium containing 0.32 M sucrose, 

1 mM EDTA, 0.1% BSA and 10 mM HEPES (pH 7.4). The homogenate was spun at 3,000 g for 10 

min at 4 ºC and the supernatant spun again at 14,000 g for 12 min. The pellet (P2 fraction) was 

resuspended in 1 mL of Percoll 45% (v/v) made up in Krebs-HEPES-Ringer (KHR) medium (in mM: 

NaCl 140, EDTA 1, KCl 5, glucose 5 and HEPES 10, pH 7.4) and spun again at 14,000 g for 2 min. 

The synaptosomes (top layer) were then removed and washed once with KHR medium at 14,000 g for 

2 min. The synaptosomal pellet obtained was solubilized in 5% SDS supplemented with 100 µM 

PMSF, 2 mM DTT and a protease inhibitor cocktail. The protein concentration was then determined 

using the bicinchoninic acid (BCA) protein assay reagent and the samples added to a 1/6 volume of 6× 

SDS-PAGE sample buffer [30% (v/v) glycerol, 0.6 M dithiothreitol (DTT), 10% (w/v) SDS and 375 

mM Tris–HCl, and 0.012% bromophenol blue, pH 6.8] and the volume adjusted with milliQ water to 

normalize for a maximum of 2 µg/µL. 

 

2.2.2.4. Western blotting 

The samples were denaturated by boiling at 95 ºC for 5 min and 80 µg protein loads were separated 

by SDS-PAGE electrophoresis, using 10% polyacrylamide resolving gels and 4% polyacrylamide 

concentrating (stacking) gels, under reducing conditions at 80-120 mV. Prestained precision protein 

standards (Biorad) were run simultaneously with the samples to help identify the proteins of interest. 

The proteins in the gel were then electrophoretically transferred (1A current, for 1.5 h at 4ºC with 

constant agitation) to previously activated polyvinylidene difluoride (PVDF) membranes (0.45 μm). 
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After blocking for 1 h at room temperature with 5% essential fatty acid free bovine serum albumin 

(BSA) in Tris-buffered saline (Tris 20 mM, NaCl 140 mM, pH 7.6) containing 0.1% Tween 20 (TBS-

T), to prevent nonspecific binding, the membranes were incubated overnight at 4°C with the primary 

antibody (rabbit anti-TRPV1R at 1:500, Millipore) diluted in TBS-T with 1% BSA. After three washing 

periods of 15 min with TBS-T, the membranes were incubated with the appropriate alkaline 

phosphatase-tagged secondary antibody diluted in TBS-T containing 1% BSA, for 2 h at room 

temperature. After three 15-min washes with TBS-T, the membranes were incubated with Enhanced 

Chemi-Fluorescence (ECF) substrate and visualized in a VersaDoc 3000 imaging system with the 

assistance of Quantity One software. The membranes were then re-probed and tested for β-actin 

immunoreactivity to confirm that similar amounts of protein were applied to the gels. 

 

2.2.3. Data treatment 

All data represent mean ± SEM of n ≥ 5 observations (5 animals). Pooled data were tested for 

normality by the Kolmogorov-Smirnov normality tests. If data exhibited Gaussian distribution, 

statistical significance was calculated by one-sample t-test against a hypothetical value of 100 

(representing either pretreatment period or vehicle control) or of 0 (no effect on baseline). A p < 0.05 

was accepted as significant difference.  

 

2.3. Materials and Chemicals 

Phenylmethanesulfonyl fluoride (PMSF), DL-dithiothreitol (DTT), protease inhibitor cocktail 

(leupeptin, pepstatin A, chymostatin and antipain), 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane), 

pargyline, bovine serum albumin (BSA), aminooxy acetic acid, pargyline, Tween-20, DMSO and 

Whatman GF/C filters were obtained from Sigma (Sintra, Portugal). Sodium dodecyl sulphate (SDS) 
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and the Quantity one software were from Bio-Rad (Amadora, Portugal). Polyvinylidene difluoride 

(PVDF) membranes, pre-stained precision protein standards and enhanced chemifluorescence substrate 

(ECF) were purchased from Amersham Biosciences (Amadora, Portugal). Bicinchoninic acid (BCA) 

protein assay, ascorbic acid and inorganic reagents were bought from Merck-Millipore, Darmstadt, 

Germany. 4-aminopyridine, ACEA, AM251 were purchased from Abcam Biochemicals (Cambridge, 

U.K.). E-capsaicin, capsazepine and O-2050 were from Tocris Bioscience (Bristol, U.K.) Non-water 

soluble materials were dissolved in DMSO, aliquoted and kept at -20ºC until use. 

 

 

 

3. Results and Discussion 

3.1. Capsaicin increases the frequency of post-synaptic excitatory currents in the striatum  

Lack of TRPV1R-triggered release of radiolabeled neurotransmitters from synaptosomal 

preparations (D'Amico et al., 2004; Köfalvi et al., 2005, 2007; Cannizzaro et al., 2006; Ferreira et al., 

2009) can be a result of the age of the animals used and/or of the lack of temporal resolution of the 

technique itself, i.e. that a fast-desensitizing capsaicin effect (Baamonde et al., 2005) is diluted in the 

minute-scale sampling process. To avoid any of these, we first used a positive control, i.e. tight-seal 

voltage clamp recording of glutamatergic input in medium spiny neurons of the striatum of rat pups. As 

Fig. 1 demonstrates, the perfusion of capsaicin (1 µM) triggered a sustained 29.2±8.1% increase in 

spontaneous firing rate of glutamatergic terminals (n = 5, p < 0.01) which slowly returned to baseline 

upon washout (not shown), while having no effect either on the amplitude or the half-width of the 

currents, indicating presynaptic rather than post-synaptic modulation of glutamatergic connections. 

This indicates to us that presynaptic functional TRPV1Rs with apparently low desensitization rate do 
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exist in the glutamatergic terminals in the developing striatum. Capsaicin at the concentration of 10 µM 

already induced a considerable desensitization during its perfusion, hence reducing the amplitude of its 

effect to 21±18.6% facilitation of basal activity (n =5, p > 0.05). 

 

3.2. Age-dependence of presynaptic TRPV1R functionality in the striatum 

This prompted us to test the effect of capsaicin on the release of [
3
H]dopamine and [

14
C]glutamate 

in striatal synaptosomes of rats of four post-natal ages. As Fig. 2 illustrates, 3-min perfusion of 

capsaicin (1 µM) triggered a rapid and sustained increase in the release of both [
3
H]dopamine and 

[
14

C]glutamate over the vehicle control, which was the greatest in the 7-day-old rats, and declined 

thereafter. Age-effect size curves reveal that the response to capsaicin drops to 50% of the theoretical 

maximum on post-natal day 13 for both [
3
H]dopamine and [

14
C]glutamate. Furthermore, Western-

blotting analysis of the striatal nerve terminals reveals an overt decrease in synaptic TRPV1R density 

from post-natal day 14 to post-natal day 29 (Fig. 2E).  

Of note, synaptosomal preparations usually contain significant percentages of presynaptic nerve 

terminals bearing still their post-synaptic partners, and functional TRPV1Rs have been found also post-

synaptically in the striatum (Maccarrone et al., 2008; Grueter et al., 2010). Therefore, there is a certain 

chance that post-synaptic TRPV1R triggered the production of a retrograde messenger (e.g. NO) that 

could facilitate [
3
H]dopamine and [

14
C]glutamate release presynaptically. However, post-synaptic 

TRPV1R expression is not age-dependent as the mean age of the animals in the above two studies is 44 

days. Our data therefore rather argue for the presynaptic TRPV1R functionality which declines in the 

first weeks of post-natal life, at least in the striatum. This is not the first such report: Maione and 

colleagues (2009) also found that TRPV1R immunoreactivity and the TRPV1R-mediated synaptic 

plasticity in retinocollicular glutamatergic terminals are at their maximum in the second week of post-
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natal life, and decline in the forthcoming weeks, until disappearing in the adult brain. The authors 

speculated that TRPV1Rs participate in axonal guidance and target selection. Interestingly, 

anandamide, the endogenous activator of TRPV1Rs, has been shown to participate in the 

synaptogenesis and target selection of GABAergic interneurons in the embryonic mouse brain, via the 

activation of presynaptic CB1Rs (Berghuis et al., 2007). Another recent study reports probable 

developmental role of TRPV1R in the ependymal cells of the embryonic rat brain (Jo et al., 2013). To 

test this developmental hypothesis, Zavitsanou and colleagues (2010) injected rats with capsaicin at 

neonatal day 2, and at 15-16 weeks of post-natal age, differences in the density of dopamine, 

muscarinic, cannabinoid and serotonin receptors were detected, indicating that neonatal TRPV1Rs have 

long-term impact on the neuromodulator system of the adult brain. 

The present electrophysiological and neurochemical evidence do not necessarily argue for glutamate 

release modulation at cortico- or thalamostriatal terminals: it is known that glutamate serves as a co-

transmitter to dopamine in mesolimbic efferents, helping axonal guidance and target selection 

(Descarries et al., 2008). It is therefore plausible that the effect of capsaicin seen by us is restricted to 

such developing terminals in the striatum, thus capsaicin can evoke sustained release of glutamate and 

dopamine from nerve terminals of the same mesolimbic origin. 

 

3.3. CB1R-dependence of presynaptic TRPV1R functionality in the adult brain 

The presence of CB1Rs in the same nerve terminal may also mask presynaptic TRPV1R function 

(Marinelli et al., 2005; Oshita et al., 2005; Wu et al., 2005; Mahmud et al., 2009; Yang et al., 2013). 

Alternatively, since the TRPV1R is also a voltage-gated ion channel, TRPV1R function may prevail 

under depolarization instead of at resting membrane potential, in the adult brain. To test these, we 

measured the effect of TRPV1R agonists both on the resting and the 4-AP-stimulated release of 
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[
3
H]serotonin from frontocortical nerve terminals as well of [

3
H]dopamine and [

14
C]glutamate from 

striatal nerve terminals, under genetic and pharmacological ablation of the CB1R.  

 

3.3.1. [
3
H]dopamine and [

14
C]glutamate release in mouse striatal nerve terminals 

We found previously that the evoked release of [
14

C]glutamate was greater in the neocortex of CB1R 

KO mice than that in the WT mice (Ferreira et al., 2012), and we observed now a 36.1 ± 10.2% (p < 

0.05) greater evoked release of [
14

C]glutamate in the striatal synaptosomes of the CB1R KO mice when 

comparing the S1 values (Fig. 3B). This is the first report on that the evoked release of glutamate is 

greater in the striatum of the CB1R KO mice. In contrast, the evoked release of [
3
H]dopamine was 

similar between the WT and the CB1R KO mice (KO: 105.8 ± 9.4% of control, n = 6; p > 0.05) which 

is in accordance with the lack of functional CB1Rs in striatal dopaminergic terminals (Köfalvi et al., 

2005). 

Nicotine (1 nM - 10 µM) in our hands is capable of stimulating the efflux of dopamine under 

resting conditions (Ferreira et al., 2009; Garção et al., 2013), which serves as a positive control for the 

present study. However, capsaicin (1 µM) failed to affect either the resting or the 4-AP-stimulated 

release of [
3
H]dopamine and [

14
C]glutamate in the striatum of both mouse strains (Fig. 3A-G). For 

curiosity, we tested capsaicin in the presence of the TRPV1R antagonist, capsazepine (1 µM) to allow 

unmasking any possible off-target capsaicin action. For instance, an inhibition of glutamate release by 

capsaicin similar to the one seen by Benninger et al. (2008) in the hippocampi of both the WT and the 

TRPV1R KO mice would mask TRPV1R-mediated facilitation. Yet, the lack of capsaicin effect 

persisted in the presence of capsazepine (Fig. 3E). 

Resiniferatoxin (RTX, 100 nM), another highly selective and potent TRPV1R agonist (Szolcsányi et 

al., 1990) also failed to affect either the resting release (Fig. 3F,G) or the 4-AP-evoked release of 



 18 

[
3
H]dopamine and [

14
C]glutamate (data not shown; p > 0.05). Chemical instead of genetic ablation of 

the CB1R also failed to unmask presynaptic TRPV1Rs: capsaicin (1 µM) in the presence of the CB1R 

antagonist, AM251 (500 nM) did not produce change (p > 0.05) either on the resting release (Fig. 

3F,G) or on the 4-AP-evoked release of [
3
H]dopamine and [

14
C]glutamate (data not shown) in the WT 

mice. 

 

3.3.2. [
3
H]serotonin release in mouse frontocortical nerve terminals 

Similarly to our previous report (Ferreira et al., 2012), the evoked release of [
3
H]serotonin 

(comparing the S1 values) was 11.8 ± 3.9% greater (n = 6, p < 0.01) in the CB1R knockout (KO) mice 

(Figs. 4A). This with the above data indicate that CB1Rs are tonically negatively coupled to the release 

of serotonin and glutamate as both nerve terminal types are positive for specific CB1R 

immunoreactivity (Köfalvi et al., 2005; Häring et al., 2007; Ferreira et al., 2012).  

Besides capsaicin, this time we tested a non-metabolizable analogue of anandamide, ACEA, which 

is also a hybrid CB1R/ TRPV1R agonist to stimulate [
3
H]serotonin release. Yet, neither ACEA (1 µM) 

nor capsaicin (1 µM) triggered statistically significant change (p > 0.05) in the resting release of 

[
3
H]serotonin from cortical synaptosomes of WT mice in the absence or the presence of another 

specific CB1R antagonist, O-2050 (500 nM) (Fig. 4C). ACEA also had no effect on the resting 

[
3
H]serotonin release in the CB1R KO mice, respectively (Fig. 4C). Interestingly, ACEA statistically 

significantly increased the evoked release of [
3
H]serotonin in the CB1R KO but not in the WT mice (by 

12.8 ± 3.8%, n = 7, p < 0.05; Fig. 4A,B). In contrast, capsaicin failed to facilitate the evoked release of 

[
3
H]serotonin in both mouse strains (Fig. 4B). Additionally, under CB1R blockade with O-2050 in the 

WT mice, neither ACEA nor capsaicin produced effect on the evoked release (Fig. 4B). Capsaicin is a 

well-established and potent agonist for the TRPV1R (Caterina et al., 1997). ACEA, however, possesses 
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additional putative binding sites including the TRPV4R channel (Vay et al., 2012) and intracellular 

targets (Köfalvi, 2008). Hence, these conflicting data here do not support the hypothesis that CB1Rs 

keep putative TRPV1Rs silent in serotonergic terminals. The facilitatory effect of ACEA in the CB1R 

KO mice is novel information, and may represent developmental compensation for the lack of CB1Rs. 

Notwithstanding, the determination of the underlying cannabinoid receptor subtype responsible for 

such ACEA effect is beyond the scope of this study.  

Altogether, the second part of the study refuted the presynaptic neuromodulator role for TRPV1Rs 

in the investigated terminals. The lack of such neuromodulation is likely not due to a putative negative 

control by CB1Rs on TRPV1Rs.  

 

4. Conclusions  

Presynaptic metabotropic CB1 cannabinoid receptors have long been known to modulate the release 

of amino acid and monoamine transmitters (Katona et al., 1999; Nakazi et al., 2000; Balázsa et al., 

2008; Ferreira et al., 2012). The endocannabinoids, anandamide and NADA can activate the ionotropic 

TRPV1R besides the CB1R. Our aim was to investigate the little understood nature of presynaptic 

functional TRPV1Rs. Here we report for the first time that capsaicin triggers transmitter release in 

forebrain synaptosomes. This role of TRPV1Rs is age dependent, and disappears in the first few weeks 

of post-natal life. Thus, our work is one of the few pioneer studies (Maione et al., 2009; Zavitsanou et 

al., 2010) which propose a neurodevelopmental role for the presynaptic TRPV1Rs.  

Although our data is not in favor of, but is also not inconsistent with the idea of functional 

presynaptic TRPV1Rs in the adult brain. What we can safely conclude based on the previous literature 

(see e.g. Table 1) and on our present results is that TRPV1Rs do not posses major presynaptic 

neuromodulator role in the adult rodent forebrain. This means that presynaptic TRPV1Rs at 
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considerably decreased density in the adult brain still can have other roles, for instance, in axon 

guidance in immature synapses. To stretch this idea, recent data suggest the involvement of 

anandamide and TRPV1R signaling in depression (Micale et al., 2013). Hence, it is feasible that 

misregulation of axon guidance and target selection by impaired TRPV1R signaling contributes to the 

genesis of depression in the adult. 
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Figure Legends 

Fig. 1. Capsaicin facilitates spontaneous glutamate release onto medium spiny neurons in 

the striatum of 8-14 day-old rats. A) Representative recording at whole-cell voltage clamp mode 

shows that the frequency of glutamatergic firing increases upon perfusion of the TRPV1R agonist 

capsaicin (1 µM). B) Quantification of major parameters of synaptic transmission reveals statistically 

significant presynaptic modulation as the frequency rather than the amplitude or the desensitization rate 

of the glutamatergic current changes upon capsaicin perfusion. Data represent the mean±SEM of n=5 

observations (animals); **p < 0.01. 

 

Fig. 2. Capsaicin facilitates the release of glutamate and dopamine from striatal 

synaptosomes of rat pups only. Synaptosomes were loaded with the respective radiolabeled 

neurotransmitters, and trapped in GF/B filters in microvolume release chambers, and superfused 

thereafter. Two-min samples of the effluents were measured for radioactivity. Diagrams representing 

the averaged net release curves of [
3
H]dopamine and [

14
C]glutamate from striatal synaptosomes of A) 

7, B) 14 and C) 60 day-old rats. Stimulation with capsaicin (1 µM) occurred since the 6
th

 min of sample 

collection for 3 min, as indicated by the horizontal bar. Net curves were obtained after subtracting the 

vehicle control data from the capsaicin-treated data. D) Age-effect-size curves reveal that the effect of 

capsaicin falls to 50% of its theoretical maximum by the 13
th

 post-natal day. Data represent the 

mean±SEM of n=8 observations (animals); *,
#
 p < 0.05; **,

##
 p < 0.01; ***,

###
 p < 0.001 

 E) Representative Western-blotting image illustrates that by the 29
th

 post-natal day, the 

disappearance of TRPV1R immunoreactivity from purified striatal nerve terminals is almost complete.  
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Fig. 3. TRPV1Rs do not affect the release of glutamate and dopamine in striatal 

synaptosomes of adult WT and CB1R KO mice. Release diagrams representing the averaged release 

curves of A) [
3
H]dopamine and B) [

14
C]glutamate from striate synaptosomes of wild-type (WT) and 

CB1R knockout (KO) mice. Synaptosomes were loaded with the respective radiolabeled 

neurotransmitters, and trapped in GF/B filters in microvolume release chambers, and superfused 

thereafter. Two-min samples of the effluents were measured for radioactivity. Depolarization with 4-

aminopyridine (300 µM; 2 × 2 min) is marked as S1 and S2. In those synaptosomes which were not 

challenged with 4-AP, capsaicin (1 µM) bath-applied from min 12 of the sample collection period, 

failed to affect the resting release of C,D,F) [
3
H]dopamine and G) [

14
C]glutamate in the WT and CB1R 

KO mice. Treatment with the selective TRPV1R agonist, resiniferatoxin (RTX, 100 nM) or capsaicin in 

the presence of the CB1R antagonist, AM251 (500 nM) also failed to alter the resting release values. E) 

Capsaicin also had no effect on the 4-AP evoked release of both transmitters. Capsazepine (1 µM), a 

TRPV1R antagonist did not unmask off-target effect for capsaicin on the 4-AP-evoked release of 

glutamate. Data represent mean ± S.E.M. from 6 animals in duplicate. n.s.: not significant. 

 

Fig. 4. TRPV1Rs do not affect the release of serotonin in frontocortical synaptosomes of 

adult WT and CB1R KO mice. Release diagrams representing the averaged release curves of A) 

[
3
H]serotonin from frontocortical synaptosomes of wild-type (WT) and CB1R knockout (KO) mice. 

Synaptosomes were loaded with [
3
H]serotonin under the blockade of noradrenalin and dopamine 

transporters, then trapped in GF/B filters in microvolume release chambers, and superfused thereafter. 

Two-min samples of the effluents were measured for radioactivity. Depolarization with 4-

aminopyridine (300 µM; 2 × 2 min) is marked as S1 and S2. B) Neither capsaicin (1 µM) nor the hybrid 

CB1R/ TRPV1R agonist, ACEA (1 µM), both bath-applied from min 12 of the sample collection, 

altered the 4-AP-evoked release of [
3
H]serotonin in the WT mice under CB1R blockade. However, 
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ACEA increased the evoked release of [
3
H]serotonin in the CB1R KO mice by ~13%, suggesting the 

recruitment of a novel ACEA-sensitive receptor in the serotonergic terminals of the genetically altered 

animals. C) In those synaptosomes which were not challenged with 4-AP, ACEA and capsaicin did not 

stimulated [
3
H]serotonin release neither on their own, nor in the presence of another selective CB1R 

agonist, O-2050 (500 nM). All bars represent the mean ± S.E.M. of data obtained from n = 6 animals in 

duplicate. *p < 0.05. 
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Table 1. Summary of the literature reporting presynaptic TRPV1R-mediated actions in 

forebrain preparation. D, days; p.c., pars compacta; a., area 

 

animal transmitter age (D) brain area TRPV1 effect? reference 

rat D-aspartate >32 ? hippocampus no D'Amico et al., 2004 

rat D-aspartate >32 ? hippocampus no Cannizzaro et al., 2006 

rat GABA >32 ? hippocampus no D'Amico et al., 2004 

rat GABA 15-22 hippocampus no Hájos and Freund, 2002 

rat GABA 42-56 hippocampus no Köfalvi et al., 2006, 2007 

rat GABA 12-24 substantia nigra p.c.  no Marinelli et al., 2003 

rat GABA 12-24 substantia nigra p.c. no Marinelli et al., 2007 

rat glutamate 35-56 cerebellum no Sasamura et al., 1998 

rat glutamate 28-42 hippocampus yes Al-Hayani et al., 2001 

rat glutamate 15-22 hippocampus yes Gibson et al., 2008 

rat glutamate 28-42 hippocampus yes Huang et al., 2002 

rat glutamate 15-22 hippocampus yes Hájos and Freund, 2002 

rat glutamate 15-27 hippocampus yes Jensen and Edwards, 2012 

rat glutamate 42-56 hippocampus no Köfalvi et al., 2007 

rat glutamate 35-56 hypothalamus yes Sasamura et al., 1998 

rat glutamate 12-22 locus coeruleus yes Marinelli et al., 2002 

rat glutamate 42-56 striatum no Ferreira et al., 2009 

rat glutamate 12-24 substantia nigra p.c. yes Marinelli et al., 2003 

rat glutamate 12-24 substantia nigra p.c. yes Marinelli et al., 2007 

rat glutamate 14-21 ventral tegmental a. yes Marinelli et al., 2005 

rat dopamine 42-56 striatum no Ferreira et al., 2009 

      

mouse GABA 42-49 striatum no Musella et al., 2009 

mouse glutamate 20-77 hippocampus no Benninger et al., 2008 

mouse glutamate 15-21 hippocampus yes Gibson et al., 2008 

mouse glutamate 70-84 striatum no Ferreira et al., 2009 

mouse glutamate 42-49 striatum yes Musella et al., 2009 

mouse glutamate 8-15 superior colliculus yes Maione et al., 2009 

mouse glutamate 35-70 superior colliculus no Maione et al., 2009 

mouse dopamine 70-84 striatum no Ferreira et al., 2009 

Table 1



animal/tissue transmitter resting FR% S1 FR% S2/S1 filter (DPM) 

rat 7D striatum [
3
H]dopamine 4.03 ± 0.52 n.a. n.a. 194593 ± 10367 

rat 60D striatum [
3
H]dopamine 3.89 ± 0.36 n.a. n.a. 172117 ± 20732 

rat 7D striatum [
14

C]glutamate 4.85 ± 0.31 n.a. n.a. 95695 ± 5427 

rat 60D striatum [
14

C]glutamate 4.51 ± 0.35 n.a. n.a. 102173 ± 7034 

mouse >50D cortex [
3
H]serotonin 4.85 ± 0.31 5.8 ± 0.4 0.71 ± 0.06 57396 ± 3409 

mouse >50D striatum [
3
H]dopamine 4.73 ± 0.63 12.0 ± 1.6 0.85 ± 0.05 115169 ± 9327 

mouse >50D striatum [
14

C]glutamate 5.14 ± 0.54 8.0 ± 1.1 0.93 ± 0.06 99065 ± 8149 

 

Table 2




