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ABSTRACT

The recent publication of a World Scientistsʼ Warning to Hu-

manity highlighted the fact that climate change, absent

strenuous mitigation or adaptation efforts, will have profound

negative effects for humanity and other species, affecting nu-

merous aspects of life. In this paper, we call attention to one

of these aspects, the effects of climate change on medicinal

plants. These plants provide many benefits for human health,

particularly in communities where Western medicine is un-

available. As for other species, their populations may be

threatened by changing temperature and precipitation re-

gimes, disruption of commensal relationships, and increases

in pests and pathogens, combined with anthropogenic habi-

tat fragmentation that impedes migration. Additionally, me-

dicinal species are often harvested unsustainably, and this

combination of pressures may push many populations to ex-

tinction. A second issue is that some species may respond to

increased environmental stresses not only with declines in

biomass production but with changes in chemical content,

potentially affecting quality or even safety of medicinal prod-

ucts. We therefore recommend actions including conserva-

tion and local cultivation of valued plants, sustainability train-

ing for harvesters and certification of commercial material,

preservation of traditional knowledge, and programs to mon-

itor raw material quality in addition to, of course, efforts to

mitigate climate change.

Scientistsʼ Warning on Climate Change and Medicinal Plants

Reviews

Published online: 15.11.2019
Introduction
In 1992, the first “World Scientistsʼ Warning to Humanity” [1]
highlighted the dangerously unsustainable rates of anthropogenic
damage to the atmosphere, topsoil, forests, freshwater and ocean
resources, and biodiversity overall. The 1575 signatories, includ-
ing 99 Nobel laureates, called for stabilization of the human pop-
ulation and reduced consumption to avoid environmental cata-
strophes. In a recent publication entitled “World ScientistsʼWarn-
10
ing to Humanity: a Second Notice” [2], a group including 15364
scientist signatories from 184 countries expressed alarm that in
the years following that publication, few of the ominous trends
highlighted have been adequately addressed, and most have con-
tinued to worsen. Furthermore, the first Warning to Humanity did
not enumerate climate change among the major imminent
threats, only noting that it was unclear whether the effects of
global warming would be tolerable. It is now generally accepted
that climate change is likely to cause substantial disruption to
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both natural and agricultural ecosystems, making our situation
even worse than originally estimated. The Second Warning to Hu-
manity presented up-to-date evidence for the continuing unsus-
tainable loss of major environmental resources on which human-
ity depends and made broad-scale proposals for steps humanity
could take to avoid environmental collapse.

In the wake of this important publication, the Alliance of World
Scientists encouraged the scientific community to continue the
Scientistsʼ Warning campaign by preparing discipline-specific
“Warning” papers highlighting the potential detrimental effects
of climate change on specific aspects of environmental or human
well-being. For example, the first Scientistsʼ Warning discipline-
specific papers included warnings regarding the risk of significant
impacts on wetlands [3], microbial communities [4], and wildfire
regimes [5]. In this Warning paper, we seek to call attention to the
fact that around the world, human populationsʼ access to medici-
nal plants is likely to be threatened by climate change in addition
to the perennial threats of direct anthropogenic habitat loss and
overharvesting.

Medicinal plants are an important component of health care
for most of the worldʼs population: they constitute the primary
materia medica for 70 to 95% of citizens of most developing coun-
tries and are increasingly utilized by large numbers of people re-
siding in wealthier countries [6, 7]. The contribution of medicinal
plants to modern human medicine and their crucial role in tradi-
tional medicine have been documented by many authors. This is
not the place to attempt to review the voluminous literature that
has confirmed useful biological activities to be present in thou-
sands of medicinal plant species, or demonstrated health benefits
in human clinical trials of (minimally) hundreds of species. Suffice
it to say that most of the worldʼs people derive benefit from the
use of medicinal plants (e.g., [8]), either because they are pre-
ferred to or complementary to Western (conventional) medical al-
ternative(s) or because conventional treatments are unaffordable
or inaccessible, and that those people would suffer harm from re-
duced or lost access to effective and affordable medicinal plants.
Additionally, medicinal plants are widely used in traditional veteri-
nary medicine (e.g., [9]), in which the improvement of livestock
health has obvious benefits for their ownersʼ economic security.
Moreover, millions of people earn a living as traditional healers or
collectors or vendors of medicinal plants. The harvest of and trade
in medicinal plants provide an important source of income to both
rural and urban people, as the global export trade value for herbal
ingredients was recently estimated at over US$32.6 billion per
year [10].

Detrimental effects of climate change on medicinal plants and
their users may obviously include decreases in availability, most
dramatically in the extinction of species. Though the concern that
access to plants will be lost through the diminution or loss of plant
populations is emphasized here, it should be noted that some hu-
man populations will also be deprived of access to medicinal
plants through displacement from their traditional homelands as
climate refugees. A second major issue is that climate change may
affect not only the accessibility and productivity of medicinal
plants but the phytochemical content of surviving populations,
especially of alpine plants (e.g., [11]), potentially affecting their
pharmaceutical properties.
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Decreased Availability and Extinction
of Populations

It is well known that many plant species are or soon will be threat-
ened with local or global extinction. A recent study reported that
nearly 600 plant species have gone extinct in the past 250 years
[12]. Even without climate change, wild plant populations are en-
dangered around the world by human activities, especially habitat
destruction and fragmentation (e.g., [13–16]), which create
small, isolated populations that are at higher risk of local extinc-
tion (e.g., [17]). Additional threats include the introduction and
spread of invasive species and exotic pathogens (e.g., [18–20])
and increased herbivory resulting from the extirpation of large
predators (e.g., [21]).

High-value medicinal plants face an additional threat of unsus-
tainable harvesting pressures. For example, the important tonic
herb American ginseng (Panax quinquefolius L.), which is used for
conditions including fatigue, hypertension, and upper respiratory
infections [22–25], is sold in large quantities to the Chinese mar-
ket. Demand is so great that illegal harvesting is a serious prob-
lem, and the species has declined over time in both abundance
and average stature [26–28]. Other slow-growing medicinal
plants, such as snow lotus (Saussurea laniceps Hand.-Mazz.) and
goldenseal (Hydrastis canadensis L.), show similar declines in size
or abundance [29–31]. At worst, commercial harvest and habitat
destruction can result in the complete extinction of a valued spe-
cies, as shown by the case of the North African herb silphium
(probably Ferula sp.), extirpated in classical times [32,33].

Climate change will alter environmental conditions in many lo-
calities such that they are no longer ideal – or survivable – for
some species that now inhabit them. The predicted suitable range
for many species, including medicinal plants, will narrow or move
substantially following expected climate changes [34–39],
though other species will enjoy expansions of potential range. Dis-
tributions of many organisms are already shifting rapidly towards
higher latitudes or elevations [40–42], which increases competi-
tive pressure on existing species in these ranges. Habitat fragmen-
tation increases the risk that a species will be unable to migrate
and will be driven to extinction. For some species, relationships
with pollinators and other commensal organisms may be dis-
rupted by phenological change (e.g., [43–45]). Insect populations
have already been greatly reduced by human activities [46], espe-
cially habitat destruction and pollution from pesticides and other
chemicals, and worsening climate change will exacerbate this
problem.

Conversely, in North America, increased populations of dam-
aging insects (particularly bark beetles) due to warmer winters,
combined with the spread of fungal pathogens such as blister
rust, have decimated millions of hectares of coniferous forests
[47,48]. With continued warming, both plant diseases and exotic
insect pests may increase in range (e.g., [49–51]), with newly ex-
posed populations perhaps being particularly vulnerable (e.g.,
[52]). In Central Canadian black spruce [Picea mariana (Mill.)
Britton, Stearns & Pogenb.] forests, for example, the combined ef-
fects of logging, insect attacks, and fire have changed net primary
productivity, carbon stocks, and soil nitrogen levels [53]. Yet in-
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teractions between insect population dynamics, climate, and
wildfires due to insect-induced tree die-offs are complex, as are
long-term effects of successional dynamics, highlighting the need
for long-term monitoring of selected slow-growing, habitat-spe-
cific medicinal plants within these coniferous forests. It should
further be kept in mind that, not only may climate change in-
crease the damage caused by such factors as drought, fire, pests,
and pathogens, but those influences may in turn increase climate
change, leading to, as yet, inadequately understood but perhaps
catastrophic positive feedback loops. For example, die-off or
greatly reduced productivity of forest trees due to the effects of
climate change could convert forests from carbon sinks into car-
bon sources (e.g., [54–57]), worsening climate change, which in
turn would further exacerbate the factors responsible for forest
die-off.

Medicinal plants will not be exempt from these effects. Exam-
ples where highly suitable habitat for a given species will clearly
decrease receive the most attention (e.g., [36,39]), but some-
times the situation is more complex. For example, ecological
niche modeling (ENM) by You et al. [37] predicted that the geo-
graphic range of Rhodiola quadrifida will contract, but the poten-
tial ranges of other Rhodiola species will expand. In contrast,
Zhang et al. [58], who also used ENM, projected shrinkage of Rho-
diola crenulata populations. Likewise, MaxEnt modeling of three
medicinal asclepiads in Pakistan predicts that each species would
both lose some of its current habitat and gain some new potential
habitat [59]. Though such species may survive by spreading into
newly appropriate habitats, human populations would still suffer
harm if medicinally or economically important plants are lost from
locally accessible lands. For example, “complete loss of habitat”
was predicted for Tylophora hirsuta (Wall.) Wight, used to treat
asthma and urinary retention, in parts of northern Punjab, Khyber
Pakhtun Khuwa, and Baluchistan [59]. Valued medicinal plants
are, likewise, among the species experiencing dramatic phenolog-
ical change [60]. In addition to threatening declines in popula-
tions, phenological changes may also reduce the predictable or
consistent availability of medicines to the peoples who depend
upon them [61,62].

Species in montane ecosystems, and especially nival or subni-
val species, are at greatest risk of habitat loss (e.g., [40,63]), and
future climate changes are predicted to be most severe in north-
ern latitude mountains (e.g., [64]). Alpine meadows, among the
most at-risk plant communities, can encompass both high biodi-
versity and a high percentage of useful plants [65,66], and they
are shrinking, with the warming-influenced upslope encroach-
ment of shrubs [67]. Species growing at the highest altitudes are
believed to be at greatest risk of extinction, because if they are
outcompeted by the lower elevation species now extending their
ranges to higher elevations, they will have “nowhere to go” [66].
As intuitive as the “nowhere to go” hypothesis may be for alpine
and nival medicinal plant species, it may not be universally appli-
cable. Loarie et al. [68] projected that (for those species that do
have somewhere to go) migration may be more successful in
montane areas than in flat lands due to the steeper spatial gra-
dient of temperature change and concomitantly much lesser re-
quired migration velocity; for some species, simply moving from
south-facing to north-facing slopes could permit survival.
12
Arid zone medicinal plants may also be at special risk. Deserts
and arid shrublands are predicted to be among the biomes with
the highest velocities of climate change, making compensatory
migration difficult [68]. As an example, the desert steppe habitat
of one of the most widely used wild medicinal plants in Chinese
medicine, Glycyrrhiza uralensis Fisch., has degraded significantly
in recent decades, attributed to intensifying climate change and
anthropogenic disturbance [69]. The species is traditionally wild
collected in Chinaʼs northern autonomous regions (Inner Mongo-
lia, Ningxia Hui, and Xinjiang Uyghur) but is now classified as an
endangered and nationally protected medicinal plant species,
with harvesting subject to national controls [70,71]. While culti-
vating this plant for its use in Chinese medicine had been viewed
as a possible solution to declining wild populations and shortages,
the content of active ingredients (e.g., glycyrrhizic acid and
liquiritin) of cultivated G. uralensis root is considerably lower than
that of mature (5-year-old) wild roots. Thus, China, a former ma-
jor exporter of this species, has become a major importer in re-
cent years to satisfy quality and quantity requirements for medic-
inal use [72], potentially threatening the sustainability of wild
populations in arid zones of other countries now supplying China
(e.g., Uzbekistan, Kazakhstan, Pakistan, Afghanistan).

Furthermore, climate change will interact additively, some-
times synergistically, and perhaps catastrophically, with other
threats to medicinal plants. For example, Boswellia species, which
produce the culturally and economically important resin frankin-
cense, have already declined substantially due to factors including
farmland expansion, fire, overexploitation for resin and/or wood,
wood-boring beetle infestation, and intensive grazing of seedlings
and young plants, resulting in adult mortality and failure of sap-
ling recruitment [73–75]. A detailed study of 12 northern Ethio-
pian populations of Boswellia papyrifera Hochst. [76] concluded
that if current practices continue, there will be a 50% decline in
frankincense yield within 15 years and a 90% decline in both
tapped and untapped populations within 50 years. If “business as
usual” continues, by 2040 the stem densities of populations in the
Metema and Abergelle districts are predicted to be reduced to as
little as 3 and 11%, respectively, of their current values [77]. Cli-
mate change could compound these predicted declines through
the effects of higher fire intensities on the recruitment from seeds
after periods of higher rainfall. Greater grass biomass and high fire
intensity after 2 preceding years of high rainfall is well known in
southern African savanna [78], but still needs to be built into pre-
dictive models for medicinal plant species in seasonally dry savan-
nas.

Overharvesting for global consumer markets is a particular
threat when combined with climate change. In North America,
the extinction risk for a population of American ginseng of median
size over 70 years was estimated to be 8% over 70 years with har-
vesting alone, 6% with climate change alone, but 65% with the
two combined [28]. Inhabitants of the Colombian Andes reported
that the herb Draba litamo L. Uribe, endemic to the high-altitude
páramo vegetation and a revitalizing tonic traditionally claimed to
convey eternal youth, was increasingly scarce due to the combina-
tion of climate change and commercial harvesting [79]. In Africa,
Pterocarpus angolensis DC. is harvested not only for medicine, with
the bark and roots used to treat a variety of conditions, but for do-
Applequist WL et al. Scientistsʼ Warning on… Planta Med 2020; 86: 10–18



mestic wood use and timber exports (particularly to South Africa
and Asia [80]); other factors responsible for past population de-
clines include habitat loss due to clearing for agriculture, and poor
fire management. Climate change predictions show that Pterocar-
pus angolensis populations will be seriously affected in drier parts
of its range (such as Namibia and Botswana [81]), while in higher
rainfall portions of its range, fungal wilt disease is also affecting
populations [82]. Thus, climate change, habitat loss, logging and
other forms of harvest, grazing, and fire can all interact in season-
ally dry African woodlands to have crushing impacts on vulnerable
species.

Climate change is predicted to have negative impacts on hu-
man health, particularly by the obvious effects of increasing expo-
sure to temperature extremes and contributing to food insecurity
and poorer nutritional status (e.g., [83]). Additional indirect ef-
fects will include extending the range of vector-borne diseases
such as malaria (e.g., [84,85]) and the range and sometimes po-
tency of some toxic or allergenic plants, such as ragweed (Artemi-
sia ambrosiifolia L. [86,87]); pollen counts of other species that
contribute to hay fever appear already to be increasing in re-
sponse to increased carbon dioxide (e.g., [88–90]). These im-
pacts, combined with human population growth, will further in-
crease harvesting pressure on plants used to treat the health con-
ditions that will be exacerbated by climate change. It should be
emphasized that many of the proposed means of preventing the
global extinction of species in general, such as ex situ conservation
and assisted migration to counter the deadly combination of rapid
climate change and habitat fragmentation [91,92], though cer-
tainly of great importance, will do nothing to reduce the harm
that local human populations, especially Indigenous Peoples, will
suffer from decreased availability of or loss of access to economi-
cally and culturally important plants, including medicinal plants.
Changes in Plant Quality or Productivity
Even if a changing climate does not affect a given speciesʼ range,
it may affect its productivity or its quality – in the case of a medic-
inal plant, primarily its potency or chemical composition – either
positively or negatively. While variation in chemical content in
food plants may also be more relevant to human health than is
commonly acknowledged (e.g., [93–96]), the entire purpose for
consumption or other use of medicinal plants is to derive health
benefits from their bioactivities. Those bioactivities arise mainly
from the plantʼs content of secondary metabolites, whether au-
togenous or produced by endophytic symbionts. Therefore, peo-
ple who are deriving benefits from the use of a plant would suffer
if its composition changed in a detrimental or unpredictable way.
This is particularly true for consumers from traditional societies
and less wealthy populations, who lack the resources to perform
elaborate chemical testing to identify such changes and adjust
doses to compensate. Decreased potency of a plant medicine
might well go unnoticed or might be misinterpreted by a new
generation of consumers as inherent lack of efficacy, leading to
abandonment of useful plants.

As noted previously, both climate change and its ecological ef-
fects are predicted to be greatest in montane habitats (e.g., [11,
65,97]), and plants living at the highest altitudes are feared to be
Applequist WL et al. Scientistsʼ Warning on… Planta Med 2020; 86: 10–18
at particular risk of extinction (e.g., [66]). Many high-altitude re-
gions are occupied by populations with limited access to Western
medicine, for whom botanicals are particularly important. Many
medicinal species are traditionally believed to be more potent
when collected from higher altitudes (e.g., [98]), and this has
been confirmed for some important plants, e.g., bush tea (Athrixia
phylicoides DC. [99]), chamomile (Matricaria chamomilla L. [100]),
and arnica (Arnica montana L. [101]). The responsible factors are
usually unknown. An experimental study of arnica found that
temperature had a strong influence on chemical content [102];
contrarily, for bush tea, the correlation between altitude and
chemical content does not appear to be related to temperature
[99]. If montane species whose chemical content is affected by
temperature migrate to higher altitudes and thereby remain in
the same temperature regime, their medicinal quality will not
necessarily improve, but populations that persist at their original
altitudes might decline in quality. Obviously, more information is
needed to understand the relationships between medicinal po-
tency and elevation in individual species.

Expected consequences of climate change in many parts of the
world include harsher weather extremes, such as more intense
droughts, heavy rainfalls, heat waves, and cold snaps [84]. All of
these extremes can impair growth and reproductive success of
plants that are not adapted to such conditions, reducing sustain-
able harvest levels. However, these factors do not have consistent
effects on concentrations of active metabolites. Drought stress
that is not so severe as to kill plants often increases the concentra-
tion of bioactive secondary metabolites, either by decreasing bio-
mass or by increasing actual production of the metabolites. Two
recent literature reviews [103,104] summarize evidence that
drought stress increases the concentration of bioactive com-
pounds in a variety of species; compound classes affected can in-
clude simple and complex phenolic compounds, essential oils and
terpenes, alkaloids, and glucosinolates. In some wild plant prod-
ucts, such as shea butter (from Vitellaria paradoxa Gaertn.), active
metabolites occur at higher levels in drier areas [105].

It is therefore possible that increased drought stress in some
regions would increase the potency of some medicinal plants
from those regions. However, a decrease in biomass with uncon-
trolled natural drought would frequently be so great as to out-
weigh any gains in concentration of active metabolites, even if
those gains were known to consumers and the dosage was de-
creased to compensate. Second, sometimes chemical content is
higher under water stress but lower at high temperature, e.g., in
di huang (Rehmannia glutinosa (Gaertn.) Steud. [106]). If drought
is accompanied by increased temperature, any beneficial effect of
the former on chemical content in such species could be counter-
acted by the latter. High temperatures, like drought stress, may
also lead to an increased concentration of secondary metabolites
as a consequence of a significantly reduced biomass, as has been
shown for American ginseng [107]. If people are accustomed to
harvesting a certain quantity of material, either for personal use
or for sale for economic subsistence, a large decline in biomass
production due to drought and high temperature would result in
severe economic harm and increased unsustainability of harvest
levels.
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Third, increased CO2 levels may at least partially counteract the
metabolic effect of drought. According to a theoretical framework
outlined by Selmar and Kleinwächter [103], drought stress causes
stomatal closure and reduces CO2 available to the plant, which in
turn reduces the amount of NADPH + H+ consumed by the Calvin
cycle and requires that it be consumed instead by increased pro-
duction of secondary metabolites. At high atmospheric CO2 lev-
els, the amount of CO2 available to the plant despite stomatal clo-
sure is greater, so less NADPH + H+ is redirected towards produc-
ing secondary metabolites. In an experimental model using sage
(Salvia officinalis L.), the monoterpene concentration increased
with drought stress but decreased with elevated CO2, so that
when CO2 was elevated, the imposition of drought stress was nec-
essary merely to equal the concentrations in well-watered plants
at ambient CO2 [108]. It should be noted that that model is not
true for all species. Most studies that have reported an increased
concentration of desirable metabolites with elevated CO2 have
not held other growing conditions constant. However, in con-
trolled conditions, increasing CO2 levels led to an increased con-
centration of several flavonoids and phenolic compounds in gin-
ger (Zingiber officinale Roscoe) rhizome [109] and of artemisinin
in sweet Annie or qing hao (Artemisia annua L. [110]).

Finally, if in some species the concentration of plant metabo-
lites did increase sufficiently to compensate for the reduction in
harvestable biomass, this is not always a desirable effect. While
the botanicals tolerated for over-the-counter sale in the West are
generally safe plants, some species used in local and traditional
medical systems around the world, as well as many used by for-
mally trained practitioners, contain levels of toxic compounds
that pose a real risk of harm with excessive use or use by suscepti-
ble individuals. Secondary metabolites reported to increase in
concentration as a result of drought stress include toxic metabo-
lites, e.g., pyrrolizidine alkaloids in Senecio species [111,112]. If
these plants were to become unexpectedly more toxic due to in-
creased environmental stress, increased harm could result. As for
the changes in geographic range and phenology noted above, un-
predictable shifts in a speciesʼ qualities could threaten its usability
as medicine.

Effects of climate change on plants with dual use as food and
medicine, which contribute to peopleʼs health through use as a
staple food, are particularly important to determine. Soybean
has been reported to suffer a 90% reduction in isoflavone content
when grown at elevated temperatures, although the effect can be
partially reversed by the addition of drought stress and elevated
CO2 levels [113]. Several major oilseed crops have lower oil con-
tent when grown at higher temperatures, and the relative propor-
tion of highly unsaturated fatty acids often decreases [114,115].
At least according to current nutritional dogma, the latter effect
could worsen the nutritional quality of the extracted oils (e.g.,
[116–118]), potentially reducing individualsʼ ability to ameliorate
or avoid chronic diseases, especially cardiovascular disease, by
consuming healthful traditional foods. Additionally, crops in many
areas affected by climate change are expected to be more vulner-
able to pathogens, including mycotoxin-producing fungi (e.g.,
[119–122]), threatening both food security and the quality and
short- and long-term safety of staple foods.
14
There can be no doubt that medicinal plants – like all species –
are affected by the multiple changes inflicted by humans on the
environment, especially in highly vulnerable regions such as high
mountain ecosystems. However, experimental or observational
data on changes to medicinal plant populations or their phyto-
chemical constituents and the impact of specific factors (such as
the rise in CO2 or temperature and rainfall changes) on individual
species remain rare. Such studies are urgently needed in order to
come to a better understanding of the true impacts of climate
change on medicinal and other high-value useful plants.
Conclusion and Recommendations
Increased environmental extremes and economic losses due to
climate change are expected to be harmful to public health in
many parts of the world, and, simultaneously, the resilience pro-
vided by access to beneficial medicinal plants is expected to de-
cline. This may be foreseen to contribute to increased human suf-
fering and preventable deaths if steps are not taken quickly. Ideal
would be a reversal of the current trends, and, of course, we advo-
cate strenuous efforts to mitigate climate change in order to re-
duce its negative effects on the biosphere and human communi-
ties worldwide. However, since it appears that mitigation, aggres-
sive and rapid enough to entirely prevent disruptive climate
change, will be politically impossible, efforts focused on adapta-
tion to reduce the harm that will be suffered are also essential,
and often can be undertaken locally. We strongly urge local and
national governments, nongovernmental organizations, and the
public health and ethnobotanical communities to take actions to
help all communities, particularly those who depend upon medic-
inal plants for their health care or income, retain access to high-
quality traditional medicines.

Actions that may help to support medicinal plant populations
include promoting the cultivation of medicinal plants in commu-
nity gardens to maintain local access, preserving and respecting
the value of traditional knowledge about plants and their sustain-
able use, training harvesters in sustainable practices. encouraging
or requiring the use of certification programs for wild-collected
material, especially in international commerce, and implementing
urgent, large-scale conservation programs, including habitat pro-
tection. Regional phytochemical research or quality control pro-
grams that monitor biomarker content in economically important
medicinal plants, especially alpine species, could identify altera-
tions in their content and quality due to climate change, providing
an opportunity to inform consumers and product manufacturers
should there be a need to adjust use patterns. As last resorts, as-
sisted migration and ex situ seedbanking may be essential to pre-
vent permanent global extinction of useful species, but we em-
phasize that those measures will not reduce the harm to present-
day human communities.
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