903 research outputs found
Trajectory versus probability density entropy
We study the problem of entropy increase of the Bernoulli-shift map without
recourse to the concept of trajectory and we discuss whether, and under which
conditions if it does, the distribution density entropy coincides with the
Kolmogorov-Sinai entropy, namely, with the trajectory entropy.Comment: 24 page
Comorbid diabetes and copd: impact of corticosteroid use on diabetes complications
OBJECTIVE: To identify if there is a dose-dependent risk of diabetes complications in patients treated with corticosteroids who have both diabetes and chronic obstructive pulmonary disorder (COPD). RESEARCH DESIGN AND METHODS: A retrospective study of administrative claims data from the Australian Government Department of Veterans' Affairs, from 1 July 2001 to 30 June 2008, of diabetes patients newly initiated on metformin or sulfonylurea. COPD was identified by dispensings of tiotropium or ipratropium in the 6 months preceding study entry. Total corticosteroid use (inhaled and systemic) in the 12 months after study entry was determined. The outcome was time to hospitalization for a diabetes-related complication. Competing risks and Cox proportional hazard regression analyses were conducted with adjustment for a number of covariates. RESULTS: A total of 18,226 subjects with diabetes were identified, of which 5.9% had COPD. Of those with COPD, 67.2% were dispensed corticosteroids in the 12 months from study entry. Stratification by dose of corticosteroids demonstrated a 94% increased likelihood of hospitalization for a diabetes complication for those who received a total defined daily dose (DDD) of corticosteroids≥0.83/day (subhazard ratio 1.94 [95% CI 1.14-3.28], P=0.014), by comparison with those who did not receive a corticosteroid. Lower doses of corticosteroid (<0.83 DDD/day) were not associated with an increased risk of diabetes-related hospitalization. CONCLUSIONS: In patients with diabetes and COPD, an increased risk of diabetes-related hospitalizations was only evident with use of high doses of corticosteroids. This highlights the need for constant revision of corticosteroid dose in those with diabetes and COPD, to ensure that the minimally effective dose is used, together with review of appropriate response to therapy.Gillian E. Caughey, Adrian K. Preiss, Agnes I. Vitry, Andrew L. Gilbert, Elizabeth E. Roughea
Introductory clifford analysis
In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Demographic reconstruction from ancient DNA supports rapid extinction of the great auk
The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species’ geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …