54 research outputs found

    MECHANICAL ENERGY DIFFERENCES BETWEEN WALKING AND RUNNING AT DIFFERENT VELOCITIES ON TREADMILL

    Get PDF
    INTRODUCTION: Cavanagh (1990) described a variation from 170 to 1700 W in power output for the same movement (running at 3.6 m/s) calculated by six different authors. These differences occurred mainly due to different procedures for energy calculation and generated data that are not comparable. The purpose of this investigation was to describe, analyze, and compare the mechanical energy curves (total, internal and external energies) for six subjects while walking and running on treadmill, by using the same procedure for energy calculation. METHODS: Six male subjects were filmed with two video-cameras (Sony-50Hz) while walking at 1.5 m/s and running at 3.0 and 4.0 m/s on a treadmill. After a manual digitizing process, a 3D analysis was performed from the kinematics. The analysis was based on a 13 segment model. Positions of segmental centers of gravity, segmental weights, and moments of inertia were estimated on the basis of tables devised by Dempster (1955) as revised by Winter (1979). The components of mechanical energy were calculated at each instant of time, using the equations described by Zatsiorsky et al. (1987). RESULTS AND DISCUSSION: In relation to the differences between walking and running, the following observations were made: a) in walking the greatest contribution to the total change derived from the internal energy, while in running it derives from the external energy; b) the internal and external energy were in phase in walking, and in opposition in running. Comparing the variations in the two velocities of running, the following conclusions were drawn: a) the average value of the absolute total energy at 3.0 m/s was 1237.9 J and at 4.0 m/s 1544.2 J; b) there was a linear correlation (r = 0.84) between the change in velocity and the change in total energy; b) with the increase in velocity, the average increase in the total contribution of the change in internal energy was about 72% and of the external energy 36%; c) there was no change in the contribution of the potential energy to the change in external energy; d) the increase in the internal energy was chiefly dependent on the increase in the kinetic energy. CONCLUSION: Although the results related to the shape of the curves for mechanical energy for walking and running are already a matter of consensus in the field of biomechanics, it would appear that the numerical results are still open to broad discussion

    BIOMECHANICAL APPROACH TO BALLET MOVEMENTS: A STUDY OF THE EFFECTS OF BALLET SHOE AND MUSICAL BEAT ON THE VERTICAL REACTION FORCES

    Get PDF
    Ballet movements can be the focus of biomechanical studies in order to better understand the characteristic mechanical loads of the locomotor apparatus related to classic dance. "Pointe shoes" have been associated to high incidence of morphological and physiological alterations of ballet dancer's feet, however its contribution to injury mechanisms must still be precisely known. On the other hand, movements like jumps and leaps are frequently repeated in a standard ballet training, where the musical beat also plays a role on the motor behavior and its mechanical aspects. Therefore the purpose of the present study was to describe ground reaction forces during the "saute -1st position" under the influence of footwear (slippers and pointe shoes) and musical beat in order to identify the relative contribution of these factors on the external loads measured. It was observed that the musical beat played a greater role on the ground reaction force magnitudes than the footwear

    BIOMECHANICAL APPROACH TO BALLET MOVEMENTS: A PRELIMINARY STUDY

    Get PDF
    Movements in ballet dance often involve extreme joint positions and muscular efforts that may exceed normal ranges of motion and generate high stresses on bone and soft tissues. The primary aim of this study was to apply the principles and techniques of biomechanics to study ballet movements. Ground reaction forces and plantar pressure distribution were registered with a Kistler Platform and a Tekscan Systems respectively. Knee joint action in the sagittal plane was simultaneously collected with an electrogoniometer. Peak vertical forces, peak pressures and knee flexion-extension were analyzed and discussed. A better understanding of these biomechanical aspects may lead to a decrease of the injury risks and also to more graceful and efficient dance movements

    RACEWALKING AND NORMAL WALKING ANALYSIS

    Get PDF
    INTRODUCTION: The purpose of the present study was to observe biomechanical variations in racewalking, starting from normal walking and continuing on up to a maximum racewalking performance supported by the athlete. Tests were carried out on a women’s racewalking team who represents Santa Catarina State at national competitions in Brazil. A GaitwayTM instrumented treadmill system was used to verify the differences between normal walking and racewalking. A few studies have been made of race walkers. Some physiological aspects indicated that the speed at which racewalking and running become equally efficient is similar to the crossover speed for conventional walking and running (Hagberg & Coyle, 1984). Another important study was done by Morgan & Martin (1986), who showed the effects of stride length alterations on racewalking economy. Their results support the hypothesis that trained subjects select locomotion patterns that are nearly optimal in terms of the aerobic demands. Cairns et al. (1986) determined that the racewalking gait exhibits some biomechanical characteristics which are different from the walking gait or running. Recently, Brisswalter et al. (1996) suggested that in well trained walkers the energy cost of walking increases with exercise duration, but walkers are able to maintain the same stride duration after the test when treadmill speed is controlled

    Creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players

    Get PDF
    Abstract\ud \ud Background\ud Studies involving chronic creatine supplementation in elite soccer players are scarce. Therefore, the aim of this study was to examine the effects of creatine monohydrate supplementation on lower-limb muscle power in Brazilian elite soccer players (n = 14 males) during pre-season training.\ud \ud \ud Findings\ud This was a randomized, double-blind, placebo-controlled parallel-group study. Brazilian professional elite soccer players participated in this study. During the pre-season (7 weeks), all the subjects underwent a standardized physical and specific soccer training. Prior to and after either creatine monohydrate or placebo supplementation, the lower-limb muscle power was measured by countermovement jump performance. The Jumping performance was compared between groups at baseline (p = 0.99). After the intervention, jumping performance was lower in the placebo group (percent change = - 0.7%; ES = - 0.3) than in the creatine group (percent change = + 2.4%; ES = + 0.1), but it did not reach statistical significance (p = 0.23 for time x group interaction). Fisher’s exact test revealed that the proportion of subjects that experienced a reduction in jumping performance was significantly greater in the placebo group than in the creatine group (5 and 1, respectively; p = 0.05) after the training. The magnitude-based inferences demonstrated that placebo resulted in a possible negative effect (50%) in jumping performance, whereas creatine supplementation led to a very likely trivial effect (96%) in jumping performance in the creatine group.\ud \ud \ud Conclusions\ud Creatine monohydrate supplementation prevented the decrement in lower-limb muscle power in elite soccer players during a pre-season progressive training.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Appendectomy during the COVID-19 pandemic in Italy: a multicenter ambispective cohort study by the Italian Society of Endoscopic Surgery and new technologies (the CRAC study)

    Get PDF
    Major surgical societies advised using non-operative management of appendicitis and suggested against laparoscopy during the COVID-19 pandemic. The hypothesis is that a significant reduction in the number of emergent appendectomies was observed during the pandemic, restricted to complex cases. The study aimed to analyse emergent surgical appendectomies during pandemic on a national basis and compare it to the same period of the previous year. This is a multicentre, retrospective, observational study investigating the outcomes of patients undergoing emergent appendectomy in March-April 2019 vs March-April 2020. The primary outcome was the number of appendectomies performed, classified according to the American Association for the Surgery of Trauma (AAST) score. Secondary outcomes were the type of surgical technique employed (laparoscopic vs open) and the complication rates. One thousand five hundred forty one patients with acute appendicitis underwent surgery during the two study periods. 1337 (86.8%) patients met the inclusion criteria: 546 (40.8%) patients underwent surgery for acute appendicitis in 2020 and 791 (59.2%) in 2019. According to AAST, patients with complicated appendicitis operated in 2019 were 30.3% vs 39.9% in 2020 (p = 0.001). We observed an increase in the number of post-operative complications in 2020 (15.9%) compared to 2019 (9.6%) (p < 0.001). The following determinants increased the likelihood of complication occurrence: undergoing surgery during 2020 (+ 67%), the increase of a unit in the AAST score (+ 26%), surgery performed > 24 h after admission (+ 58%), open surgery (+ 112%) and conversion to open surgery (+ 166%). In Italian hospitals, in March and April 2020, the number of appendectomies has drastically dropped. During the first pandemic wave, patients undergoing surgery were more frequently affected by more severe appendicitis than the previous year's timeframe and experienced a higher number of complications. Trial registration number and date: Research Registry ID 5789, May 7th, 202

    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at √s=2.76 TeV with ATLAS

    Get PDF
    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb-1 of s=2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity

    Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at s √ =8  TeV with the ATLAS detector

    Get PDF
    Measurements of the top-antitop quark pair production charge asymmetry in the dilepton channel, characterized by two high-pT leptons (electrons or muons), are presented using data corresponding to an integrated luminosity of 20.3  fb−1 from pp collisions at a center-of-mass energy s√=8  TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. Inclusive and differential measurements as a function of the invariant mass, transverse momentum, and longitudinal boost of the ttÂŻ system are performed both in the full phase space and in a fiducial phase space closely matching the detector acceptance. Two observables are studied: AℓℓC based on the selected leptons and AttÂŻC based on the reconstructed ttÂŻ final state. The inclusive asymmetries are measured in the full phase space to be AℓℓC=0.008±0.006 and AttÂŻC=0.021±0.016, which are in agreement with the Standard Model predictions of AℓℓC=0.0064±0.0003 and AttÂŻC=0.0111±0.0004

    Study of the B-c(+) -> J/psi D-s(+) and Bc(+) -> J/psi D-s*(+) decays with the ATLAS detector

    Get PDF
    The decays B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+) are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb(-1) of pp collisions collected at centre-of-mass energies root s = 7 TeV and 8 TeV, respectively. Signal candidates are identified through J/psi -> mu(+)mu(-) and D-s(()*()+) -> phi pi(+)(gamma/pi(0)) decays. With a two-dimensional likelihood fit involving the B-c(+) reconstructed invariant mass and an angle between the mu(+) and D-s(+) candidate momenta in the muon pair rest frame, the yields of B-c(+) -> J/psi D-s(+) and B-c(+) -> J/psi D-s*(+), and the transverse polarisation fraction in B-c(+) -> J/psi D-s*(+) decay are measured. The transverse polarisation fraction is determined to be Gamma +/-+/-(B-c(+) -> J/psi D-s*(+))/Gamma(B-c(+) -> J/psi D-s*(+)) = 0.38 +/- 0.23 +/- 0.07, and the derived ratio of the branching fractions of the two modes is B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi D-s(+) = 2.8(-0.8)(+1.2) +/- 0.3, where the first error is statistical and the second is systematic. Finally, a sample of B-c(+) -> J/psi pi(+) decays is used to derive the ratios of branching fractions B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 3.8 +/- 1.1 +/- 0.4 +/- 0.2 and B-Bc+ -> J/psi D-s*+/B-Bc+ -> J/psi pi(+) = 10.4 +/- 3.1 +/- 1.5 +/- 0.6, where the third error corresponds to the uncertainty of the branching fraction of D-s(+) -> phi(K+ K-)pi(+) decay. The available theoretical predictions are generally consistent with the measurement

    Measurement of W boson angular distributions in events with high transverse momentum jets at s√= 8 TeV using the ATLAS detector

    Get PDF
    The W boson angular distribution in events with high transverse momentum jets is measured using data collected by the ATLAS experiment from proton–proton collisions at a centre-of-mass energy at the Large Hadron Collider, corresponding to an integrated luminosity of . The focus is on the contributions to processes from real W emission, which is achieved by studying events where a muon is observed close to a high transverse momentum jet. At small angular separations, these contributions are expected to be large. Various theoretical models of this process are compared to the data in terms of the absolute cross-section and the angular distributions of the muon from the leptonic W decay.Fil: Aaboud, M.. UniversitĂ© Mohamed Premier and LPTPM; MarruecosFil: Aad, G.. Aix-Marseille UniversitĂ© ; FranciaFil: Abbott, B.. Oklahoma State University; Estados UnidosFil: Abdallah, J.. Academia Sinica; ChinaFil: Abdinov, O.. Azerbaijan Academy of Sciences; AzerbaiyĂĄnFil: Alconada Verzini, MarĂ­a Josefina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Alonso, Francisco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Arduh, Francisco Anuar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Dova, Maria Teresa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Hoya, JoaquĂ­n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Monticelli, Fernando Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Wahlberg, Hernan Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FĂ­sica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de FĂ­sica La Plata; ArgentinaFil: Bossio Sola, Jonathan David. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Marceca, Gino. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Otero y Garzon, Gustavo Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Piegaia, Ricardo Nestor. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Sacerdoti, Sabrina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FĂ­sica de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FĂ­sica de Buenos Aires; ArgentinaFil: Zibell. A.. Julius-Maximilians-UniversitĂ€t ; AlemaniaFil: Zieminska, D.. Indiana University; Estados UnidosFil: Zimine, N. I.. Joint Institute for Nuclear Research; RusiaFil: Zimmermann, C.. UniversitĂ€t Mainz ; AlemaniaFil: Zimmermann, S.. Albert-Ludwigs-UniversitĂ€t ; AlemaniaFil: Zinonos, Z.. Georg-August-UniversitĂ€t ; AlemaniaFil: Zinser, M.. UniversitĂ€t Mainz ; AlemaniaFil: Ziolkowski, M.. UniversitĂ€t Siegen ; AlemaniaFil: Ćœivković, L.. University of Belgrade ; SerbiaFil: Zobernig, G.. University of Wisconsin; Estados UnidosFil: Zoccoli, A.. UniversitĂ  di Bologna ; ItaliaFil: Nedden, M. zur. Humboldt University; AlemaniaFil: Zurzolo, G.. UniversitĂ  di Napoli; ItaliaFil: Zwalinski, L.. Cern - European Organization For Nuclear Research; SuizaFil: The ATLAS Collaboration. No especifica
    • 

    corecore