352 research outputs found

    Universal multifractal description of an hourly rainfall time series from a location in southern Spain

    Get PDF
    El formalismo multifractal de turbulencia ha sido usado para llevar a cabo el anålisis de la estructura temporal, para escalas desde 1 hora hasta casi 6 meses, de la serie de datos de lluvia horaria registrada durante veinticuatro años en Córdoba, localidad situada en el sur de España. Los paråmetros del modelo multifractal universal fueron estimados y se obtuvo la función teórica de los momentos estadísticos. Se encontró un buen ajuste a la función empírica para un intervalo de valores de momentos, demostråndose que el modelo multifractal universal resulta adecuado para describir estadísticamente la serie temporal de lluvia registrada en CórdobaMultifractal turbulence formalism has been used to perform an analysis for scales from 1 hour to almost 6 months of the time structure of the hourly rainfall series recorded during twenty-four years in Córdoba, a location in southern Spain. The parameters of the universal multifractal model were estimated and the theoretical moments scaling exponent function was obtained exhibiting an acceptable agreement with the empirical function for a range of moments. The universal multifractal model shown itself to be a suitable tool for describing the statistics of the rainfall series recorded in Córdob

    Assessing Machine Learning Models for Gap Filling Daily Rainfall Series in a Semiarid Region of Spain

    Get PDF
    The presence of missing data in hydrometeorological datasets is a common problem, usually due to sensor malfunction, deficiencies in records storage and transmission, or other recovery procedures issues. These missing values are the primary source of problems when analyzing and modeling their spatial and temporal variability. Thus, accurate gap-filling techniques for rainfall time series are necessary to have complete datasets, which is crucial in studying climate change evolution. In this work, several machine learning models have been assessed to gap-fill rainfall data, using different approaches and locations in the semiarid region of Andalusia (Southern Spain). Based on the obtained results, the use of neighbor data, located within a 50 km radius, highly outperformed the rest of the assessed approaches, with RMSE (root mean squared error) values up to 1.246 mm/day, MBE (mean bias error) values up to −0.001 mm/day, and R2 values up to 0.898. Besides, inland area results outperformed coastal area in most locations, arising the efficiency effects based on the distance to the sea (up to an improvement of 63.89% in terms of RMSE). Finally, machine learning (ML) models (especially MLP (multilayer perceptron)) notably outperformed simple linear regression estimations in the coastal sites, whereas in inland locations, the improvements were not such significant

    AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models

    Get PDF
    Accurately forecasting reference evapotranspiration (ET0) values is crucial to improve crop irrigation scheduling, allowing anticipated planning decisions and optimized water resource management and agricultural production. In this work, a recent state-of-the-art architecture has been adapted and deployed for multivariate input time series forecasting (transformers) using past values of ET0 and temperature-based parameters (28 input configurations) to forecast daily ET0 up to a week (1 to 7 days). Additionally, it has been compared to standard machine learning models such as multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), extreme learning machine (ELM), convolutional neural network (CNN), long short-term memory (LSTM), and two baselines (historical monthly mean value and a moving average of the previous seven days) in five locations with different geo-climatic characteristics in the Andalusian region, Southern Spain. In general, machine learning models significantly outperformed the baselines. Furthermore, the accuracy dramatically dropped when forecasting ET0 for any horizon longer than three days. SVM, ELM, and RF using configurations I, III, IV, and IX outperformed, on average, the rest of the configurations in most cases. The best NSE values ranged from 0.934 in CĂłrdoba to 0.869 in Tabernas, using SVM. The best RMSE, on average, ranged from 0.704 mm/day for MĂĄlaga to 0.883 mm/day for Conil using RF. In terms of MBE, most models and cases performed very accurately, with a total average performance of 0.011 mm/day. We found a relationship in performance regarding the aridity index and the distance to the sea. The higher the aridity index at inland locations, the better results were obtained in forecasts. On the other hand, for coastal sites, the higher the aridity index, the higher the error. Due to the good performance and the availability as an open-source repository of these models, they can be used to accurately forecast ET0 in different geo-climatic conditions, helping to increase efficiency in tasks of great agronomic importance, especially in areas with low rainfall or where water resources are limiting for the development of crops

    Measuring neutrino masses with a future galaxy survey

    Full text link
    We perform a detailed forecast on how well a Euclid-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5 sigma to 2.5 sigma significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from Planck. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor Planck+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to sum m_nu, Euclid-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias (< 1 sigma) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Delta chi_eff ^2< 1).Comment: v1: 29 pages, 10 figures. v2: 33 pages, 12 figures; added sections on shape evolution and constraints in more complex models, accepted for publication in JCA

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    Get PDF
    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≄5% w/w BnM or ≄1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4-7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity for the remediation of COPR related Cr(VI) contamination, with the synthetic nZVI demonstrating greater reactivity than the BnM. However, the biosynthesized BnM was also capable of significant Cr(VI) reduction and demonstrated a greater efficiency for the coupling of its electrons towards Cr(VI) reduction than the nZVI
    • 

    corecore