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Abstract In this work it has been developed a new approach
to study the stability of a system composed by an ELKO field
interacting with dark matter, which could give some contri-
bution in order to alleviate the cosmic coincidence problem.
It is assumed that the potential which characterizes the ELKO
field is not specified, but it is related to a constant parameter
δ. The strength of the interaction between matter and ELKO
field is characterized by a constant parameter β and it is also
assumed that both ELKO field and matter energy density are
related to their pressures by equations of state parameters
ωφ and ωm , respectively. The system of equations is ana-
lyzed by a dynamical system approach. It has been found
the conditions of stability between the parameters δ and β in
order to have stable fixed points for the system for different
values of the equation of state parameters ωφ and ωm , and
the results are presented in form of tables. The possibility
of decay of the ELKO field into dark matter or vice versa
can be read directly from the tables, since the parameters δ

and β satisfy some inequalities. It allows us to constrain the
potential assuming that we have a stable system for different
interactions terms between the ELKO field and dark matter.
The cosmic coincidence problem can be alleviated for some
specific relations between the parameters of the model.

1 Introduction

Similarly to many segments in science, there are still open
questions in modern cosmology to be answered. One of the
greatest puzzles concerns the composition of the universe,
which can be roughly divided into three components, namely
the ordinary baryonic matter (≈5 %), the Dark Matter (DM)
(≈25 %) and the Dark Energy (DE) (≈70 %), according to
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the most accepted models [1–9]. Currently, we have direct
access only to the former component, but there are many
attempts to detect DM particles, since it behaves exactly like
the usual baryonic matter, although not interacting electro-
magnetically [10–12]. DE is something even more mysteri-
ous, since their behavior is gravitationally repulsive [13–16].
From a theoretical point of view it is very common to inter-
pret these entities as being some kind of field (scalar fields
[17–27] or spinor fields [28–30], for example). Other models
also consider the possibility of interaction between DM and
DE [31–44], which could alleviate the coincidence problem
for instance.

Besides the usual scalar fields, some recent works have
shown that there are some classes of Non-Standard Spinors
with interesting properties which could be useful in order
to describe both DM and DE. One of such spinors is
called ELKO, from German Eigenspinoren des Ladungsk
onjugationsoperators, which has the property to be an eigen-
spinor of charge conjugation and parity, possessing non-
locality [45–62]. It satisfies (CPT)2 = −I and also has some
other properties, like having spin 1/2 and a mass dimension 1,
which makes it a good candidate to a particle with small prob-
ability of interacting with Standard Model particles, exactly
as desired for the DM particles and maybe also to DE. The
searching for ELKO dark matter at the CERN LHC has also
been addressed recently [63,64].

The ELKO spinor field, although being a fermionic field,
can be factored out in a time dependent scalar field multi-
plied by a four components spinor field. Its scalar part drives
the evolution of the pressure and energy density associated
to the ELKO field, and it is through these physical quantities
that ELKO contributes to cosmological equations. Here we
will consider the ELKO field as a candidate to DE interacting
with a DM field. The recent concern in this kind of exotic
non-standard field as a good candidate to DE or DM is due
to the fact that the scalar part of ELKO spinors has a much
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richer structure than the standard scalar field when applied to
cosmology [17–27]. The coupled system of equations involv-
ing the interaction of DE and DM plus the Friedmann equa-
tions are much more involved, even for a standard scalar field
[26,27]. Such a system is much more involved when dealing
with ELKO fields. Due to its complexity, dynamical system
analysis has been applied in order to deal with ELKO field
as a possible candidate to DM or DE. Although exact solu-
tions are not found even within this method for most cases,
obtaining stability points that turn the system well behaved
provides useful information as regards some undetermined
parameters of the system. In our specific case we are inter-
ested in some conditions to be satisfied by the potential of
the ELKO spinor field in order to keep the system stable.
Maintaining system stability around some fixed points indi-
cates that the involved system of equations has stable solu-
tions for that specific region where the variables are evolv-
ing. In our case it can be interpreted as possible solutions
where the ELKO field and DM can coexist, indicating a solu-
tion to the cosmic coincidence problem around these fixed
points.

An interesting aspect concerning the ELKO field dynam-
ics is that the choice of variables is an important question
when one is looking for stable points of the dynamical sys-
tem. Such a search for adequate variables depends in gen-
eral on the structure of the physical quantities involved, like
the energy density, pressure and Friedmann constraints. In
some recent works [65–67], different choices of variables for
interacting systems concerning the ELKO field have shown
that there are no stable points in order to explain the cosmic
coincidence problem. In [68] a new method of analysis was
proposed, based on a constant parameter that leads to stable
points under some conditions. In the present work the same
method as [68] has been applied for a new set of dynamic vari-
ables and stable fixed points have been found for the system,
including new interaction terms. This opens the possibility to
alleviate the cosmological coincidence problem considering
the ELKO field interacting with DM if the conditions found
here are satisfied.

The new set of dynamical variables for the ELKO field
used in this work is independent of the choice of potential.
The potential dependence is set to a constant parameter δ.
Besides that it is assumed that the pressure and energy den-
sity of the ELKO field satisfy an equation of state of the form
pφ = ωφρφ , where pφ and ρφ are the ELKO field pressure
and energy density, respectively. The dark matter content is
described by an energy density ρm that satisfies an equation
of state of the type pm = ωmρm . There is also assumed an
interaction between ELKO field and DM, characterized by a
constant parameter β. The conditions for stability between
δ and β have been studied, depending on the type (radia-
tion, dust, vacuum or ultrarelativistic matter) of the thermo-
dynamic equation of state parameters ωm and ωφ .

Let us finish mentioning that the most general ELKO the-
ory applied to cosmology should include torsion [49,51,69,
70]. This generalization is possible constructing an action
where connections are no more symmetric at all. Such an
antisymmetric part of the connection is defined as the tor-
sion tensor, which is a rotation of a vector when it is par-
allel transported. Nevertheless problems with torsion have
not been properly studied yet, although in some works we
can see that torsion could play a cosmological constant role,
accelerating the universe. It is also not well known if torsional
effects appear to affect the dynamics only at the Planck scale.

The paper is organized as follows. In Sect. 2 we start
presenting a general scenario including torsion and then we
restrict ourselves to the torsionless case with the basic equa-
tions for a two fluid model, namely DM and ELKO field equa-
tions related to our cosmological applications in a spatially
flat Friedmann–Lemaître–Robertson–Walker (FLRW) back-
ground. We present the pressure and energy density expres-
sions, as well as the Friedmann equations and the conserva-
tion equations including the interaction between dark matter
and ELKO field. We also define the variables concerning the
dynamical system equations to be analyzed. Section 3 con-
tains the main results. We study the stability of the dynamical
system by imposing the restriction that the potential of the
ELKO field is related to a constant parameter δ. This analysis
allows us to study the conditions to be satisfied by δ and β

for each equation of state parameters of DM and the ELKO
field, in order to maintain stability. For each kind of interac-
tion we present the results in the form of tables, specifying
the equation of state parameter and conditions of stability
to be satisfied. For DM and the ELKO field we restrict the
equation of state parameters to vacuum, dust, radiation and
ultrarelativistic matter. In Sect. 4 we conclude with some
remarks.

2 ELKO cosmology as a dynamical system

We begin introducing the general Einstein–Cartan action:

S =
∫ (

1

2κ2 R̃ + L̃mat

)√−gd4x, (1)

where the tilde denotes the presence of torsion terms in the
covariant derivatives. We have also κ2 ≡ 8πG with the nor-
malization c = 1. The matter source (DM and ELKO) is
present in the matter Lagrangian, L̃mat. In this work we have
divided such a Lagrangian into two parts. One part concerns
the DM (including baryonic matter), L̃DM, with an attractive
behavior. The other part is playing the role of a DE fluid, here
represented by the ELKO spinor Lagrangian L̃λ:

L̃λ = 1

2
gμν∇̃(μ

¬
λ∇̃ν)λ − V (

¬
λλ). (2)
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The covariant derivative acting on a spinor in the presence
of torsion is

∇̃aλ = ∂aλ − 1

4
�aλ + 1

4
Kabcγ

bγ cλ (3)

where �a = 1
4�abc[γ bγ c, γ bγ c], and Kabc is known as the

contortion tensor, which represents the antisymmetric part of
the Christoffel symbol. Then it is possible to find an analo-
gous of the Einstein equation by variation of the action (1):

G̃i j = R̃i j − 1

2
R̃gi j = κ2�i j , (4)

and also an equation for the spin angular momentum tensor
τ

i j
k ,

T i j
k + δi

k T j l
l − δ

j
k T i l

l = τ i j
k

κ2 , (5)

obtained by variation of the Einstein–Cartan action with
respect to the contortion tensor K i j

k , which is related to the
torsion by Tμν

λ = 1
2 (Kνμ

λ − Kμν
λ).

As well as in the ordinary Einstein equation, the right hand
side of (4) represents the matter source, however, with a new
form due to torsion. It is given by

�i j = σi j + (∇̃k − K l
lk)(τi j

k + τ j
k

i + τ k
i j ), (6)

where σi j corresponds to the energy momentum tensor
related to L̃mat.

In a flat FLRW metric, ds2 = dt2−a(t)2(dx2+dy2+dz2),
where a(t) is the scale factor, the Christoffel symbols are
�i

ti = ȧ/a and �t
i i = ȧa, where i = x, y, z, and

�t t = ρ̃

2
, �i i = p̃

2a2 , (7)

where ρ̃ and p̃ are the energy density and the pressure of
the matter sources, in our case composed by DM and ELKO
field, which can be approximated by a perfect fluid on large
scales. If the ELKO field density depends only on cosmolog-
ical time, as it must obey cosmological principle, the allowed
components of the torsion tensor are reduced to

T110 = T220 = T330 = h(t), (8)

T123 = T312 = T231 = f (t), (9)

where h and f are functions carrying the torsion contribu-
tions. Finally, the Friedmann equations with torsion are given
by

H2 + 2h H + h2 − f 2 = κ2

3
ρ̃, (10)

Ḣ − h H + ḣ − h2 + f 2 = −κ2

2
(ρ̃ + p̃) , (11)

with H = ȧ/a.

From the above general treatment, we see that even assum-
ing homogeneity and isotropy, the torsion functions h(t) and
f (t) yet carry non trivial contributions to the time compo-
nent of the evolution equations. Thus, even for an ELKO field
that behaves dynamically as a scalar, its contributions should
be taken into account. When it is used in cosmology, it is
important to emphasize that they are spinors, nevertheless
with important consequences: the most important of them is
the fact that a totally coupled ELKO field must have torsion,
and with torsion additional terms are present in the Fried-
mann equations, as seen above.

However, in order to study the possibility of ELKO field
interaction with DM, intending to alleviate the cosmic coin-
cidence problem, we will restrict our study to the torsionless
case. It is evident that the presence of torsion should lead to
more general results.

When the torsion terms are dropped out, it is easy to
see that we obtain the ordinary Friedmann equation. Before
doing this, let us just make a simplification on the ELKO
field. As has been done in recent works [52–54,57,65], we
will restrict the ELKO spinor field to the form λ ≡ φ(t)ξ and
¬
λ≡ φ(t)

¬
ξ , where ξ and

¬
ξ are constant spinors.1 Then, in the

torsion-free case, we have h → 0, f → 0, ρ̃ → ρm + ρφ ,
and p̃ → pm + pφ , where the subscripts m and φ indicate,
respectively, the DM and ELKO field contributions to the
energy density and pressure.

Thus, the FLRW equations in a spatially flat background
without torsion are given by

H2 = κ2

3
(ρm + ρφ), (12)

Ḣ = −κ2

2
(ρm + pm + ρφ + pφ). (13)

We will assume that the DM and ELKO field satisfy equa-
tions of state of the form pm = ωmρm and pφ = ωφρφ ,
respectively. Due to the homogeneity of the field (∂iφ = 0),
the equation of motion that follows from (2) is substantially
simplified to

φ̈ + 3H φ̇ − 3

4
H2φ + V,φ = 0, (14)

where V,φ ≡ dV/dφ. The pressure and energy density of the
ELKO field are given by [54]:

pφ = 1

2
φ̇2 − V (φ) − 3

8
H2φ2 − 1

4
Ḣφ2 − 1

2
Hφφ̇, (15)

ρφ = 1

2
φ̇2 + V (φ) + 3

8
H2φ2 . (16)

1 In [62] exact solutions have been presented to the ELKO spinor in
spatially flat FLRW expanding spacetimes, and it has been shown that
such factorization of the ELKO field time component is possible for
some types of scale factors.
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The continuity equations for DM and ELKO field are:

ρ̇m + 3H(1 + ωm)ρm = Q, (17)

ρ̇φ + 3H(1 + ωφ)ρφ = −Q, (18)

where Q stands for a possible interaction term between the
DM and ELKO field. If Q = 0, there is no interaction and
both components evolve separately. If Q > 0, the ELKO field
decays into DM, an interesting scenario as regards inflation,
and if Q < 0, DM decays into the ELKO field (or DE).

Exact solutions to the system of coupled equations (14)–
(18) are not available. For this reason we make a stability
analysis based on a dynamical system approach.

We define the new variables

x = κφ̇√
6H

, y = κ
√

Ṽ√
3H

, v = κ
√

ρm√
3H

, (19)

where we have redefined the potential as Ṽ = V + 3
8 H2φ2.

The Friedmann equation (12) can be written as a constraint
equation

x2 + y2 + v2 = 1, (20)

or in terms of the densities parameters, �φ +�m = 1, where

�φ = κ2ρφ

3H2 = x2 + y2, �m = κ2ρm

3H2 = v2 . (21)

Equations (13), (17), and (18) can be written as a dynam-
ical system of the form

x ′ = 3

2
(ωm − ωφ)v2x −

[
3

2
(1 + ωφ) + λ

2H

]
y2

x
− Q1

x
,

(22)

v′ = 3

2
(ωφ − ωm)(1 − v2)v + Q1

v
, (23)

y′ =
(

3

2
(1 + ωφ) + 3

2
(ωm − ωφ)v2 + λ

2H

)
y (24)

where λ = ˙̃V
Ṽ

, Q1 = κ2 Q
6H3 , and ′ stands for the derivative with

respect to N ≡ ln a, such that f ′ = ḟ /H for any function
f .

It is easy to see that the simple change of variables (19)
should not be sufficient to rewrite the Friedmann equations
(10) and (11) in a simple form with the torsion terms. At least
two new variables would be necessary concerning f and h,
and also the system of Eqs. (22)–(24) would be much more
complicated in the torsion case.

3 Stability analysis

The stability analysis of the above set of dynamical equations
consists of finding fixed points x̄ , v̄, and ȳ that make x ′, v′,
and y′ equal to zero. In the last section we have defined a
three dimensional system according to our variable choice.

However, due to the Friedmann constraint (20) the system
can be reduced to a two dimensional one.

Before we proceed, let us examine carefully the dynamical
system (22)–(24). We see that, in addition to the dynamical

variables x , v, and y we also have the factor λ
2H = Ṽ ′

2Ṽ
. The

presence of the ′ derivative shows that such term is also a
dynamical variable, which should also be taken into account.
However, Ṽ depends on the potential, but the potential is not
specified in our analysis, thus we cannot deal with this new
variable. In order to avoid this problem, we set the additional
assumption related to the potential, − λ

2H ≡ δ, where δ is
a constant parameter. Such an imposition just reflects our
ignorance on the potential V (φ).

Now it is easy to see that the resulting dynamical system,
for a given interaction Q1(x, v, y), is written in terms of the
dynamical variables x , v, y, and the constants ωm , ωφ , and δ.
In order to analyze the stability of this system around the fixed
points x̄ , v̄, and ȳ we must study the system satisfying x ′ = 0,
v′ = 0, and y′ = 0. Notice that Eq. (24) is independent of
the interaction Q1, thus the condition y′ = 0 can be achieved
only if ȳ = 0 or − λ

2H = δ = 3
2 (1 + ωφ) + 3

2 (ωm − ωφ)v̄2.
The first condition can be satisfied only if Ṽ = 0 (see (19)),
but from the definition of λ this leads to a divergent λ. So,
we restrict ourselves to the second condition, namely

δ = 3

2
(1 + ωφ) + 3

2
(ωm − ωφ)v̄2, (25)

where y′ = 0 even for ȳ �= 0. By imposing the above con-
dition on the dynamical system (22)–(24) we are left with a
2 × 2 system, since y′ = 0 is always satisfied:

x ′ =
[

3

2
(1 + ωφ) − δ + 3

2
(ωm − ωφ)v2

]
x

+
[
δ − 3

2
(1 + ωφ)

]
(1 − v2)

x
− Q1

x
, (26)

v′ = 3

2
(ωφ − ωm)(1 − v2)v + Q1

v
, (27)

where we have also used the Friedmann constraint (20).
In order to study such a dynamical system it is worth to

define its linearized matrix, with which one can determine
the stability of a fixed point by just analyzing its determinant
and trace. Such a mechanism is ensured by the Hartmann–
Grobman theorem [71]. Thus, in the neighborhood of the
fixed points we take infinitesimal displacements of the vari-
ables from the fixed points, x → x̄ + δx and y → v̄ + δv,
so that(

δx ′
δv′

)
= M

(
δx
δv

)
(28)

where M is given by

M =
(

a b
c d

)
(29)
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and

a = −
[
δ − 3

2
(1 + ωφ)

]
(1 − v̄2)

x̄2 + Q1

x̄2 − 1

x̄

∂ Q1

∂ x̄
(30)

b = ∂x ′

∂v
= 3(ωm − ωφ)x̄ v̄ + [3(1 + ωφ) − 2δ] v̄

x̄
− 1

x̄

∂ Q1

∂v̄
,

(31)

c = ∂v′

∂x
= 1

v̄

∂ Q1

∂ x̄
, (32)

d = ∂v′

∂v
= 3

2
(ωφ − ωm)(1 − 3v̄2) − Q1

v̄2 + 1

v̄

∂ Q1

∂v̄
. (33)

All variables carry a bar over them to show that the matrix
M is taken at the stable points which solve the system.

There is a simple way to know if the system described by
the matrix M is stable or not. It depends on the values of
the determinant (�) and also on the trace (τ ) of such matrix.
When � > 0, both eigenvalues have the same sign and if they
are positive, the solution increases with time, indicating that
the solutions diverge from the fixed point and consequently
this point is classified as unstable. On the other hand, when
both eigenvalues are negative, the solution goes to zero and
the fixed point is stable. In order to know what kind of fixed
point we are dealing with, it is necessary to check the value
of the trace of matrix M . When τ > 0, it means that both
eigenvalues are greater than zero, describing unstable points.
However, when τ < 0 we see that they are negative and the
point is stable. For the case where � < 0 we see that both
eigenvalues have opposite signs and then the fixed point is
in fact a saddle point. Finally, when � = 0, at least one of
the eigenvalues is zero and consequently nothing can be said
about the stability of system.

Let us return to the dynamical system. Together with
Eqs. (26) and (27), the assumption − λ

2H = δ leads to the
new constraint for the fixed point v̄, according to (25):

v̄ =
√

2δ − 3(1 + ωφ)

3(ωm − ωφ)
. (34)

But it is easy to see that such a constraint already determines
the value of the fixed point v̄, since it depends only on the
fixed parameters ωm , ωφ and δ. Thus, in order to also sat-
isfy the dynamical equation (27), we have verified that this
restriction tells us that Q1, which represents the interaction,
could not assume an arbitrary value, since Eq. (27) would
not be always solved for an arbitrary Q1. In other words, we
have found that when Q1 does not depend on x , not all fixed
v̄ that make Eq. (27) vanish also satisfy (34), except for some
very specific relations among the parameters ωm , ωφ , and δ.
Such a restriction on the interaction term Q1 is not so strong,
since the variable x is proportional to φ̇, which characterizes
the time variation of the field φ, which is reasonable for an
interacting theory.

In the following, the stability conditions will be analyzed
for different interaction terms between DM and ELKO field.
The interaction terms are characterized by a dimensionless
coupling constant β. We will search for the stability con-
ditions between the parameters δ and β for different equa-
tion of state parameters ωm and ωφ . Besides stability con-
ditions characterized by negative eigenvalues of the matrix
of perturbation M , we impose the additional reality condi-
tion on the parameters (19), namely we will impose x̄2 > 0,
v̄2 > 0, and ȳ2 > 0. As particular cases, we will discuss
the physical content concerning the present time, charac-
terized by v̄2 = �m 	 0.315, x̄2 + ȳ2 = �φ 	 0.685,
and ωm = 0 according to recent observations based on the
�CDM model [72]. We will also analyze the inflationary
phase, where we believe there is no matter contribution, cor-
responding to v̄2 → 0.

3.1 Q1 = 0 and Q1 = β

For the case Q1 = 0 there is no interaction between the DM
and the ELKO field, thus they evolve independently. The
fixed points that follow from the analysis of the system (22)
to (24) and satisfy x ′ = 0, v′ = 0, and y′ = 0 are given just
by x̄ = 1, v̄ = 0, and ȳ = 0, which does not represent a
scaling solution, in the sense that does not admit a mixture
of fluids. Besides that our model is valid just for ȳ �= 0 and
v̄ given by (34).

For the case Q1 = β, a constant interaction term, we have
scaling solutions of the form x̄ �= 0, v̄ �= 0, and ȳ = 0,
which could admit a mixture of the fluids, but the condition
ȳ = 0 shows that the potential part of the ELKO field is null
according to (19), leading to Ṽ = 0, and as discussed earlier,
this leads to a divergence in the λ term, but we have defined
it as proportional to the constant δ, so we will discard such a
kind of fixed point in our analysis. We are interested only in
fixed points that satisfy x̄ �= 0, v̄ �= 0, and ȳ �= 0, which are
scaling solutions and do not have null potential contributions.

3.2 Q1 = βx2

Such an interaction between DM and ELKO field corre-
sponds to Q = βH φ̇2, where β is a dimensionless parameter.

From the analysis of the system of Eqs. (26) and (27), the
fixed points are given by [x̄, ȳ, v̄], with

x̄ =
√

(3 + 3ωm − 2δ)(3 + 3ωφ − 2δ)

6β(ωφ − ωm)
, (35)

ȳ =
√

(2δ − 3ωm − 3)(2β − 2δ + 3ωφ + 3)

6β(ωφ − ωm)
, (36)

and v̄ is given by (34), which is valid for all interactions.
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Table 1 Stability conditions for some equation of state parameters of DM and ELKO field, corresponding to the interaction Q1 = βx2

ELKO Spinor

Vacuum (ωφ = −1) Dust
(ωφ = 0)

Radiation
(ωφ = 1/3)

Ultrarelativistic
(ωφ = 1)

Matter

Vacuum (ωm = −1) – No stable point No stable point No stable point

Dust (ωm = 0) δ ≤ 3/2 if β ≥ 3/2 or δ < β if β < 3/2 – No stable point No stable point

Radiation (ωm = 1/3) δ ≤ β if β ≤ 2 or δ < 2 if β > 2 δ ≤ 2 if β ≥ 1/2
or δ < 3/2 + β

if β < 1/2

– No stable point

Ultrarelativistic (ωm = 1) δ ≤ 3 if β ≥ 3 or δ < β if β < 3 δ ≤ 3 if β ≥ 3/2
or δ < β + 3/2
if β < 3/2

δ ≤ 3 if β ≥ 1 or
δ < β + 2 if
β < 1

–

The determinant � and the trace τ of the matrix of the
linearized system (28) to (33) are given by

� = 4δ2 − 2δ(2β + 6 + 3(ωm + ωφ)) + 6β(1 + ωm)

+9(1 + ωmωφ + ωm + ωφ), (37)

τ = 4δ − 2β − 6 − 3(ωm + ωφ). (38)

The stability of the fixed points, namely � > 0 and τ < 0,
is related with the values of δ, β, ωm , and ωφ . Table 1 presents
the above conditions plus the reality conditions for the fixed
points, namely x̄2 > 0, v̄2 > 0, and ȳ2 > 0 for some specific
values of the equation of state parameter for both DM (ωm)
and the ELKO field (ωφ).

Now let us analyze Table 1. We are interested in two dif-
ferent epochs, namely the inflation and the late time acceler-
ation epochs. The first one corresponds to an universe with-
out DM and totally filled with the ELKO field. This means
v̄2 = �m = 0 and ωm = 0, which leads to δ = 3

2 (1 + ωφ).
By replacing into x̄ and ȳ we obtain x̄2 = 0 and ȳ2 = 1,
which shows that all the contributions should come from the
potential part Ṽ and also we should have φ̇ = 0 from (19),
but our interaction term Q ∼ φ̇, thus we conclude that such
a condition cannot be applied to inflation.

On the other hand, for the present time such variables
are given by v̄2 = �m = 0.315 and x̄2 + ȳ2 = �φ =
0.685 according to the �CDM model, and besides that we
must have ωm = 0. From (34) we conclude that: (i) δ 	
0.47 if ωφ = −1–from the corresponding cell in Table 1
(ωφ = −1, ωm = 0), we see that if β � 0.47 the system is
stable around the fixed points, and such a positive value of β

corresponds to decay of ELKO field into DM; (ii) δ 	 1.84
if ωφ = 1/3, but there is no solution for β from Table 1 in
this case; and (iii) δ 	 2.53 if ωφ = 1, which has no solution
for β too. We conclude that, for the present time, the only
possibility in order to have stable fixed points is β � 0.47,
leading to decay of ELKO field into DM for an equation of
state parameter ωφ = −1, that is, the ELKO field behavior
must be of vacuum type. Notice that other stability conditions

are possible if the equation of state parameter of dark matter
is of radiation or ultrarelativistic type.

The case ωm = ωφ has no physical meaning since both
fluids have the same equation of state parameter; thus they
are thermodynamically identical.

3.3 Q1 = βv2x2

For this interaction we have Q = 1
3κ2 Hβρm φ̇2. The fixed

points are [x̄, ȳ, v̄], with

x̄ =
√

3 + 3ωm − 2δ

2β
, (39)

ȳ =
√

(2δ − 3ωm − 3)(2β − 3ωm + 3ωφ)

6β(ωφ − ωm)
, (40)

and v̄ is given by (34). From the linearized matrix one finds

� =
(

4 − 8β

3(ωm − ωφ)

)
δ2 + 1

ωm − ωφ

×[(8 + 4ωm + 4ωφ)β − 6(ω2
m − ω2

φ + 2ωm − 2ωφ)]δ
+ 1

ωm − ωφ

[−6β(1 + ωφ + ωm + ωφωm)

−9(ωφ − ωm + ω2
φ − ω2

m + ωmω2
φ − ωφω2

m)], (41)

τ =
(

2 − 4β

3(ωm − ωφ)

)
δ + 1

ωm − ωφ

[2β(1 + ωφ)

−3(ωm − ωφ − ω2
φ + ωmωφ). (42)

Table 2 shows the stability conditions for some specific
values of ωm and ωφ .

For the inflationary epoch (v̄2 = 0 and ωm = 0), we have
the same condition for δ, namely δ = 3

2 (1 + ωφ). From the
corresponding cell in Table II it is easy to see that ωφ = −1 is
the only possible condition of stability, which leads to δ = 0,
but such a value of δ is not possible from Table II if ωm = 0.

For the present time we have v̄2 = �m = 0.315. As the
previous case, from (34) we have: (i) δ 	 0.47 if ωφ = −1,
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Table 2 Stability conditions for some equation of state parameters of DM and ELKO field, corresponding to the interaction Q1 = βv2x2

ELKO Spinor

Vacuum (ωφ = −1) Dust (ωφ = 0) Radiation
(ωφ = 1/3)

Ultrarelativistic
(ωφ = 1)

Matter

Vacuum (ωm = −1) – No stable point No stable point No stable point

Dust (ωm = 0) 18
2β+9 < δ < 3

2 if β > 3
2 – No stable point No stable point

Radiation (ωm = 1/3) 16
β+6 < δ < 2 if β > 2 (6β+13)

4β+6 < δ < 2

if β > 1
2

– No stable point

Ultrarelativistic (ωm = 1) 36
β+9 < δ < 3 if β > 3 3

2
2β+21
2β+9 < δ < 3

if β > 3
2

2(β+5)
β+3 < δ < 3
if β > 1

–

which is possible if β � 14.6 and implies a positive value
of β, consequently the decay of ELKO field into DM. The
other cases: (ii) δ 	 1.84 if ωφ = 1/3, and (iii) δ 	 2.53 if
ωφ = 1 do not present stable solutions if ωm = 0.

3.4 Q1 = β(x2 + y2)x2

For this interaction we have Q = 1
3

κ2

H βρφφ̇2.
The fixed points are [x̄, ȳ, v̄], with

x̄ =
√

2δ − 3 − 3ωφ

2β
, (43)

ȳ =
√

2δ(2β + 3ωm − 3ωm) − 6β(1 + ωm) + 9(ω2
φ − ωmωφ − ωm + ωφ)

6β(ωφ − ωm)
, (44)

and v̄ given by (34).
From the linearized matrix one finds

� =
(

4 + 8β

3(ωm − ωφ)

)
δ2 − 1

ωm − ωφ

[8β(1 + ωm)

+6(ω2
m − ω2

φ + 2ωm − 2ωφ)]δ
+ 1

ωm − ωφ

[6β(1 + ω2
m + 2ωm)

+27(ωφω2
m + ω2

m − ω2
φωm + ωm − ω2

φ − ω2
φ − ωφ)],

(45)

τ =
(

2 + 4β

3(ωm − ωφ)

)
δ + 1

ωm − ωφ

[−2β(1 + ωm)

−3(ωm − ωφ + ω2
m − ωmωφ)]. (46)

Table 3 shows the stability conditions for some types of ωm

and ωφ .
For the inflationary epoch (v̄2 = 0 and ωm = 0) we have

x̄2 = 0 and ȳ2 = 1, which shows that the contribution comes
only from the potential part. The kinetic part is null, but the
interaction is proportional to φ̇2; thus this interaction does
not apply to inflation.

Considering the present time (v̄2 = 0.315) we have: (i)
δ 	 0.47 if ωφ = −1 – we have verified that for β � 0.69
we have x̄2 > 0 and ȳ2 > 0, which represents stable fixed
points. The cases (ii) δ 	 1.84 if ωφ = 1/3, and (iii) δ 	 2.53
if ωφ = 1 do not present stable fixed points for ωm = 0.

3.5 Q1 = β(v2 − y2)

The corresponding interaction is Q = 2βH(ρm −ρφ + 1
2 φ̇2).

The fixed points are [x̄, ȳ, v̄], with

x̄ =
√

4δ2 + 2δ(4β − 6 − 3(ωm + ωφ)) − 6β(2 + ωm + ωφ) + 9(1 + ωm + ωφ + ωmωφ)

6β(ωφ − ωm)
, (47)
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Table 3 Stability conditions for some equation of state parameters of DM and ELKO field, corresponding to the interaction Q1 = β(x2 + y2)x2

ELKO Spinor

Vacuum (ωφ = −1) Dust (ωφ = 0) Radiation
(ωφ = 1/3)

Ultrarelativistic
(ωφ = 1)

Matter

Vacuum (ωm = −1) – No stable point No stable point No stable point

Dust (ωm = 0) 0 < δ <
3β

3+2β
if β > 0 – No stable point No stable point

Radiation (ωm = 1/3) 0 < δ <
2β

2+β
if β > 0 3

2 < δ <
3+8β
2+4β

if
β > 0

– No stable point

Ultrarelativistic (ωm = 1) 0 < δ <
3β

3+β
if β > 0 3

2 < δ <
9+12β
6+4β

if β > 0
2 < δ <

2+3β
1+β

if
β > 0

–

ȳ =
√

(2δ − 3 − 3ωφ)(2δ + 2β − 3 − 3ωm)

6β(ωm − ωφ)
, (48)

and v̄ given by (34).
The determinant and trace are given by

� = 4δ2 + 2δ(2β − 6 − 3(ωφ + ωm)) − 6β(1 + ωφ)

+9(1 + ωm + ωφ + ωmωφ), (49)

τ = 4δ − 6 + 2β − 3(ωm + ωφ). (50)

Table 4 shows the stability conditions for some specific val-
ues of ωm and ωφ .

For the inflationary epoch (v̄2 = 0 and ωm = 0), we have
the same condition for δ, namely δ = 3

2 (1 + ωφ). Contrary
to the previous cases, we see that ωφ = −1 is not a stable
solution. For ωφ = 1/3 we have δ = 2, which is a stable
solution corresponding to β = −1/2, representing the decay
of DM into the ELKO field. But we have inferred v̄2 = 0,
thus there is no matter to decay at the inflation epoch. For
ωφ = 1 we have δ = 3, but the stability condition requires
δ < 3 from the corresponding cell in Table IV. We conclude
that such an interaction does not present stable points for the
inflation.

For the present time we have v̄2 = 0.315 and ωm = 0.
As in the previous case, we have: (i) δ 	 0.47 if ωφ = −1,
which has no stable solution; (ii) δ 	 1.84 if ωφ = 1/3,
and it is easy to see from Table IV that such a value of
δ is possible for a negative value of β – for instance, if
β = −1/2 the condition for δ is 1.69 � δ � 2; and
(iii) δ 	 2.53 if ωφ = 1, and for this condition we also
have stable solution for a negative β, as can be seen from
Table IV. If β = −3/2 for instance, the condition on δ is
2.07 � δ � 3.0, which includes δ 	 2.53. Thus, contrary to
the previous cases, if the ELKO equation of state parameter
is of radiation or ultrarelativistic type, the system presents
stable solutions if β is negative, which corresponds to the
decay of DM into ELKO field. The present acceleration of
the universe can be understood in this model as the decay
of dark matter into ELKO particles. This is a very interest-

ing scenario which also alleviates the cosmic coincidence
problem.

4 Concluding remarks

In this work we have developed a new approach to study the
stability of a system composed by an ELKO field interact-
ing with DM, which could give some contribution in order to
alleviate the cosmic coincidence problem. Since recent works
[65–68] have not found stable points for such system for dif-
ferent dynamic variables and interactions terms, we are led to
believe (without demonstration) that the system ELKO-DM
does not allow stable points. Based on these results, we have
supposed there to be an additional constraint to the dynamical
system, namely that the potential of the ELKO field is related
to a constant parameter δ; then we have analyzed the stability
conditions for such a new system. We have also assumed that
both the ELKO field and the dark matter energy density are
related to the pressure by equations of state parameters ωφ

and ωm , respectively. We have found different stability con-
ditions relating the parameter δ and the interaction parameter
β, which states if the decay is from DM to ELKO (β < 0) or
from ELKO to DM (β > 0). Different values of ωφ and ωm

corresponding to vacuum, dust, radiation, and ultrarelativis-
tic equation of state parameter are presented in Tables 1, 2,
3, 4 for different interaction terms, showing the conditions
for the existence of stable points.

For the first three tables, corresponding to the interactions
Q1 = βx2, Q1 = βv2x2, and Q1 = β(x2 + y2)x2, the con-
ditions for stable fixed points in order to satisfy the present
stage of acceleration (with ωm = 0) are given by positive β

and δ parameters and also require an equation of state param-
eter for the ELKO field of vacuum type (ωφ = −1). Positive
values of β means the decay of ELKO field into DM parti-
cles. Such conditions could alleviate the cosmological coin-
cidence problem. The inflationary phase cannot be driven for
these interactions if we set ωm = 0 and v̄2 = 0. Other pos-
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Table 4 Stability conditions for some equation of state parameters of
DM and ELKO field, corresponding to the interaction Q1 = β(v2−y2).
We have defined the following parameters: δ1 = 3

4 −β − 1
4

√
9 + 16β2;

δ2 = 1 − β − √
1 + β2; δ3 = 3

2 − β − 1
2

√
9 + 4β2; δ4 = 7

4 − β −
1
4

√
1 + 16β2; δ5 = 9

4 − β − 1
4

√
9 + 16β2; δ6 = 5

2 − β − 1
2

√
1 + 4β2

ELKO Spinor

Vacuum
(ωφ = −1)

Dust (ωφ = 0) Radiation
(ωφ = 1/3)

Ultrarelativistic
(ωφ = 1)

Matter

Vacuum
(ωm = −1)

– δ1 < δ < −β

if − 3
2 ≤ β < 0

or δ1 < δ < 3
2

if β < − 3
2

δ2 < δ < −β

if −2 ≤ β < 0
or δ2 < δ < 2
if β < −2

δ3 < δ < −β

if −3 ≤ β < 0
or δ3 < δ < 3
if β < −3

Dust (ωm = 0) No stable point – δ4 < δ < 3
2 − β

if − 1
2 ≤ β < 0

or δ4 < δ < 2
if β < − 1

2

δ5 < δ < 3
2 − β

if − 3
2 ≤ β < 0

or δ5 < δ < 3
if β < − 3

2

Radiation
(ωm = 1/3)

No stable point No stable point – δ6 < δ < 2 − β

if −1 ≤ β < 0
or δ6 < δ < 3
if β < −1

Ultrarelativistic
(ωm = 1/3)

No stable point No stable point No stable point –

sibilities are allowed if the equation of state parameters of
DM and ELKO field are of radiation or ultrarelativistic type.
Another interesting aspect that follows from Tables 1, 2, 3 is
that there are no stable fixed points if ωφ > ωm .

For the last interaction, namely Q1 = β(v2−y2), we have
the opposite. The conditions for stable fixed points in order to
satisfy the present stage of acceleration are given by negative
β and positive δ parameters. The equation of state parame-
ter for the ELKO field must be of radiation (ωφ = 1/3) or
ultrarelativistic (ωφ = 1) type. The case ωφ = −1 does
not present stable fixed points. Negative values of β mean
the decay of DM particles into ELKO field. Such conditions
also could alleviate the cosmological coincidence problem,
and the equation of state parameter of ELKO field is not of
exotic type. The inflationary phase cannot be driven for this
interaction too. Other possibilities are allowed if the equation
of state parameters of DM and ELKO field are of radiation or
ultrarelativistic type. Another interesting aspect that follows
from Table IV is that, contrary to the previous cases, there
are no stable fixed points if ωφ < ωm .

In such an analysis the interaction Q must be proportional
to the variable x , otherwise the relations among the param-
eters must be very restrictive. But such condition is not so
strong, since the variable x is proportional to φ̇, which char-
acterizes a time dependence of the field φ, and it is reasonable
for an interacting theory. Notice that all the interactions stud-
ied are proportional to φ̇2. For all the interactions analyzed
here there are conditions of stability in order to alleviate the
cosmic coincidence problem. Such kinds of interactions and
conditions on the parameters β and δ open possibilities for

future searches concerning the interaction between DM and
ELKO field for specific potentials satisfying the conditions
presented in the tables.

Finally, a general theory that includes torsion in ELKO
cosmology is of great interest, and in fact it may be the
one responsible for the late time acceleration of the universe
[69,70]. From a dynamical system approach the system of
dynamical equation should be rewritten for new variables,
certainly with some interesting consequences, but this is left
for future.
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