20 research outputs found

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    How are legal matters related to the access of traditional knowledge being considered in the scope of ethnobotany publications in Brazil?

    Full text link

    Analysis of wettability and penetration of sealants over deciduous teeth

    No full text

    Repositioning and characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one derivatives as plasmodium cytoplasmic prolyl-tRNA synthetase inhibitors

    Get PDF
    Prolyl-tRNA synthetase (PRS) is a clinically validated antimalarial target. Screening of a set of PRS ATP-site binders, initially designed for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one derivatives representing a novel antimalarial scaffold. Evidence designates cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1- S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains and development of liver schizonts. No cross-resistance with strains resistant to other known antimalarials was noted. In addition, a similar level of growth inhibition was observed against clinical field isolates of Pf and P. vivax. The slow killing profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However, potent blood stage and antischizontal activity are compelling for causal prophylaxis which does not require fast onset of action. Achieving sufficient on-target selectivity appears to be particularly challenging and should be the primary focus during the next steps of optimization of this chemical series. Encouraging preliminary off-target profile and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one derivatives represent a promising starting point for the identification of novel antimalarial prophylactic agents that selectively target Plasmodium PRS
    corecore