1,922 research outputs found

    Detection of Respiratory Viruses and Subtype Identification of Influenza A Viruses by GreeneChipResp Oligonucleotide Microarray

    Get PDF
    Acute respiratory infections are significant causes of morbidity, mortality, and economic burden worldwide. An accurate, early differential diagnosis may alter individual clinical management as well as facilitate the recognition of outbreaks that have implications for public health. Here we report on the establishment and validation of a comprehensive and sensitive microarray system for detection of respiratory viruses and subtyping of influenza viruses in clinical materials. Implementation of a set of influenza virus enrichment primers facilitated subtyping of influenza A viruses through the differential recognition of hemagglutinins 1 through 16 and neuraminidases 1 through 9. Twenty-one different respiratory virus species were accurately characterized, including a recently identified novel genetic clade of rhinovirus.Fil: Quan, Phenix-Lan. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Palacios, Gustavo. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Jabado, Omar J. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Conlan, Sean. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hirschberg, David L. Stanford School of Medicine; Estados Unidos.Fil: Pozo, Francisco. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Jack, Philippa J. M. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Cisterna, Daniel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Renwick, Neil. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hui, Jeffrey. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Drysdale, Andrew. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Amos-Ritchie, Rachel. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Baumeister, Elsa. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Savy, Vilma. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Lager, Kelly M. USDA. National Animal Disease Center; Estados Unidos.Fil: Richt, Jürgen A. USDA. National Animal Disease Center; Estados Unidos.Fil: Boyle, David B. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: García-Sastre, Adolfo. Mount Sinai School of Medicine. Department of Microbiology and Emerging Pathogens Institute; Estados Unidos.Fil: Casas, Inmaculada. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Perez-Breña, Pilar. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Briese, Thomas. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Lipkin, W. Ian. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos

    Detection of Respiratory Viruses and Subtype Identification of Influenza A Viruses by GreeneChipResp Oligonucleotide Microarray

    Get PDF
    Acute respiratory infections are significant causes of morbidity, mortality, and economic burden worldwide. An accurate, early differential diagnosis may alter individual clinical management as well as facilitate the recognition of outbreaks that have implications for public health. Here we report on the establishment and validation of a comprehensive and sensitive microarray system for detection of respiratory viruses and subtyping of influenza viruses in clinical materials. Implementation of a set of influenza virus enrichment primers facilitated subtyping of influenza A viruses through the differential recognition of hemagglutinins 1 through 16 and neuraminidases 1 through 9. Twenty-one different respiratory virus species were accurately characterized, including a recently identified novel genetic clade of rhinovirus.Fil: Quan, Phenix-Lan. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Palacios, Gustavo. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Jabado, Omar J. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Conlan, Sean. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hirschberg, David L. Stanford School of Medicine; Estados Unidos.Fil: Pozo, Francisco. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Jack, Philippa J. M. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Cisterna, Daniel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Renwick, Neil. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Hui, Jeffrey. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Drysdale, Andrew. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Amos-Ritchie, Rachel. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: Baumeister, Elsa. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Savy, Vilma. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Lager, Kelly M. USDA. National Animal Disease Center; Estados Unidos.Fil: Richt, Jürgen A. USDA. National Animal Disease Center; Estados Unidos.Fil: Boyle, David B. Australian Animal Health Laboratory. CSIRO Livestock Industries; Australia.Fil: García-Sastre, Adolfo. Mount Sinai School of Medicine. Department of Microbiology and Emerging Pathogens Institute; Estados Unidos.Fil: Casas, Inmaculada. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Perez-Breña, Pilar. Instituto de Salud Carlos III. Centro Nacional de Microbiología; España.Fil: Briese, Thomas. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos.Fil: Lipkin, W. Ian. Columbia University. Jerome L. and Dawn Greene Infectious Disease Laboratory; Estados Unidos

    Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data

    Get PDF
    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2 = 0.53–0.90, p < 10− 5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests that the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore