The matter-antimatter asymmetry is one of the greatest challenges in the
modern physics. The universe including this paper and even the reader
him(her)self seems to be built up of ordinary matter only. Theoretically, the
well-known Sakharov's conditions remain the solid framework explaining the
circumstances that matter became dominant against the antimatter while the
universe cools down and/or expands. On the other hand, the standard model for
elementary particles apparently prevents at least two conditions out of them.
In this work, we introduce a systematic study of the antiparticle-to-particle
ratios measured in various NN and AA collisions over the last three
decades. It is obvious that the available experimental facilities turn to be
able to perform nuclear collisions, in which the matter-antimatter asymmetry
raises from ∼0 at AGS to ∼100 at LHC. Assuming that the final
state of hadronization in the nuclear collisions takes place along the
freezeout line, which is defined by a constant entropy density, various
antiparticle-to-particle ratios are studied in framework of the hadron
resonance gas (HRG) model. Implementing modified phase space and distribution
function in the grand-canonical ensemble and taking into account the
experimental acceptance, the ratios of antiparticle-to-particle over the whole
range of center-of-mass-energies are very well reproduced by the HRG model.
Furthermore, the antiproton-to-proton ratios measured by ALICE in pp
collisions is also very well described by the HRG model. It is likely to
conclude that the LHC heavy-ion program will produce the same particle ratios
as the pp program implying the dynamics and evolution of the system would not
depend on the initial conditions. The ratios of bosons and baryons get very
close to unity indicating that the matter-antimatter asymmetry nearly vanishes
at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl