857 research outputs found

    Scientistsʼ warning on climate change and medicinal plants

    Get PDF
    The recent publication of a World Scientistsʼ Warning to Humanity highlighted the fact that climate change, absent strenuous mitigation or adaptation efforts, will have profound negative effects for humanity and other species, affecting numerous aspects of life. In this paper, we call attention to one of these aspects, the effects of climate change on medicinal plants. These plants provide many benefits for human health, particularly in communities where Western medicine is unavailable. As for other species, their populations may be threatened by changing temperature and precipitation regimes, disruption of commensal relationships, and increases in pests and pathogens, combined with anthropogenic habitat fragmentation that impedes migration. Additionally, medicinal species are often harvested unsustainably, and this combination of pressures may push many populations to extinction. A second issue is that some species may respond to increased environmental stresses not only with declines in biomass production but with changes in chemical content, potentially affecting quality or even safety of medicinal products. We therefore recommend actions including conservation and local cultivation of valued plants, sustainability training for harvesters and certification of commercial material, preservation of traditional knowledge, and programs to monitor raw material quality in addition to, of course, efforts to mitigate climate change

    A question of Zhou, Shi and Duan on nonpower subgroups of finite groups

    Get PDF
    A subgroup H of a group G is called a power subgroup of G if there exists a non-negative integer m such that H= . Any subgroup of G which is not a power subgroup is called a nonpower subgroup of G. Zhou, Shi and Duan, in a 2006 paper, asked whether for every integer k (with k at least 3), there exist groups possessing exactly k nonpower subgroups. We answer this question in the affirmative by giving an explicit construction that leads to at least one group with exactly k nonpower subgroups, for all k greater than or equal to 3, and infinitely many such groups when k is composite and greater than 4. Moreover, we describe the number of nonpower subgroups for the cases of elementary abelian groups, dihedral groups, and 2-groups of maximal class

    Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24

    Full text link
    Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1-2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism that controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influences the solar magnetic field during this time differed in character to periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in 2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres

    Comparison of large-scale flows on the Sun measured by time-distance helioseismology and local correlation tracking technique

    Get PDF
    We present a direct comparison between two different techniques time-distance helioseismology and a local correlation tracking method for measuring mass flows in the solar photosphere and in a near-surface layer: We applied both methods to the same dataset (MDI high-cadence Dopplergrams covering almost the entire Carrington rotation 1974) and compared the results. We found that after necessary corrections, the vector flow fields obtained by these techniques are very similar. The median difference between directions of corresponding vectors is 24 degrees, and the correlation coefficients of the results for mean zonal and meridional flows are 0.98 and 0.88 respectively. The largest discrepancies are found in areas of small velocities where the inaccuracies of the computed vectors play a significant role. The good agreement of these two methods increases confidence in the reliability of large-scale synoptic maps obtained by them.Comment: 14 pages, 6 figures, just before acceptance in Solar Physic

    Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    Full text link
    As large--distance rays (say, 10\,-\,2424 ^\circ) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center--annulus travel time difference [δtoi][\delta t_{\rm{oi}}] in the separation range Δ=10\Delta=10\,-\,2424 ^\circ is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1 \pm 0.1\secs, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10\ms extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240\ms at a depth of 2.3\Mm and a peak horizontal flow of 700\ms at a depth of 1.6\Mm.Comment: Solar Physics; 15 pages, 6 figure

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore