26 research outputs found

    Observing relativistic features in large-scale structure surveys -- I: Multipoles of the power spectrum

    Get PDF
    Planned efforts to probe the largest observable distance scales in future cosmological surveys are motivated by a desire to detect relic correlations left over from inflation, and the possibility of constraining novel gravitational phenomena beyond General Relativity (GR). On such large scales, the usual Newtonian approaches to modelling summary statistics like the power spectrum and bispectrum are insufficient, and we must consider a fully relativistic and gauge-independent treatment of observables such as galaxy number counts in order to avoid subtle biases, e.g. in the determination of the fNLf_{\rm NL} parameter. In this work, we present an initial application of an analysis pipeline capable of accurately modelling and recovering relativistic spectra and correlation functions. As a proof of concept, we focus on the non-zero dipole of the redshift-space power spectrum that arises in the cross-correlation of different mass bins of dark matter halos, using strictly gauge-independent observable quantities evaluated on the past light cone of a fully relativistic N-body simulation in a redshift bin 1.7z2.91.7 \le z \le 2.9. We pay particular attention to the correct estimation of power spectrum multipoles, comparing different methods of accounting for complications such as the survey geometry (window function) and evolution/bias effects on the past light cone, and discuss how our results compare with previous attempts at extracting novel GR signatures from relativistic simulations

    On the Perturbative Stability of Quantum Field Theories in de Sitter Space

    Full text link
    We use a field theoretic generalization of the Wigner-Weisskopf method to study the stability of the Bunch-Davies vacuum state for a massless, conformally coupled interacting test field in de Sitter space. We find that in λϕ4\lambda \phi^4 theory the vacuum does {\em not} decay, while in non-conformally invariant models, the vacuum decays as a consequence of a vacuum wave function renormalization that depends \emph{singularly} on (conformal) time and is proportional to the spatial volume. In a particular regularization scheme the vacuum wave function renormalization is the same as in Minkowski spacetime, but in terms of the \emph{physical volume}, which leads to an interpretation of the decay. A simple example of the impact of vacuum decay upon a non-gaussian correlation is discussed. Single particle excitations also decay into two particle states, leading to particle production that hastens the exiting of modes from the de Sitter horizon resulting in the production of \emph{entangled superhorizon pairs} with a population consistent with unitary evolution. We find a non-perturbative, self-consistent "screening" mechanism that shuts off vacuum decay asymptotically, leading to a stationary vacuum state in a manner not unlike the approach to a fixed point in the space of states.Comment: 36 pages, 4 figures. Version to appear in JHEP, more explanation

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Stochastic backgrounds of relic gravitons: a theoretical appraisal

    Get PDF
    Stochastic backgrounds or relic gravitons, if ever detected, will constitute a prima facie evidence of physical processes taking place during the earliest stages of the evolution of the plasma. The essentials of the stochastic backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal observables customarily employed to infer the properties of the relic gravitons are discussed both in the framework of the Λ\LambdaCDM paradigm as well as in neighboring contexts. The complementarity between experiments measuring the polarization of the Cosmic Microwave Background (such as, for instance, WMAP, Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g. Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky strongly constrains the low-frequency tail of the relic graviton spectrum, wide-band detectors are sensitive to much higher frequencies where the spectral energy density depends chiefly upon the (poorly known) rate of post-inflationary expansion.Comment: 94 pages, 32 figure

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    J-PLUS: The Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg(2) mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 angstrom). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 angstrom Balmer break region, H delta, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB similar to 21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the delta z/(1 + z) similar to 0.005-0.03 precision level) for moderately bright (up to r similar to 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/lambda 3727, H alpha/lambda 6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z approximate to 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first similar to 1000 deg(2) of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg(2) for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey
    corecore