12 research outputs found

    Production and preservation of resins - past and present

    Get PDF
    Amber is fossilised plant resin. It can be used to provide insights into the terrestrial conditions at the time the original resin was exuded. Amber research thus can inform many aspects of palaeontology, from the recovery and description of enclosed fossil organisms (biological inclusions) to attempts at reconstruction of past climates and environments. Here we focus on the resin itself, the conditions under which it may have been exuded, and its potential path to fossilisation, rather than on enclosed fossils. It is noteworthy that not all plants produce resin, and that not all resins can (nor do) become amber. Given the recent upsurge in the number of amber deposits described, it is time to re‐examine ambers from a botanical perspective. Here we summarise the state of knowledge about resin production in modern ecosystems, and review the biological and ecological aspects of resin production in plants. We also present new observations on conifer‐derived resin exudation, with a particular focus on araucarian conifer trees. We suggest that besides disease, insect attacks and traumatic wounding from fires and storms, other factors such as tree architecture and local soil conditions are significant in creating and preserving resin outpourings. We also examine the transformation of resin into amber (maturation), focusing on geological aspects of amber deposit formation and preservation. We present new evidence that expands previous understanding of amber deposit formation. Specific geological conditions such as anoxic burial are essential in the creation of amber from resin deposits. We show that in the past, the production of large amounts of resin could have been linked to global climate changes and environmental disruption. We then highlight where the gaps in our knowledge still remain and potential future research directions.Peer reviewe

    Association analyses identify 31 new risk loci for colorectal cancer susceptibility

    Get PDF
    Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.Peer reviewe

    Cephalic and Limb Anatomy of a New Isoxyid from the Burgess Shale and the Role of “Stem Bivalved Arthropods” in the Disparity of the Frontalmost Appendage

    No full text
    <div><p>We herein describe <i>Surusicaris elegans</i> gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). <i>Surusicaris</i> exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic “fused” condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the “two-segmented head” in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as <i>Surusicaris</i>, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral—arguably deutocerebral—appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and “stem bivalved” arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in “stem bivalved” arthropods, distinct in its absence of clear clustering, is found to link the morphologies of “short great appendages,” chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this pattern, however, is sensitive to the—still unclear—extent of polyphyly of the “stem bivalved” taxa.</p></div
    corecore