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 10 

Abstract 11 

During the past few decades it has been documented that the ultra-violet (UV) component of natural 12 

sunlight alone or in combination with visible light can instantaneously stimulate aerobic plant production of 13 

a range of important trace gases: CH4, CO2, CO, short-chain hydrocarbons/ non-methane volatile organic 14 

compounds (NMVOC), NOx and N2O. This gas production, near or at the plant surface, is a new discovery 15 

and is normally not included in emission budgets (e.g. by the Intergovernmental Panel on Climate Change, 16 

IPCC) due to a lack of information with respect to validation and upscaling. For CH4 it is known that the light 17 

dose controls emission under ambient and artificial light conditions, but the atmospheric gas composition 18 

and other environmental factors can influence gas production as well. Several plant components, including 19 

pectin and leaf wax, have been suggested as a precursor for CH4 production, but underlying mechanisms 20 

are not fully known.  For other gases such generating processes have not been established yet and 21 

mechanisms remain hypothetical. Field measurements of UV-induced emissions of the gases under natural 22 

light conditions are scarce. Therefore, realistic upscaling to the ecosystem level is uncertain for all gases. 23 

Nevertheless, based on empirical response curves, we propose the first global upscaling of UV induced N2O 24 

and CO to illustrate emission ranges from a global perspective and as a contribution to an ongoing 25 

quantification process. When scaled to the global level, the UV-induced emission of CO by vegetation 26 

surfaces amounts to up to 22 Tg yr−1, which equals 11-44% of all the natural terrestrial plant sources 27 

accounted for so far. The total light-driven N2O emissions amount to 0.65-0.78 Tg yr-1, which equals 7-24% 28 

of the natural terrestrial source strength accounted for (range 3.3 - 9 Tg N yr-1). In this review, we 29 

summarize current knowledge, based on experimental work with sunlight and artificial light, and estimate 30 



potential emission ranges and uncertainties, placing the available data into perspective. We discuss the 31 

state of the art in proposed mechanisms, precursors, and environmental relationships, we consider the 32 

relevance of measured emission rates, and we also suggest a range of future research topics. Furthermore 33 

we propose and describe methods and techniques that can be used for future research. 34 

Keywords: Atmospheric chemistry, air pollution, UV-A, UV-B, stabile isotopes techniques, N2O, CH4, NOx, 35 

NOy, CO, CO2, short-chain hydrocarbons, NMVOC, upscaling, vegetation, plants 36 
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1 Introduction 68 

For decades it has been recognized that sunlight plays significant roles in atmospheric chemistry and that 69 

the UV component is the driving force for tropospheric photochemical processes. For instance, UV-70 

photolysis of ozone generates excited state oxygen atoms, which react with water vapour to constitute the 71 

primary source of hydroxyl radical (OH). OH is the major component for the overall oxidising capacity of the 72 

troposphere (Isaksen et al. 2009). Lately, a number of trace gases are reported to be released by plants in 73 

instantaneous responses to UV-radiation, such as methane (CH4) (Bruhn et al. 2007, 2009, 2012, 2014a; 74 

Röckmann et al. 2007; Vigano et al. 2007, 2008, 2009;  McLeod et al. 2008; McLeod and Keppler, 2010; 75 

Messenger et al. 2009; Fraser et al. 2015), carbon monoxide (CO) (Derendorp et al. 2011a; Bruhn et al. 76 

2013), short-chain hydrocarbons (Derendorp et al. 2011b; Fraser et al. 2015), mono-nitrogen oxides (NOx  77 

and NOy) (Hari et al. 2003; Raivonen et al. 2006, 2009) and nitrous oxide (N2O) (Bruhn et al. 2014b).  78 

These UV-driven gas productions are in principle newly revealed terrestrial sources that remain to be 79 

considered in greenhouse gas accounting. Production of all gases stimulated by UV involves emissions at 80 

relatively low rates, and the group of gases are diverse and have different impacts and interactions with the 81 

atmosphere. However, several of the gases are potent greenhouse gases or interact with the turnover of 82 

atmospheric greenhouse gases.   83 

We describe current knowledge of methods and techniques for measuring these gases, with a particular 84 

focus on the special requirements needed to accomplish flux measurements under controlled UV-85 

exposures and at generally very low rates. The distinction between laboratory and field measurements is 86 

addressed with respect to techniques and deductions. We also report on current understanding of the 87 

possible mechanisms and sources behind these gas productions, comment on current upscaling attempts, 88 

and present the first upscaling and quantification of UV stimulated CO and N2O emissions. Finally, we 89 

highlight the perspectives of the newly discovered UV stimulated gas sources with respect to research 90 

needs and impact on current research. 91 

  92 

2 Light induced gases at the plant surface 93 

Here we summarize the important features of most of the gases that are known to be formed at the plant 94 

surface during exposure to UV light. The gases can be divided into two groups: i) well-mixed greenhouse 95 

gases (CO2, CH4 and N2O), and ii) short-lived gases (CO, NOx, non-methane volatile organic compounds 96 

(NMVOC)).  97 



2.1 Well-mixed greenhouse gases (CO2, CH4 and N2O) 98 

The atmospheric concentrations of the greenhouse gases carbon dioxide (CO2), methane (CH4), and nitrous 99 

oxide (N2O) have all increased since 1750 due to human activity. In 2011 the concentrations of these 100 

greenhouse gases were 391 ppm, 1803 ppb, and 324 ppb, and exceeded pre-industrial levels by about 40%, 101 

150%, and 20%, respectively (Table 2.1).  Concentrations of CO2, CH4, and N2O now substantially exceed the 102 

highest concentrations recorded in ice cores during the past 800,000 years (Masson-Delmotte et al. 2013). 103 

The mean rates of increase in atmospheric concentrations over the past century are unprecedented in the 104 

last 22,000 years (IPCC, 2013). In Table 2.1 we present the Global Warming Potential (GWP) that integrates 105 

radiative forcing (RF) out to a particular time horizon, in this case 100 years. The GWP can be interpreted as 106 

an index of the total energy added to the climate system by a component in question relative to that added 107 

by CO2 (Myhre et al. 2013). There are multiple sources of all three gases, which can be divided into two 108 

main groups, anthropogenic and natural (Table 2.1).   Quantification of the various source strengths from 109 

both groups remain uncertain and global budgets remain unclear (Ciais et al. 2013). 110 

The main anthropogenic CO2 sources are burning of fossil fuels (coal, oil and gas), deforestation and 111 

production of cement (Ciais et al. 2013). The removal of anthropogenic CO2 from the atmosphere by 112 

natural processes will take a few hundred thousand years (Ciais et al. 2013). The natural CO2 sources are 113 

autotrophic and heterotrophic respiration, decomposition of plant tissues (litter and soil carbon that is 114 

released back into the atmosphere) and additional disturbance processes (e.g., natural fires). The natural 115 

source strength is 20 times higher than the anthropogenic emission, but is counterbalanced by natural CO2 116 

uptake from the atmosphere by plant photosynthesis (Beer et al. 2010). 117 

Massive increases in the number of domestic ruminants, natural gas extraction and use, expansion of rice 118 

paddy agriculture and establishment of urban landfills and waste dumps represent the dominant 119 

anthropogenic CH4 sources (Stocker et al. 2013). Wetlands are the dominant natural source of atmospheric 120 

CH4 (EPA 2010). During the last two decades, natural sources of CH4 have accounted for 35 to 50% of the 121 

decadal mean global emissions (Ciais et al. 2013).  122 

The anthropogenic N2O sources are primarily agricultural, and the anthropogenic part accounts for 123 

approximately 40% of the total emission (Ciais et al. 2013). Natural sources are constituted by upland soils 124 

and riparian areas together with oceans, estuaries, and rivers (EPA 2010). Human-induced perturbations of 125 

the nitrogen cycle, in addition to interactions with CO2 sources and sinks, affect emissions of N2O both on 126 

land and from the ocean (Stocker et al. 2013). It is likely that N2O emissions from soils will increase due to 127 



the increased demand for feed/food and the reliance of agriculture on nitrogen fertilizers. Climate warming 128 

will likely amplify agricultural and natural terrestrial N2O sources (Ciais et al. 2013). 129 

Table 2.1. Important features of gases that are known to be formed at the plant surface during exposure 130 

to UV light 131 

 132 

*) Only isoprene and monoterpenes, **) direct and indirect aerosol effects included, ***) only from plants. 133 

References: 1) Ciais, et al. 2013; 2) Dentener et al. 2006; 3) Hartmann et al. 2013; 4) IPCC, 2001; 5) Myhre 134 

et al. 2013; 6) Boucher et al. 2013, 7) Shindell et al. 2009; 8) Tarr et al. 1995 135 

 136 

2.2 Short lived gases (CO, NOx, NMVOC) 137 

Emissions of CO, NMVOCs and NOx (NO + NO2) do not have a direct effect on RF, but affect climate 138 

indirectly as precursors to tropospheric O3 and aerosol formation, and their impacts on hydroxyl-139 

concentrations and CH4 lifetime. NMVOCs include aliphatic, aromatic and oxygenated hydrocarbons (e.g., 140 

aldehydes, alcohols and organic acids), and have atmospheric lifetimes ranging from hours to months. 141 

Global coverage of NMVOC measurements is poor, except for a few compounds (Hartmann et al. 2013). 142 

Emissions of CO and NMVOC are virtually certain to have induced a positive RF via production of the 143 

climatic drivers CO2, CH4 and O3, while emissions of NOx are likely to have induced a net negative RF.  144 

(Table2.1; IPCC, 2013). With its lifetime of 2 to 3 months, the effect of CO emission is less dependent on 145 

location than is the case for NOX (Myhre et al, 2013).  Due to their short atmospheric lifetime (hours), NOx 146 

concentrations are highly variable in time and space. Solomon et al. (2007) described the potential of 147 

satellite observations of NO2 to verify and improve NOx emission inventories and their trends, and reported 148 

NO2 increases of 50% over the industrial areas of China from 1996 to 2004. An extension of this analysis 149 

reveals increases between of 1.7x and 3.2x over parts of China, while over Europe and the USA NO2 has 150 

decreased by 30 to 50% between 1996 and 2010 (Hilboll et al. 2013).  151 

GAS Atm. Conc. Ref Lifetime (years) Ref GWP 100 year Ref Antropogenic Ref Natural Ref Units

CH4 1803 ppb 3 9.1 3 28 5 354±45 1 202±35 1 Tg CH4 yr-1

CO2 391 ppm 3 n.a. - 1 5 8.3 ± 0.7 1 n.a. 1 PgC yr-1

N2O 324 ppb 3 131 3 265 5 6.9 (2.7–11.1) 1 11.0 (5.4–19.6) 1 TgN yr–1

CO 80 ppb 4 months 5 5.3** ± 2.3 7 608 1 50-200*** 8 TgC yr–1

NOX 5-999 ppt 4 hours 3 –159** ± 79 7 37.5 2 11.3 2 TgN yr–1

NMVOC n.a. - hours - months 3 n.a. - 126.9 6 440-720* 6 TgC yr–1

Source



The major sources of atmospheric CO are in situ production by oxidation of hydrocarbons (mostly CH4 and 152 

isoprene) and direct emission resulting from incomplete combustion of biomass and fossil fuels. The 153 

anthropogenic CO emission is estimated to be 608 TgC yr–1 (Table 2.1); natural sources have been 154 

estimated to account for up to half of the global CO emissions (Khalil and Rasmussen, 1990), and direct 155 

emissions from plants are estimated to be 50-200 TgC yr–1 (Tarr et al. 1995). An analysis of MOPITT 156 

(Measurements of Pollutants in the Troposphere) and AIRS (Atmospheric Infrared Sounder) satellite data 157 

suggest a clear and consistent decline of CO columns for 2002–2010 over a number of polluted regions in 158 

Europe, North America and Asia, with a global trend of about –1% yr–1 (Yurganov et al. 2010; Fortems-159 

Cheiney et al. 2011; Worden et al. 2013; Hartmann et al. 2013). 160 

Reports on trends in a range of NMVOCs generally indicate a decline over urban and rural regions of North 161 

America and Europe, on the order of a few percent to more than 10% yr–1 (Hartmann et al. 2013). The 162 

anthropogenic emission is between 15 and 22% of the total NMVOC emissions (Table 2.1) 163 

 164 

3 Methods & techniques 165 

UV-induced gaseous emissions from specific substances, plant organs, whole plants or whole ecosystems 166 

have classically been studied under controlled environmental conditions by employment of sealed 167 

enclosures ranging in complexity from simple commercial test tubes to highly advanced plant cuvettes 168 

(plant parts) or whole chamber enclosures (plants or plant and soil communities). 169 

Generally the studied gas components are emitted at very low rates from plant surfaces, and in order to 170 

achieve detectable levels of gas accumulation the use of enclosures is required. A static enclosure that is 171 

operated by manual sampling or connected in a closed gas sampling loop to the analyzer (e.g. Bruhn et al. 172 

2009; 2014b) provides high analytical sensitivity for determining changes in gas mixing ratios, but may 173 

require appropriate meticulous techniques to control undesired changes in other gas components, e.g. 174 

moisture, CO2 and O3. Alternatively an open flow-through design may be used whereby the enclosure is 175 

continuously purged with ambient- or zero-air (e.g. Vigano et al. 2008). Meanwhile, deployment of 176 

enclosures is associated with multiple challenges that may affect the experimental conditions in 177 

uncontrolled and undesired directions, leading to experimental flaws and artefacts. 178 

Environmental controls of temperature, humidity and air composition are crucial for work with biological 179 

materials in enclosures and to reveal important abiotic controllers for the investigated processes. 180 

Complications by uncontrolled changes in the environment may further be augmented by the fact that 181 



relatively long enclosure times are needed in order to uncover low reaction constants. It is beyond the 182 

scope of this article to provide a detailed protocol of principles and methodologies for the use of sealed 183 

enclosures to study gas exchange from surfaces. Instead, the reader is referred to literature providing 184 

detailed descriptions on flux-chamber design and applications (e.g. de Klein and Harvey, 2015; Altimir et al. 185 

2002; Skiba et al. 1992).  In appendix A, we expand methods & techniques with respect to temperature, 186 

chamber material, surface reactions and reactive species, analysis of gas mixing ratios and light sources. 187 

 188 

4 Mechanisms, sources and emissions 189 

Sunlight can induce trace gas emission from plants by several mechanisms from different precursors. Here 190 

we focus on direct effects of UV radiation on trace gas emission from terrestrial plant surfaces as these are 191 

largely ignored in global budgets. Indirect effects of UV on trace gas emission and other physiological 192 

functions are reviewed elsewhere (Caldwell et al. 1995, 1999; Björn et al. 1996; Rozema et al. 1997; Bruhn 193 

et al. 2012).  194 

 195 

4.1 UV-Radiation penetration through the canopy 196 

 197 

Leaves throughout a canopy are affected not only by the PAR and IR-spectrum of solar radiation but also by 198 

UV radiation. Leaves do not transmit UV radiation but reflect some (up to ca. 6%) UV radiation (Grant 199 

1997), and the high energy light still penetrates the canopy. Canopy structure, leaf area index (LAI), the 200 

extent of direct and diffuse radiation all influence UV penetration through the canopy (Brown et al. 1994; 201 

Shulski et al. 2004) and leaves. The penetration by UV-B varies less than that of PAR with leaf inclination 202 

due to the higher diffuse component of UV light than PAR (Caldwell 1981; Deckmyn et al 2001). For 203 

example, canopy UV-B transmittance (τ) may vary with LAI between τ = exp (-1.01 LAI) and τ = exp (-204 

0.17(LAI-1)) depending on species and degree of clear sky (Shulski et al. 2004). 205 

 206 

4.2 UV-Radiation penetration through the leaf 207 

 208 

UV-B absorption of adaxial leaf cuticles caused by pigments (chromophores, e.g. flavonoids and other 209 

phenolic compounds covalently bound to cutin) ranges from very high in some species with <3% 210 

transmittance to >64% transmittance in other species (Bauer et al. 1998). The highest absorption is typically 211 

in evergreen species (Baur et al. 1998). Some evergreen species also contain fluorophores in the cuticular 212 

wax, which may convert solar UV irradiation into blue light that can be harnessed for photosynthesis. 213 



However, the epicuticular wax per se (fatty acyl chains) can also absorb significant amounts of UV-B and 214 

thus protect against UV-B (Long et al. 2003). Further, trichome layers also protect against UV-B 215 

(Karabourniotis & Bornman 1999). UV-A radiation penetrates deeper into the mesophyll than UV-B in all 216 

examined species (Liakoura et al. 2003). Whereas pigment changes in leaves during seasonal changes result 217 

in varying degrees of reflectance and transmittance of PAR and IR, there appear to be no seasonal changes 218 

in degrees of reflectance and transmittance in the UV region (Yoshimura et al. 2010), despite strong 219 

seasonal fluctuations in the leaf concentration of UV-absorbing compounds (Liakoura et al. 2001). 220 

 221 

4.3 UV-Photochemistry mechanism in and on plant surfaces 222 

 223 

Photochemical reactions are typically complex. UV radiation can excite various molecules and this may 224 

result in a change in molecular orbital occupancy, an increase in energy, and changes in local bonding and 225 

charge distribution. Upon return to a lower energy state of the molecules, the released energy or the 226 

energy transfer to a neighbouring molecule triggers reactions almost instantaneously. The radiation energy 227 

is inversely proportional to the wavelength. Thus, UV-B radiation causes the cleavage of more chemical 228 

bonds than does for instance UV-A and PAR. Following this, a multitude of radical reactions may take place 229 

and thus greatly increase the quantum yield.  230 

From the lab there is plenty of evidence that artificial UV radiation induces an almost instantaneous, i.e. 231 

photochemically induced, trace gas emission from plants or plant components, such as carbon-based 232 

molecules including CH4 (McLeod et al. 2008; Keppler et al. 2008; Vigano et al. 2008, 2009; Bruhn et al. 233 

2009, 2014; Messenger et al. 2009; Fraser et al. 2015), CO (Tarr et al. 1995; Schade et al. 1999; Brandt et al. 234 

2009; Derendorp et al. 2011a; Bruhn et al. 2013), CO2 (McLeod et al. 2008), and hydrocarbons (McLeod et 235 

al. 2008; Derendorp et al. 2011b; Fraser et al. 2015) and nitrogen-based molecules including N2O (Bruhn et 236 

al. 2014b) and NOx/NOy (Hari et al. 2003; Raivonen et al. 2006, 2009). Conversely, from the field distinct 237 

evidence that natural UV radiation induces an almost instantaneous, i.e. photochemically induced, trace 238 

gas emission from plants is far less common, but is documented for CO (Bruhn et al. 2013), N2O (Bruhn et 239 

al. 2014b) and NOx/NOy (Hari et al. 2003; Raivonen et al. 2006, 2009).  With respect to CH4 and isoprene, 240 

however, there are only indirect indications that natural UV radiation induces an almost instantaneous 241 

emission (Keppler et al. 2006; Tiiva et al. 2007).  242 

 243 

4.3.1 Action spectra 244 

Additional evidence pointing towards direct UV-induced trace gas emission from plants or plant 245 

components being an abiotic rather than a biotic process is that in most cases the higher energy UV-B 246 



results in higher emission rates than does UV-A at a given irradiance intensity. This is observed in the lab for 247 

plant emission of CH4 (McLeod et al. 2008; Bruhn et al. 2009), CO (Tarr et al. 1995; Schade et al. 1999; 248 

Bruhn et al. 2013) and N2O (Bruhn et al. 2014b). Only McLeod et al. (2008) have conducted a detailed 249 

analysis of the action spectrum of direct UV-induced trace gas emission, finding the CH4 efflux rate from 250 

citrus pectin-impregnated glass fibre sheets to scale linearly with an idealized spectral UV weighting 251 

function. The function weighted CH4 efflux is an order of magnitude lower for each 80 nm increase in 252 

wavelength. This spectral weighting function differs from other processes where metabolic activity 253 

intrinsically is involved, such as the erythema function (see further discussion in McLeod et al. 2008).  254 

 255 

 256 

  257 

Figure 4.1. Relative effect of UV-B to UV-A on trace gas emission from different plant components 258 

and surfaces. The relative effect of UV-B to UV-A is here defined as emission rate in response to UV-B 259 

(312nm) relative to that in response to UV-A (375nm) when adjusted according to irradiance intensity. CH4: 260 

Pectin, dry (McLeod et al. 2008), Pectin, aq. sol. (Bruhn et al. 2009), Brassica oleracea leaves, Brassica 261 

napus leaves, Triticum leaves, Triticum ears, and citrus lemon fruit peal (Rolsted MMM, Bruhn D, Mikkelsen 262 

TN, Ambus P unpublished); N2O: Bruhn et al. (2014b); CO: Bruhn et al. (2013). (+) designates that natural 263 

surface wax is present, (-) designates that natural surface wax is either removed mechanically or not present 264 

at all (in the case of Triticum spikes). Green = CH4 from pectin, Dark blue = CH4 from leaf with nat. wax. Light 265 

blue = CH4 from leaf without nat. wax, Red = N2O, Orange=CO.  266 

 267 



The crude indication of an action spectrum of CH4 emission from pectin in aqueous solution (Fig 4.1) 268 

resembles the detailed action spectrum of citrus pectin-impregnated glass fibre sheets (Fig 4.1). 269 

Importantly, though, the crude indication of action spectra of trace gas emission appear to be highly 270 

dependent on the precursor as well as the condition of that precursor (Fig 4.1). For example leaves of two 271 

Brassica species appear to emit relatively far more CH4 in response to UV-B than to UV-A, as would be 272 

expected from the results of a single component such as pectin. Furthermore, in the case of the leaves of 273 

the two Brassica species, it appears that the removal of leaf surface wax results in a relatively higher effect 274 

of UV-B to that of UV-A in terms of CH4 emission. This may reflect a combination of UV-A radiation 275 

penetrating deeper into the mesophyll than UV-B in all examined species (Liakoura et al. 2003) when the 276 

wax is intact. However this depends on species (Baur et al. 1998) and perhaps several plant components 277 

(incl. surface wax per se) are potential precursors to UV induced trace gas emission (Table 4.1). 278 

 279 

4.3.2 UV-response functions 280 

UV induced trace gas emission is commonly reported to exhibit a near linear response function from both 281 

intact organs/tissues as well as from single plant components (McLeod et al. 2008; Bruhn et al. 2009, 2013, 282 

2014a; Derendorp et al. 2011). This, together with the fact that direct UV induced trace gas emission often 283 

occurs at constant rates over long periods (Bruhn et al. 2009), strongly indicates photochemical reactions 284 

from plentiful precursors.  285 

 286 

Fig. 4.2. Pectin CH4 production (ng g-1 h-1) as a function of spectrally weighted UV-intensity (W m-2). The CH4 287 

production decays one decade when the spectrum increases 80 nm, e.g. the CH4 emission is 1 at 300 nm 288 



and 0.1 at 380 nm: spectral weighting function from Fig. 1a and data from Table 1 in McLeod et al. (2008). 289 

Data is from the UV313 lamp filtered with 125-μm cellulose diacetate which filters UV wavelengths < 290 290 

nm. ER = Emission Rate. Linear regressions functions shown in box. Values are means of three replicates 291 

and standard errors are less than symbol size except where visible.  292 

 293 

However, further examination (Fig. 4.2) of the only published dataset on UV-induced pectin-based CH4 294 

productions at very low UV intensities indicates release to be more responsive (by a factor of two) than 295 

under higher intensities. The role of self‐shading in this context remains to be fully investigated. Thus, even 296 

for simple linear responses in UV-induced trace gas emission, there is reason to believe that the underlying 297 

photochemical mechanisms are complex. Only Raivonen et al. (2009) have reported on an analysis of the 298 

potential linearity of the direct response function of any trace gas (NOx) emission to natural temporal 299 

variation in UV intensity (UV-A). 300 

 301 

4.3.3 Temperature interactions 302 

In most cases trace gas emission from plant material is also observed in darkness (PAR and UV absent) and 303 

with a positive response to temperature increases, although with sensitives too low to infer underlying 304 

abiotic processes (Derendorp et al. 2011a). However, reliable indications are lacking of interactions 305 

between the photochemical reactions and temperature with respect to trace gas emission from plant 306 

material. 307 

 308 

4.3.4 [O2] or O-radicals dependency 309 

It caused quite a surprise (Kirschbaum et al. 2006, 2007) when Keppler et al. (2006) first reported an 310 

aerobic plant CH4 emission in response to solar radiation. In all examined cases of UV induced trace gas 311 

emission from plant materials, there is a positive dependency on [O2] or O-radicals (Table 4.1). Further, this 312 

confirms a combination of instantaneous photochemical reactions and subsequent radical reactions in 313 

most cases. UV radiation can therefore in theory act as a stimulus via an increased reactive oxygen species 314 

(ROS) reaction, and consequently the actual precursor of the emitted gas does not itself need to be a good 315 

absorber of UV radiation for the process to occur. However, Lee et al. (2012) provide evidence that photo-316 

oxidation may only be one of several photo degradation processes, as they observed the process occurring 317 

in the absence of O2. They speculated that the direct breakdown of chemical groups such as carboxyl, 318 

carbonyl, and methoxyl groups may result in CO2, CO, and CH4 release. 319 

 320 

4.4 Precursors 321 



 322 

In Table 4.1 we have compiled current knowledge on the potential precursors for trace gas formation in 323 

direct response to UV radiation examined and/or suggested in the literature. For the C-based trace gases 324 

there are many structural components, which may act as precursors. In contrast, for the N-based trace 325 

gases the potential precursors appear to be more dependent on surface deposited molecules (Table 4.1).  326 

 327 

Table 4.1 Potential precursors for trace gas formation in direct response to UV radiation examined 328 

and/or suggested in the literature. 329 

Gas Suggested source (plant or 

surface deposit) 

Ref Positive [O2] or O-

radicals-dependence 

Ref 

CH4 Pectin (methyl groups) 1, 2, 3, 4, 5, 6, 7 Yes 2, 7 

 Wax 

(15-nonacosanone & 2-

hexadecanone) 

8 

 

Yes 8 

 Cellulose 3, 4 ??  

 Lignin 3, 4 ??  

 Methionine 9 ??  

 Ascorbic acid 10 Yes 10 

CO Cellulose 11 Yes 12, 13, 14 

CO2 Lignin 15, 16   

C2–C5 

hydrocarbons 

?? 11, 17 Yes 11 

N2O Wax,  

Mesophyll 

Surface bound N2O  

NO3
-
 

NH4NO3 

18 

18 

19 

20 

18, 21 

 

 

 

 

Yes 

 

 

 

 

20, 22, 23 

NOx,y needle surfaces, 

HNO3 or NO3
-
 

24, 25, 26   

 330 
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Prasad, 2002; 23) Prasad and Zipf, 2008; 24) Hari et al. 2003; 25) Raivonen et al. 2006; 26) Raivonen et al. 336 

2009. ?? equals unknown. 337 



 338 

It seems to be the consensus that the polysaccharide pectin is the most important precursor for UV induced 339 

plant CH4 emission due to its content of methyl groups (Keppler et al. 2006, Keppler et al. 2008; Vigano et 340 

al. 2008, 2009; McLeod et al. 2008; Bruhn et al. 2009; Messenger et al. 2009; Bloom et al. 2010; Fraser et al. 341 

2015). Whereas we agree that pectin is one of the potential precursors, we are currently not convinced that 342 

it necessarily is the most important one. Pectin is laid down in primary plant cell walls. For pectin to be 343 

reached by UV irradiation in nature, UV irradiation has to first penetrate the outer surface wax layer 344 

naturally occurring on plant organs. In Figure 4.3 we show different pairs of plant organs with natural 345 

surface wax or without surface wax, respectively.  346 

 347 

 348 

Figure 4.3. Different pairs of plant material with different amounts of surface wax. A+B) Organically 349 

grown Citrus limon fruit with natural surface wax (A) or with wax mechanically removed (B) by gentle 350 

scrubbing with a kitchen sponge. C+D) Brassica oleracea capitata f. alba leaf with surface wax removed (C) 351 

or intact (D). E+F) Triticum aestivum ”Tähti” (E, with almost no surface wax) and Triticum aestivum ”Vinjett” 352 



(F, with normal surface wax) ears. G+H) Detailed parts of Triticum aestivum ”Tähti” (G) and Triticum 353 

aestivum ”Vinjett” (H) ears. Rolsted MMM, Bruhn D, Mikkelsen TN, Ambus P unpublished. Photos: Rolsted 354 

MMM. 355 

 356 

As described in Section 4.2, UV irradiation is to some degree screened at the surface of plant tissues and 357 

organs. Thus, an approach to illustrate whether pectin is the most important precursor for CH4 formation is 358 

to measure and compare the UV induced CH4 production from material of pairs of plant organs with more 359 

or less natural UV-screening surface wax (Figure 4.3) as well as in samples of plant leaves with or without 360 

the natural wax removed. We did this and found that UV-B induced CH4 formation in both citrus limon 361 

peels and Cydonia oblonga peels as well as in Brassica oleracea capitata f. alba leaves was halved upon 362 

removal of the surface wax. This evidently contradicts the notion that in nature pectin is the most 363 

important precursor for UV induced CH4 formation, especially because both citrus limon peels and Cydonia 364 

oblonga peels are chosen for industrial pectin extraction due to the high pectin content. Conversely, there 365 

was no difference in UV-B induced CH4 formation between Triticum aestivum ”Tähti” (with almost no 366 

surface wax) ears and Triticum aestivum ”Vinjett” (with normal surface wax) ears, or between leaves of 367 

Triticum aestivum when irradiated from either adaxial side (with almost no wax) or from the abaxial side 368 

(with much natural surface wax). Removal of surface wax should, in theory, increase UV exposure of the 369 

pectin, but in no case did wax removal result in a higher rate of CH4 formation. Furthermore, we recently 370 

demonstrated that the surface wax per se is resulting in CH4 formation upon UV irradiation (Bruhn et al. 371 

2014a). In conclusion, we are still far from having a clear understanding of the relative contribution of 372 

different precursors in any UV induced trace gas formation and emission. Additionally, given that UV 373 

radiation of different wave-lengths reaches different depths in the plant tissue (Liakoura et al. 2003) in a 374 

species- dependent manner (Bauer et al. 1998), it seems most likely that each of the different precursors 375 

(Table 4.1) are affected differently with respect to wave-lengths of UV irradiation.  Consequently, we 376 

cannot with any certainty extrapolate an action spectrum for one precursor to that of an entire tissue or 377 

organ (Fig. 4.1). 378 

 379 

  380 

 381 

5 Upscaling  382 

When an unaccounted natural source is discovered there is an urgent demand for extrapolating observed 383 

rates to a global scale, so the magnitude of the new source can be put into perspective. However, if 384 



mechanisms are unknown, there is a high risk in an upscaling exercise, because driving forces and 385 

controlling factors unintentionally might be ignored, leading to the wrong outcome. On the other hand, if 386 

some factors are known, response curves can be constructed and upscaling can be conducted under 387 

defined premises, even though there are still unknown factors. Results can then be treated as a platform 388 

for understanding and as a contribution to an ongoing knowledge improvement process. Based on current 389 

knowledge, we suggest a simple global upscaling and source strength for sunlight-induced emission of the 390 

gases CH4, CO, and N2O at the plant surface. 391 

 392 

5.1 Upscaling of methane, CH4 393 

The discovery of aerobic CH4 emissions from plants became breaking news in 2006 (Kepler et al. 2006), 394 

mainly because their global upscaling suggested a source strength of 62-236 Tg yr-1, which represented 395 

approximately 10–40% of the annual total of methane entering the modern atmosphere, and 396 

approximately 30–100% of annual methane entering the preindustrial (0 to 1700 AD) atmosphere (Ferretti 397 

et al. 2007). Four independent research groups subsequently revised the global magnitude of this potential 398 

CH4 source by different approaches, and jointly suggested emissions in the lower end compared to the 399 

pioneering study by Kepler et al. (2006). Based on carbon stable isotope analysis (Ferretti et al. 2007), 400 

standing leaf biomass (Parsons et al. 2006), leaf-mass-based estimation and photosynthesis-based 401 

estimation (Kirschbaum et al. 2006), and extrapolation from initially reported chamber measurements 402 

(Butenhoff and Khalil 2007), aerobic CH4 emissions from vegetation were respectively estimated at 0 – 176 403 

Tg yr-1, 42 Tg yr-1, 10 – 60 Tg yr-1 and 20 - 69 Tg yr-1. None of the studies revealed underlying mechanisms 404 

for aerobic CH4 emission. 405 

At the American Geophysical Union (AGU) fall meeting in 2007, three groups presented a major driving 406 

factor, UV-radiation, for the aerobic CH4 emission (Bruhn et al. 2007; Röckmann et al. 2007; Vigano et al. 407 

2007), and in the following years UV generated CH4 emission was confirmed in several publications (Vigano 408 

et al. (2008, 2009); McLeod et al. 2008; Keppler et al. 2008; Bruhn et al 2009; Messenger et al. 2009). 409 

McLeod and Keppler (2010) concluded in a review that the proposed formation of CH4 under aerobic 410 

conditions in plants is robust, but the magnitude and significance for the global CH4 budget remained 411 

unresolved.  412 

After the discovery of UV as a driving factor, only one group has tried to upscale aerobic plant generated 413 

CH4; Bloom et al. (2010) provided a putatively low global estimate of 0.2–1.0 Tg y−1 plant-produced CH4. The 414 

upscaling was only based on UV-induced CH4 emission measured from purified pectin. Bloom et al. (2010) 415 



assumed that UV-induced CH4 emission measured in purified pectin is representative of UV-induced leaf 416 

CH4 emission when taking leaf pectin content into account. However, we believe that there is good 417 

evidence in the literature to indicate that this is not the case, since Vigano et al. (2008) for example showed 418 

that, at a certain UV irradiation, the CH4 emission by commercially purified pectin was ca. 80 ng CH4 g−1 DW 419 

h−1, whereas that of dried perennial ryegrass leaf was almost three-fold higher at ca. 200 ng CH4 g
−1 DW h−1 420 

– see Bruhn et al (2012) for further discussions. Therefore, the current upscaling by Bloom et al. (2010) 421 

must be seen as a preliminary attempt to evaluate global significance from the basis of limited information, 422 

and it is important to gain more knowledge for modelling of the UV driven CH4 from plants at a global level. 423 

We suggest that future modelling of the UV driven CH4 from plants must include data obtained under field 424 

conditions with respect to plant growth and development, and exposure to natural sunlight. Such data are 425 

currently not available, and therefore methane upscaling is not included in this review.   426 

 427 

5.2. Upscaling of carbon monoxide, CO 428 

All natural terrestrial direct CO emissions, in the range of 50–200 Tg CO yr−1, have hitherto been ascribed by 429 

the IPCC (1995, 2001) to photo-induced CO emission by living plants (cf. Tarr et al. 1995). However, in 430 

studies on underlying photo-induced CO emission by living plants (Seiler and Giehl 1977; Seiler et al. 1978), 431 

which were incorporated into global CO budgets in the early IPCC assessment reports (IPCC 1995, 2001), 432 

the UV component of (sun)light was not considered (Bruhn et al. 2013). Therefore, we still await a proper 433 

global estimate of UV radiance induced CO emission by living vegetation. Bruhn et al. (2013) provides the 434 

first in situ measurements of ecosystem CO emission by living plants in response to natural solar UV 435 

irradiation. Importantly, Bruhn et al. (2013) find that in the studied natural grass field the photo-induced 436 

CO emission due to natural solar UV radiation is more than half of the value of that due to total solar 437 

spectrum at the Earth’s surface. This may imply that the previous global estimate of photo-induced CO 438 

emission from living plants of 50–200 Tg CO yr−1 (cf. Tarr et al. 1995) should perhaps be doubled. Thus, 439 

future global budgets need to include CO emission caused by natural UV irradiance. 440 

Here, we use the results from Bruhn et al. (2013), and estimate the global UV driven CO emissions. The 441 

upscaling is based on in situ ecosystem-atmosphere CO exchange measurements from natural vegetation 442 

and under ambient UV-B conditions in September and October of 2011 at DTU Risø campus (5541’12”N, 443 

1205’52”E) in combination with laboratory experiments with artificial UV (Figure 5.1.). For materials and 444 

methods see Bruhn et al. (2013), and for the upscaling procedure, see appendices B and C. There is 445 

substantial geographical variation in source strength (Fig. 5.1), which is mostly caused by the geographical 446 



variation in surface UV radiation intensity, similar to the responsiveness of N2O (Fig. 5.2). The emission of 447 

CO in response to the UV-component of natural solar radiation was also evident at the ecosystem scale. 448 

When scaled to the global level, the UV-induced emission of CO by vegetation surfaces amounts up to 22 Tg 449 

yr−1, which equals 11-44% of all the natural terrestrial living plant sources hitherto accounted for, which 450 

range between 50 and 200 Tg CO yr-1 (IPCC, 1995, 2001; Tarr et al. 1995). 451 

 452 

Figure. 5.1 Estimated annual global CO emissions (mg CO m−2) from terrestrial vegetation surfaces induced 453 

by temperature and natural UV-radiation.  454 

 455 

5.3 Upscaling of Nitrous oxide, N2O 456 

In order to evaluate the global significance of our new discovery of a terrestrial UV-driven N2O source, we 457 

attempted to scale the processes of temperature- and UV-induced N2O emission rates by vegetation to the 458 

global level (Fig. 5.2) - for materials and methods see Bruhn et al (2014) and upscaling procedure see 459 

appendices B and C. The upscaling was feasible because the magnitude of measured N2O emission rates in 460 

response to natural sunlight, including low intensities of UV-radiation ranging from 280-400 nm, was similar 461 

to the magnitude of measured N2O emission rates in response to high intensities of artificial UV-radiation 462 

within the 309-314 nm narrow range (Bruhn et al. 2014b). The total of these radiation-driven N2O sources 463 

amounts to 0.65-0.78 Tg yr-1, which equals 7-24% of all the natural terrestrial N2O sources hitherto 464 

accounted for, which range between 3.3 and 9 Tg N yr-1 (Solomon et al. 2007). There is substantial 465 

geographical variation in the source strength (Fig. 5.2), which is mostly caused by the geographical variation 466 

in surface UV radiation intensity – similar to the responsiveness of CO (Fig. 5.1). Importantly, the irradiance 467 

responses of N2O emissions across all examined wave length ranges (UV-B, UV-A, PAR) is steepest at low 468 

irradiance intensities (Bruhn et al. 2014b). This intensity-dependent sensitivity is not taken into account in 469 



our linear scaling of the UV-induced N2O emission rates to the global level, and it is therefore likely that we 470 

underestimate the N2O source strength. 471 

 472 

 473 

 474 

Figure 5.2. Estimated annual global N2O emissions (mg N2O m-2) from terrestrial vegetation surfaces, 475 

induced by temperature and natural UV-radiation.  476 

6 Perspectives and Conclusions 477 

6.1 Realistic emission rates 478 

Despite the many reports on directly UV induced trace gas emission (CH4, CO, CO2, C2-C5 479 

hydrocarbons/NMVOC, N2O and NOx) from plant materials, there are very few studies with replicated 480 

measurements of plant trace gas emission in response to natural solar radiation including UV (NOy, 481 

Raivonen et al. 2009; CO, Bruhn et al. 2013; N2O, Bruhn et al. 2014b). In all three examples there were 482 

indications that measured realistic emission rates were substantial compared to those of other 483 

emission/uptake processes at the ecosystem level.  At this stage it is unfortunately not possible to say 484 

anything in general about realistic emission rates from a wider perspective.  485 

 486 

6.2 Future studies 487 

From the evidence listed above it becomes apparent that much research is necessary for a more 488 

comprehensive understanding of mechanism, precursors and indeed in situ emission rates. Therefore we 489 

suggest that future experiments include tests of: 490 



 Action spectra and linearity in response function at low UV levels at intact tissues in many more 491 

species 492 

 Responses to natural variation in UV intensities in the field 493 

 Effect of deposition of especially N-precursors 494 

 Direct responses to UV after the plants previously have been exposed to variable UV exposures 495 

during growth   496 

 Investigation if stomatal conductance has any effects on the UV induced gas emission 497 

 498 

6.3 Known gas emission stimulated by UV  499 

It is well established that sunlight and UV in particular stimulate the production of several gases at the 500 

surface or near the surface of living plants. Currently there is documented evidence for production of the 501 

following gas species: CH4, CO, CO2, NMVOCs, NOx and N2O. The number of gases produced by UV 502 

stimulation is probably greater, but further gas screening studies are needed to assess this. Independent of 503 

gas species, the UV-induced gas emission rates documented until now are very low, and as a consequence 504 

it is very challenging with respect to equipment and experimental setup to investigate these processes. 505 

Most records concern CH4 production, but there are still many unanswered questions for this gas with 506 

regards to dose responses and production under natural conditions. For the other mentioned gases there 507 

are even more unanswered questions, nevertheless we have enough information to provide the first 508 

attempt at a global budget of UV-induced CO and N2O emissions based on measurements from natural 509 

vegetation under field conditions. The result indicates that UV driven CO production may contribute as 510 

much as 11-44% of all the natural terrestrial plant sources. The UV-induced N2O source equals 7-24% of the 511 

natural terrestrial source strength. These global estimates should be regarded as a contribution to an 512 

ongoing quantification process, but this high global share emphasizes the urgent need for more work. In 513 

order to establish reliable global estimates and enable future predictions, it is apparent that much research 514 

is necessary to elucidate mechanisms, precursors, environmental relationships and establishment of 515 

relevant and realistic emission rates. 516 

 517 

6.4. Perspectives 518 

 This newly discovered light-associated aspect of trace gas emission from living vegetation may have 519 

significant consequences for our understanding of exchange processes between the global biosphere and 520 

atmosphere. It is very likely a global phenomenon occurring on all leaf surfaces exposed to sunlight in both 521 



managed and natural ecosystems.  Our global estimates for CO and N2O under the current environmental 522 

conditions evidently show that radiation‐driven processes are significant natural sources, and this could 523 

also be true for the other gases. An important feature is that the gas production is occurring at or just 524 

under the leaf surface, resulting in periodic high gas concentration within the boundary layer surrounding 525 

the leaves. This could for instance reduce the gas uptake of ozone in leaves since CO accelerates the 526 

reaction of O3 with ethylene (Horie and Moortgat, 1998), a process that has so far not been considered in 527 

ozone effect research.  Through geological eras, the radiation-driven greenhouse gas (direct: CO2, CH4, N2O 528 

and indirect: CO) impact must have fluctuated with UV radiation and other processes producing or 529 

consuming greenhouse gases (e.g. soil respiration, denitrification and methanogens is in wetlands, and 530 

methane oxidation in upland soils), and therefore the development of climate on Earth. 531 
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Appendix A  774 

Methods & techniques 775 

This appendix expands 3 methods & techniques in the text with respect to environmental factors and other 776 

important issues related to measurements of UV induced gases.  777 

 778 

Temperature 779 

Particularly challenging is temperature control inside confinements made of transparent materials and at 780 

the same time exposed to intense irradiation by lamps or natural sunlight that may lead to severe scorching 781 

of plants. Under laboratory conditions, experiments may be run in well vented and temperature controlled 782 

growth cabinets (Bruhn et al. 2009) or enclosures equipped with heating tape (Vigano et al. 2008) to 783 

maintain stable temperature conditions. Direct temperature control of enclosures may include simple and 784 

inexpensive means such as ice blocks (M. Drösler, pers. comm.) or more advanced applications in the form 785 

of Peltier cooling technology (Mikkelsen and Ro-Poulsen, 2002; Bruhn et al. 2014; Sundqvist et al. 2012). 786 

Temperature can be determined directly at the leaf surface with a micro-thermocouple attached to the 787 

material (Keppler et al. 2006) or air temperature detected by thermocouples or conventional 788 

thermometers situated in the enclosure. Exterior surface temperature of enclosures can be measured by 789 

using a heat conducting steel probe connected to a high precision temperature meter (Bruhn et al. 2014). 790 

 791 

Chamber material 792 

Chambers should be made of materials that allow transmittance of UV-radiation without filtering. 793 

Commonly used materials in transparent chamber or plant cuvettes include UV-transparent synthetic 794 

quartz-glass, tradename Suprasil®, that offers optimal UV-transmissions (Vigano et al. 2008; Rosenqvist et 795 

al. 2012; Bruhn et al. 2014), alternatively UV-transparent acrylic materials (Rosenqvist et al. 2012; Bruhn et 796 

al. 2014) can be used. Controlled transmittance of UV in experimental setups can be achieved by the 797 

application of filters to reduce or filter out specific UV-wavelengths reaching surfaces being investigated. 798 

Many commercial acrylic materials, with trade names such as e.g. Plexiglas or Perspex, will attenuate UV 799 

penetration and can be deployed to manipulate UV intensity (Bruhn et al. 2014). For specific and controlled 800 

filtering of UV radiation, various filters can be applied either at the light source or covering the enclosure 801 

windows; a comprehensive review of UV manipulation is given by Aphalo et al. (2012). 802 



Figure A1. Plant leaves inserted in UV-B transparent vials. Note vials without leaves are used as blank 803 

controls. 804 

Surface reactions and reactive species 805 

Synthetic soft plastic and rubber materials used in growth cabinets such as hoses, tubes, pots, sealants and 806 

wire insulators, provide potential complications if exposed in experimental setups to study UV-induced gas 807 

emissions. Firstly, these materials may release phytotoxic compounds, leading to plant growth problems or 808 

plant death; for a review see Rosenqvist et al. (2012). Secondly, photochemical reactions on the surface of 809 

synthetic materials when exposed to UV-radiation can produce gases like methane (D. Bruhn, unpublished) 810 

or N2O (Bruhn et al. 2014) that may confound experimental results. For this reason, it is strongly 811 

recommended to include empty/blank controls in the experimental protocol (Bruhn et al. 2014; Sundqvist 812 

et al. 2012; Figure A1). Presence of synthetic materials in the experimental units should be minimized, and 813 

materials shielded with (e.g.) PFTE replaced with inert materials (glass, metal) where appropriate or pre-814 

conditioned by heating (Sundqvist et al. 2012). 815 

 816 

Analysis of gas mixing ratios 817 

Analysis of mixing ratios of target gases in the enclosures can be achieved principally by two different 818 

approaches. These are i) manual grab sampling by syringe where a subsample of enclosure headspace is 819 

transferred to the analyzer or a storage vial for subsequent analysis; incubation may also take place in vials 820 

that can be mounted directly in the analytical unit such as a GC-autosampler, avoiding the need for manual 821 

sample transfer (Bruhn et al, 2014). Alternatively, ii) the headspace gas concentrations can be observed in 822 



real-time where the test unit is connected to an appropriate gas analyzer in a sealed gas loop for 823 

continuous or cyclic analysis (Sundqvist et al. 2012).  824 

 825 

Gas-chromatography: Conventional GC-instrumentation equipped with Flame-Ionization-Detection [FID] for 826 

CH4 (e.g. Vigano et al. 2008), methanizer-FID for CO and CO2 (Ueta et al. 2013) and Electron-Capture-827 

Detection [ECD] for N2O (e.g. Bruhn et al. 2014) are applicable for grab sample analysis in order to cross-828 

check the optical techniques, and where experiments with small vials prevent measurements with optical 829 

systems that require additional sample volume. The reproducibility with GC-analysis is typically ±10 ppb 830 

although the micro-GC system tested by Ueta et al. (2013) for combined CO and CO2 analysis exhibited 831 

detection limits of 3 to 5 ppm. Trace-gas GC analysis at ambient concentrations require sample volumes of 832 

typically 0.5-1 ml. 833 

 834 

Laser spectroscopy: During the last couple of decades laser spectrometers for sensitive, accurate and fast 835 

analysis of air trace gas constituents have become available at affordable pricing. In their work with UV-836 

induced CH4 dynamics, Vigano et al. (2008) and Sundqvist et al. (2102) used an off-axis integrated cavity 837 

output spectrometer (Los Gatos Inc.) for real-time monitoring of CH4 mixing ratios. With use of laser 838 

spectroscopy, it is necessary to pay attention to cross-interference from other gas species; Vigano et al. 839 

(2008) verified this for plant emission of abundant methanol (CH3OH). For studies on UV-induced emissions 840 

of carbon monoxide (Bruhn et al. 2013) and nitrous oxide (Bruhn et al. 2014), a Los Gatos laser N2O/CO 841 

spectrometer was applied following proper correction for cross-sensitivity with water and direct cross-842 

interference between CO and N2O. The sensitivity of laser spectrometers is several fold higher compared 843 

with GC analysis, and allows reproducibility in the range of ±1 ppb. 844 

Stable isotope analysis: GC combined with stable isotope (SI) analysis provides a powerful tool to study 845 

source partitioning and reaction pathways of trace gases emitted from surfaces. Isotope-ratio-mass-846 

spectrometry (IRMS) in combination with proper pre-concentration (e.g. cryo-trapping) and 847 

chromatographic separation of analytical compounds has been used for studying carbon (13C), hydrogen 848 

(deuterium; D) in CH4 (Keppler et al. 2006; 2008) and nitrogen (15N) in N2O (Bruhn et al. 2014). The 849 

reproducibility of gas mixing ratios by GC-IRMS is diminished (±20-30 ppb at ambient concentrations) 850 

compared with conventional GC analysis and the sample amount required for proper analysis is in the 851 

range of tens of milliliters. Dueck et al. (2007) analyzed the concentration of 13C-methane in CH4 emitted 852 

from fully 13C-labeled plant material using photo-acoustic spectroscopy in combination with a continuous-853 



wave, optical parametric oscillator (OPO) and reported a detection limit of 3 ppb. Whereas the work by 854 

Dueck et al. (2007) demonstrated only negligible emissions of CH4 based on the spectrometric method, 855 

later work by Vigano et al. (2008) with the same plant material showed a contrasting result with significant 856 

emissions of 13C-CH4, supposedly due to different analytical sensitivities (Vigano et al. 2008). 857 

SI analysis encompasses recognition of the isotopic composition in gases emitted from materials with 858 

isotopic abundances at natural levels (e.g. Keppler et al. 2006) as well as from isotopically enriched 859 

materials (e.g. Bruhn et al. 2014). Isotopic variations arise from mass-dependent isotope fractionation in 860 

biological and chemical processes, and natural abundance analysis of the trace gases, may add information 861 

about the nature and origin of precursors. Application of the rare (heavy) isotope is valuable not only for 862 

revealing information on specific precursor substances but also for providing a tool to study consumption 863 

processes. 864 

The recent development of isotopic laser spectrometers (e.g. instruments offered by Picarro, Aerodyne, Los 865 

Gatos) provides new opportunities to investigate mechanisms and processes in UV-induced trace gas 866 

emissions. However, so far no work taking advantage of these instruments has been reported in literature. 867 

Light sources 868 

Work on UV-induced trace gas emissions inevitably requires selection of a proper light source and 869 

establishment of associated irradiation intensities, wavelengths and action spectra. The selection of a light 870 

source is application driven and depends on the requirements imposed by the study. The main 871 

requirements concern the intensity and spectral distribution of radiant output of the lamp. The geometry 872 

of the setup, including the source-target-distance and area of exposure, sets certain limits not only on the 873 

light source but also on characteristics of the monochromator if this is applied (Aphalo et al. 2012). 874 

In this context, it is important to stress that the current review addresses works investigating the direct 875 

photolytic effect of UV-light exposure for plant-derived trace gas emissions. In this sense, translocation 876 

studies where plants are grown under natural or controlled conditions with attenuated or enhanced UV-877 

exposure and subsequently examined for historical UV effects are not considered.  878 

It is beyond the limits of this manuscript to present a detailed review and recommendation on selection of 879 

proper light source equipment for UV studies. Instead, the reader is referred to comprehensive reviews on 880 

usage of artificial light sources in UV photobiology given by Aphalo et al. (2012), and UV quantification 881 

reviewed by Björn et al. (2012). A number of potential light sources can be selected for UV work, either as 882 



single light sources, or more often in combination to achieve desired optical conditions. A brief list is shown 883 

below; for a detailed discussion we refer to Aphalo et al. (2012). 884 

Fluorescent lamps and tubes are low pressure mercury vapor lamps that emit radiation at specific spectral 885 

lines, mostly in the UV region of the spectrum 886 

Xenon arc lamps are specialized light sources that produce intense visible and UV radiation. High intensity 887 

water-cooled deuterium lamps (150 W) have a fairly flat radiant intensity curve in the UV-B region that is 888 

appropriate for mechanistic plant UV photobiology studies.  889 

Spectrographs composed of a light source and a monochromator may be used in applications requiring 890 

spectrally-resolved UV radiation exposure of biological specimens. Lasers usually produce very narrow and 891 

intense beams of monochromatic light. For the purpose of UV photobiology, tuneable optical parametric 892 

oscillator (OPO) pump lasers (pump wavelength 355 nm) are especially useful. 893 

Specific experimental setups for studying UV-effects on plant gas emissions are described in detail in 894 

literature cited above, and illustrate the complexity and experimental precautions associated with such 895 

studies. As an example, Vigano et al. (2008) used 6 types of lamps, one PAR lamp, four UV-A and UV-B 896 

lamps, and one UV-C lamp. The UV content (UV-A and UV-B separately) was determined with a Waldmann 897 

UV meter calibrated for each individual UV lamp, except for the UV-C lamp. These authors did not report on 898 

the action spectrum for CH4 release from biomass upon UV irradiation, and the UV strength was reported 899 

as the non-weighted integral over the UV-A range (400–320 nm), UV-B range (320–280 nm) or total UV 900 

range (400–280 nm). By choosing this approach (using unfiltered, non-weighted UV radiation) the authors 901 

neglected a possible wavelength dependence of the biologically effective dose (Vigano et al. 2008). Bruhn 902 

et al. (2009), in addition to PAR lamps, used four different lighting sources to obtain desired UV-B and UV-A 903 

irradiance; the UV sources were placed at varying distances to yield the reported irradiances. The irradiance 904 

spectra of the experimental tubes and the transmission spectra of the glass vials used were further 905 

established in order to reveal wavelength dependent responses in the experiments. 906 

 907 

 908 

Appendix B  909 

Global drivers for CO and N2O contribution 910 



Global CO and N2O up-scaling was based on the parameterized response equations to UV-irradiation and 911 

temperature (see Bruhn et al. 2013, 2014b; Appendix C).  912 

The drivers were driven by geospatial satellite information on UV-B temperature and land surface 913 

classifications derived from normalized difference vegetation index (NDVI) and snow cover (SC). The 914 

UV310nm data was obtained from the Giovanni OMI/Aura Online Visualization and Analysis Daily Level 3 915 

Global Gridded Products (http://giovanni.sci.gsfc.nasa.gov/giovanni/), the temperature data from MODIS 916 

(Moderate Resolution Imaging Spectroradiometer, NASA Earth Observations, http://neo.sci.gsfc.nasa.gov) 917 

and NDVI, LAI, and SC data from NASA Earth Observations (http://neo.sci.gsfc.nasa.gov/) and handled in a 918 

global longitude/latitude grid (250×150). The effect of UV was scaled with the global UV Irradiance at 310 919 

nm at surface level (averaged across the years 2005, 2007, 2009, Local Noon Time). Temperature 920 

dependence was scaled based on daytime land surface temperatures averaged per month (over the ten 921 

years 2001–2010) of available data. The temperature response parameterization did not include 922 

temperatures below 0C, while the CO/N2O emission from grids with a temperature below 0C were set to 923 

zero in the up-scaling. Land surface area was determined from satellite land dataset information and the 924 

area was calculated from longitude/latitude information. Snow cover (SC) was averaged per month (2009) 925 

and we excluded areas covered by snow. The remaining land surface area was classified as being vegetation 926 

covered or vegetation free based on the NDVI. The up-scaling approach was conservative in the way that 927 

the surface area did not include topography. Further, most of the UV-radiation received by leaf surfaces are 928 

indeed screened (absorbed or reflected) by the surface wax (Cen and Bornman, 1993; Liakoura et al. 2003; 929 

Jacobs et al. 2007). Therefore, for the global estimate of the UV-effect on CO/N2O emission by vegetation, 930 

we assumed an effective Leaf Area Index (LAI) of unity. The proportions of vegetation and sand area were 931 

determined by NDVI classification. Response functions for plants were applied to surface covered by 932 

vegetation. The NDVI were averaged per month (2009). Correlations between LAI satellite measurement 933 

and NDVI from 2009 showed that for instance NDVI around 0.3, 0.5, 0.7 and 0.75 reflects vegetation with 934 

0.4, 0.9, 2.0 and 4.0 layers of leaves per ground area (LAI) respectively (data not shown). This information 935 

was used to construct four groups with different distributions among vegetation and vegetation free 936 

surfaces. The groups are: (1) NDVI<0.2, 100% sand; (2) 0.2<NDVI<0.4, 60% sand and 40% vegetation; 3) 937 

0.4<NDVI<0.6, 20% sand and 80% vegetation; and (4) NDVI>0.6, 100% vegetation. These vegetation cover 938 

values are lower than a derivation from the NDVI LAI relationship would indicate, but since vegetation 939 

cover is clustered by nature with LAI values up to over 5, this must result in more vegetation free areas 940 

than an average estimate would produce. For up-scaling, any LAI above 1 would give the same values. This 941 

division into group categories decides the percentage area of vegetation and vegetation-free combination 942 

in each of the 250×150 grid cells. 943 



 944 

Appendix C  945 

Response functions for global CO and N2O contribution 946 

For each of 250×150 grid cells (Appendix B) we estimated the CO or N2O emission rate (ER) on a monthly 947 

basis as  948 

𝐸𝑅 = 𝛼 × 𝑒𝛽𝑇𝑑𝑎𝑦̅̅ ̅̅ ̅̅ ̅
×

𝑈𝑉̅̅ ̅̅

50
 𝑑𝑎𝑦𝑠 × 𝐷𝐿̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  × 𝑎𝑟𝑒𝑎 × (1 −

𝑎𝑟𝑒𝑎𝑆𝐶

𝑎𝑟𝑒𝑎
) × 𝑝𝑟𝑜𝑝𝑐𝑎𝑡 

where α is a base ER of ecosystem CO or N2O emission (nmol m-2 h-1) measured at 21.4 C and 50 mW UV-B 949 

(see Bruhn et al. 2013, 2014b). We assumed a response to temperature, (𝑇) = 𝛼 × 𝑒𝛽𝑇 , as measured at 950 

leaf level (Bruhn et al. 2013, 2014b) when exposed to UV-B. In the up-scaling we substituted T with a mean 951 

daytime temperature for the respective grid cell, 𝑇𝑑𝑎𝑦
̅̅ ̅̅ ̅̅ . As we have demonstrated near-linear relationships 952 

between irradiance of both UV-B and UV-A and CO and N2O emissions, respectively (Bruhn et al. 2013, 953 

2014b), we scaled the base ER of ecosystem CO or N2O emission with the mean UV Irradiance (mW) at 310 954 

nm at surface level for the grid cell. Further, ER for grid cell was adjusted according to the monthly average 955 

day length per month, 𝐷𝐿̅̅̅̅  , number of days per month, area and category of land vegetation.  956 

 957 

 958 


