53 research outputs found

    Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets

    Get PDF
    Six 1-month-old piglets were intravenously injected with deoxynivalenol (DON) at the concentration of 1 mg/kg body weight, with three pigs each necropsied at 6 and 24 h post-injection (PI) for investigation of hepatotoxicity and immunotoxicity with special attention to apoptotic changes and cytokine mRNA expression. Histopathological examination of the DON-injected pigs revealed systemic apoptosis of lymphocytes in lymphoid tissues and hepatocytes. Apoptosis of lymphocytes and hepatocytes was confirmed by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemical staining against single-stranded DNA and cleaved caspase-3. The number of TUNEL-positive cells in the thymus and Peyer's patches of the ileum was increased at 24 h PI compared to 6 h PI, but the peak was at 6 h PI in the liver. The mRNA expression of interleukin (IL)-1ÎČ, IL-6, IL-18, and tumor necrosis factor (TNF)-α in the spleen, thymus and mesenteric lymph nodes were determined by semi-quantitative RT-PCR, and elevated expression of IL-1ÎČ mRNA at 6 h PI and a decrease of IL-18 mRNA at 24 h PI were observed in the spleen. IL-1ÎČ and IL-6 mRNA expressions increased significantly at 6 h PI in the thymus, but TNF-α decreased at 6 h PI in the mesenteric lymph nodes. These results show the apoptosis of hepatocytes suggesting the hepatotoxic potential of DON, in addition to an immunotoxic effect on the modulation of proinflammatory cytokine genes in lymphoid organs with extensive apoptosis of lymphocytes induced by acute exposure to DON in pigs

    Efficacy of a Mycotoxin Binder against Dietary Fumonisin, Deoxynivalenol, and Zearalenone in Rats

    Get PDF
    It was hypothesized that a mycotoxin binder, Grainsure E, would inhibit adverse effects of a mixture of fumonisin B1, deoxynivalenol, and zearalenone in rats. For 14 and 28 days, 8–10 Sprague–Dawley rats were fed control diet, Grainsure E (0.5%), toxins (7 ÎŒg fumonisin B1/g, 8 ÎŒg of deoxynivalenol/g and 0.2 ÎŒg of zearalenone/g), toxins (12 ÎŒg of fumonisin B1/g, 9 ÎŒg of deoxynivalenol/g, and 0.2 ÎŒg of zearalenone/g + Grainsure E), or pair-fed to control for food intake of toxin-fed rats. After 28 days, decreased body weight gain was prevented by Grainsure E in toxin-fed female rats, indicating partial protection against deoxynivalenol and fumonisin B1. Two effects of fumonisin B1 were partly prevented by Grainsure E in toxin-fed rats, increased plasma alanine transaminase (ALT) and urinary sphinganine/sphingosine, but sphinganine/sphingosine increase was not prevented in females at the latter time point. Grainsure E prevented some effects of fumonisin B1 and deoxynivalenol in rats

    Deoxynivalenol-Induced Proinflammatory Gene Expression: Mechanisms and Pathological Sequelae

    Get PDF
    The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON’s toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression—effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin

    Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed

    Get PDF
    Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 ÎŒg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 ÎŒg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink

    Vaccine-induce autoimmunity in the dog

    No full text
    • 

    corecore