24 research outputs found

    MyoD-induced reprogramming of human fibroblasts and urinary stem cells in vitro: protocols and their applications

    Get PDF
    The conversion of fibroblasts into myogenic cells is a powerful tool to both develop and test therapeutic strategies and to perform in-depth investigations of neuromuscular disorders, avoiding the need for muscle biopsies. We developed an easy, reproducible, and high-efficiency lentivirus-mediated transdifferentiation protocol, that can be used to convert healthy donor fibroblasts and a promising new cellular model, urinary stem cells (USCs), into myoblasts, that can be further differentiated into multinucleated myotubes in vitro. Transcriptome and proteome profiling of specific muscle markers (desmin, myosin, dystrophin) was performed to characterize both the myoblasts and myotubes derived from each cell type and to test the transdifferentiation-inducing capacity of MYOD1 in fibroblasts and USCs. Specifically, the Duchenne muscular dystrophy (DMD) transcripts and proteins, including both the full-length Dp427 and the short Dp71 isoform, were evaluated. The protocol was firstly developed in healthy donor fibroblasts and USCs and then used to convert DMD patients' fibroblasts, with the aim of testing the efficacy of an antisense drug in vitro. Technical issues, limitations, and problems are explained and discussed. We demonstrate that MyoD-induced-fibroblasts and USCs are a useful in vitro model of myogenic cells to investigate possible therapies for neuromuscular diseases

    mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies

    Get PDF
    To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies

    The UCMD-Causing COL6A1 (c:930 + 189C > T) Intron Mutation Leads to the Secretion and Aggregation of Single Mutated Collagen VI α1 Chains

    Get PDF
    Collagen VI is a unique member of the collagen family. Its assembly is a complex multistep process and the vulnerability of the process is manifested in muscular diseases. Mutations in COL6A1, COL6A2, and COL6A3 lead to the severe Ullrich Congenital Muscular Dystrophy (UCMD) and a spectrum of disease of varying severity including the milder Bethlem muscular dystrophy. The recently identified dominant intronic mutation in COL6A1 ( c . 930 + 189 C > T ) leads to the partial in-frame insertion of a pseudoexon between exon 11 and exon 12. The pseudoexon is translated into 24 amino acid residues in the N-terminal region of the triple helix and results in the interruption of the typical G-X-Y motif. This recurrent de novo mutation leads to UCMD with a severe progression within the first decade of life. Here, we demonstrate that a mutation-specific antibody detects the mutant chain colocalizing with wild type collagen VI in the endomysium in patient muscle. Surprisingly, in the cell culture of patient dermal fibroblasts, the mutant chain is secreted as a single α chain, while in parallel, normal collagen VI tetramers are assembled with the wild-type α1 chain. The mutant chain cannot be incorporated into collagen VI tetramers but forms large aggregates in the extracellular matrix that may retain the ability to interact with collagen VI and potentially with other molecules. Also, α1 chain-deficient WI-26 VA4 cells transfected with the mutant α1 chain do not assemble collagen VI tetramers but, instead, form aggregates. Interestingly, both the wild type and the mutant single α1 chains form amorphous aggregates when expressed in HEK293 cells in the absence of α2 and α3 chains. The detection of aggregated, assembly incompetent, mutant collagen VI α1 chains provides novel insights into the disease pathophysiology of UCMD patients with the COL6A1 ( c . 930 + 189 C > T ) mutation

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibres that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibres or following genome editing, cell therapy or microdystrophin delivery after AAV gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual Enzyme- Linked Immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 paediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one timepoint. All patients that had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ~8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin despite steroid treatment. Although these responses are relatively low-level, this information should be considered as a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing and shipping samples from multiple centres to minimise the number of inconclusive data

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    MyoD-induced reprogramming of human fibroblasts and urinary stem cells in vitro: protocols and their applications

    Get PDF
    The conversion of fibroblasts into myogenic cells is a powerful tool to both develop and test therapeutic strategies and to perform in-depth investigations of neuromuscular disorders, avoiding the need for muscle biopsies. We developed an easy, reproducible, and high-efficiency lentivirus-mediated transdifferentiation protocol, that can be used to convert healthy donor fibroblasts and a promising new cellular model, urinary stem cells (USCs), into myoblasts, that can be further differentiated into multinucleated myotubes in vitro. Transcriptome and proteome profiling of specific muscle markers (desmin, myosin, dystrophin) was performed to characterize both the myoblasts and myotubes derived from each cell type and to test the transdifferentiation-inducing capacity of MYOD1 in fibroblasts and USCs. Specifically, the Duchenne muscular dystrophy (DMD) transcripts and proteins, including both the full-length Dp427 and the short Dp71 isoform, were evaluated. The protocol was firstly developed in healthy donor fibroblasts and USCs and then used to convert DMD patients’ fibroblasts, with the aim of testing the efficacy of an antisense drug in vitro. Technical issues, limitations, and problems are explained and discussed. We demonstrate that MyoD-induced-fibroblasts and USCs are a useful in vitro model of myogenic cells to investigate possible therapies for neuromuscular diseases
    corecore