392 research outputs found

    Calibration of Tuffak polycarbonate track detector for identification of relativistic nuclei

    Full text link
    We discuss response of Tuffak polycarbonate to relativistic heavy nuclei using two methods, measurement of the minor axis diameter and of the length of the track cone, to determine charge resolution. At Z = 92 (0.95 GeV/u 238U) both methods give about 0.9e charge resolution for a single cone measurement. Multiple cone measurements along the ion's trajectory have yielded a charge resolution [sigma]z [les] 0.25e (16 cones) when stripping foils (Cu) are interleaved between plastic sheets to minimize sheet-to-sheet charge state correlations. As the charge of the incident ion decreases to Z [approximate] 52-57, the single-cone charge resolution improves ([sigma]z ~ 0.29e). The angular response of Tuffak is fairly constant for zenith angles of incidence from 0[deg] to 48[deg]. Range measurements of stopping relativistic 238U in Tuffak deviate by ~5% from that predicted by the Bethe-Bloch formula, as expected from recent relativistic calculations. We conclude that Tuffak is an excellent track detector for identification of nuclear charges of relativistic heavy nuclei with 50 Z <= 92.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24979/1/0000406.pd

    Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron

    Full text link
    We present 90% confidence level limits on magnetic monopole production at the Fermilab Tevatron from three sets of samples obtained from the D0 and CDF detectors each exposed to a proton-antiproton luminosity of ∌175pb−1\sim175 {pb}^{-1} (experiment E-882). Limits are obtained for the production cross-sections and masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and bound in material surrounding the D0 and CDF collision regions. In the absence of a complete quantum field theory of magnetic charge, we estimate these limits on the basis of a Drell-Yan model. These results (for magnetic charge values of 1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously published bounds.Comment: 18 pages, 17 figures, REVTeX

    Antimatter in the Universe

    Full text link
    Cosmological models which predict a large amount of antimatter in the Universe are reviewed. Observational signatures and searches for cosmic antimatter are briefly considered. A short discussion of new long range forces which might be associated with matter and antimatter is presented.Comment: 17 pages + 2 figure

    Measurement of the ttÂŻ production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2fb−1 of proton–proton collisions at a centre-of-mass energy of s=13TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:σttÂŻ=818±8(stat)±27(syst)±19(lumi)±12(beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Matter-Antimatter Asymmetry in the Large Hadron Collider

    Full text link
    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various NNNN and AAAA collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from ∌0\sim 0% at AGS to ∌100\sim 100% at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant entropy density, various antiparticle-to-particle ratios are studied in framework of the hadron resonance gas (HRG) model. Implementing modified phase space and distribution function in the grand-canonical ensemble and taking into account the experimental acceptance, the ratios of antiparticle-to-particle over the whole range of center-of-mass-energies are very well reproduced by the HRG model. Furthermore, the antiproton-to-proton ratios measured by ALICE in pppp collisions is also very well described by the HRG model. It is likely to conclude that the LHC heavy-ion program will produce the same particle ratios as the pppp program implying the dynamics and evolution of the system would not depend on the initial conditions. The ratios of bosons and baryons get very close to unity indicating that the matter-antimatter asymmetry nearly vanishes at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl

    Neutralino Dark Matter from MSSM Flat Directions in light of WMAP Result

    Full text link
    The minimal supersymmetric standard model (MSSM) has a truly supersymmetric way to explain both the baryon asymmetry and cold dark matter in the present Universe, that is, ``Affleck-Dine baryo/DM-genesis.'' The associated late-time decay of Q-balls directly connects the origins of the baryon asymmetry and dark matter, and also predicts a specific nature of the LSP. In this paper, we investigate the prospects for indirect detection of these dark matter candidates observing high energy neutrino flux from the Sun, and hard positron flux from the halo. We also update the previous analysis of the direct detection in hep-ph/0205044 by implementing the recent result from WMAP satellite.Comment: 32 pages, including 40 figure

    Measurements of top-quark pair differential cross-sections in the eÎŒ channel in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    This article presents measurements of tt¯ differential cross-sections in a fiducial phase-space region, using an integrated luminosity of 3.2 fb- 1 of proton–proton data at a centre-of-mass energy of s=13 TeV recorded by the ATLAS experiment at the LHC in 2015. Differential cross-sections are measured as a function of the transverse momentum and absolute rapidity of the top quark, and of the transverse momentum, absolute rapidity and invariant mass of the tt¯ system. The tt¯ events are selected by requiring one electron and one muon of opposite electric charge, and at least two jets, one of which must be tagged as containing a b-hadron. The measured differential cross-sections are compared to predictions of next-to-leading order generators matched to parton showers and the measurements are found to be consistent with all models within the experimental uncertainties with the exception of the Powheg-Box+ Herwig++ predictions, which differ significantly from the data in both the transverse momentum of the top quark and the mass of the tt¯ system

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore