96 research outputs found

    Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors

    Get PDF
    Plants rely on spectral cues present in their surroundings, generated by the constantly changing light environment, to guide their growth and reproduction. Photoreceptors mediate the capture of information by plants from the light environment over a wide range of wavelengths, but despite extensive evidence that plants respond to various light cues, only fragmentary data have been published showing patterns of diurnal, seasonal and geographical variation in the spectral composition of daylight. To illustrate patterns in spectral photon ratios, we measured time series of irradiance spectra at two distinct geographical and climatological locations, Helsinki, Finland and Gual Pahari, India. We investigated the drivers behind variation of the spectral photon ratios measured at these two locations, based on the analysis of over 400 000 recorded spectra. Differences in spectral irradiance were explained by different atmospheric factors identified through multiple regression model analysis and comparison to spectral irradiance at ground level simulated with a radiative transfer model. Local seasonal and diurnal changes in spectral photon ratios were related to solar elevation angle, atmospheric water-vapour content and total ozone column thickness and deviated from their long-term averages to an extent likely to affect plant photobiology. We suggest that future studies should investigate possible effects of varying photon ratios on terrestrial plants. Solar elevation angle especially affects the patterns of B:G and B:R ratios. Water vapour has a large effect on the R:FR photon ratio and modelled climate scenarios predict that increasing global temperatures will result in increased atmospheric water vapour. The development of proxy models, utilising available data from weather and climate models, for relevant photon ratios as a function of solar elevation angle and atmospheric factors would facilitate the interpretation of results from past, present and future field studies of plants and vegetation.Peer reviewe

    Out of Sight but Not out of Mind: Alternative Means of Communication in Plants

    Get PDF
    Current knowledge suggests that the mechanisms by which plants communicate information take numerous forms. Previous studies have focussed their attention on communication via chemicals, contact and light; other methods of interaction between plants have remained speculative. In this study we tested the ability of young chilli plants to sense their neighbours and identify their relatives using alternative mechanism(s) to recognised plant communication pathways. We found that the presence of a neighbouring plant had a significant influence on seed germination even when all known sources of communication signals were blocked. Furthermore, despite the signalling restriction, seedlings allocated energy to their stem and root systems differently depending on the identity of the neighbour. These results provide clear experimental evidence for the existence of communication channels between plants beyond those that have been recognized and studied thus far

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems

    Get PDF
    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants across the Southern Hemisphere. Such research has broadened our understanding of the linkages that exist between the effects of ozone depletion, UV-B radiation and climate change on terrestrial ecosystems
    corecore