247 research outputs found
An exact Coulomb cutoff technique for supercell calculations
We present a new reciprocal space analytical method to cutoff the long range
interactions in supercell calculations for systems that are infinite and
periodic in 1 or 2 dimensions, extending previous works for finite systems. The
proposed cutoffs are functions in Fourier space, that are used as a
multiplicative factor to screen the bare Coulomb interaction. The functions are
analytic everywhere but in a sub-domain of the Fourier space that depends on
the periodic dimensionality. We show that the divergences that lead to the
non-analytical behaviour can be exactly cancelled when both the ionic and the
Hartree potential are properly screened. This technique is exact, fast, and
very easy to implement in already existing supercell codes. To illustrate the
performance of the new scheme, we apply it to the case of the Coulomb
interaction in systems with reduced periodicity (as one-dimensional chains and
layers). For those test cases we address the impact of the cutoff in different
relevant quantities for ground and excited state properties, namely: the
convergence of the ground state properties, the static polarisability of the
system, the quasiparticle corrections in the GW scheme and in the binding
energy of the excitonic states in the Bethe-Salpeter equation. The results are
very promising.Comment: Submitted to Physical Review B on Dec 23rd 200
New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy
The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late
Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles
The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere
The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk
Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNγ production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNγ levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligandhigh lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-liganddull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC
Synchrotron X-Ray irradiation of Stardust interstellar candidates: from ''no'' to ''low'' damage effects
Special Issue: 74th Annual Meeting of the Meteoritical Society, August 8-12, 2011, London, U.K.International audienceAlthough synchrotron radiation X-Ray fluorescence (SR-XRF) is among the least destructive analysis methods applied to rare extraterrestrial grains, we have observed radiation damage effects following high flux synchrotron analyses. Track 30 of the IS collector of the Stardust mission , containing 2 candidates dubbed Orion and Sirius was analyzed at ESRF, France, on beamlines ID13 and ID22NI by nano-XRF/XRD scanning methods. Beam damage effects were noticed on both samples and a quantitative analysis of their irradiation history was established , allowing us to propose new experimental protocols as well as fluence limits, minimizing such effects in the future. The purpose of this study is to present these facts, analyze potential damage mechanisms and offer alternatives
Materials R&D for a timely DEMO: Key findings and recommendationsof the EU Roadmap Materials Assessment Group
The findings of the EU Fusion Programme’s ‘Materials Assessment Group’ (MAG), assessing readiness ofStructural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These areincorporated into the EU Fusion Power Roadmap [1], with a decision to construct DEMO in the early2030s.The methodology uses project-based and systems-engineering approaches, the concept of TechnologyReadiness Levels, and considers lessons learned from Fission reactor material development. ‘Baseline’materials are identified for each DEMO role, and the DEMO mission risks analysed from the known lim-itations, or unknown properties, associated with each baseline material. R&D programmes to addressthese risks are developed. The DEMO assessed has a phase I with a ‘starter blanket’: the blanket mustwithstand @le;2 MW yr m−2fusion neutron flux (equivalent to ∼20 dpa front-wall steel damage). The base-line materials all have significant associated risks, so development of ‘Risk Mitigation Materials’ (RMM)is recommended. The R&D programme has parallel development of the baseline and RMM, up to ‘down-selection’ points to align with decisions on the DEMO blanket and divertor engineering definition. ITERlicensing experience is used to refine the issues for materials nuclear testing, and arguments are devel-oped to optimise scope of materials tests with fusion neutron (‘14 MeV’) spectra before DEMO designfinalisation. Some 14 MeV testing is still essential, and the Roadmap requires deployment of a ≥30 dpa(steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutronson isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum14 MeV testing programme, and the key role which fundamental and mission-oriented modelling canplay in orienting the research
Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions
We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
- …