1,074 research outputs found

    Exclusive Queueing Process with Discrete Time

    Full text link
    In a recent study [C Arita, Phys. Rev. E 80, 051119 (2009)], an extension of the M/M/1 queueing process with the excluded-volume effect as in the totally asymmetric simple exclusion process (TASEP) was introduced. In this paper, we consider its discrete-time version. The update scheme we take is the parallel one. A stationary-state solution is obtained in a slightly arranged matrix product form of the discrete-time open TASEP with the parallel update. We find the phase diagram for the existence of the stationary state. The critical line which separates the parameter space into the regions with and without the stationary state can be written in terms of the stationary current of the open TASEP. We calculate the average length of the system and the average number of particles

    Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level

    Full text link
    The Pfaffian quantum Hall states, which can be viewed as involving pairing either of spin-polarized electrons or of composite fermions, are generalized by finding the exact ground states of certain Hamiltonians with k+1-body interactions, for all integers k > 0. The remarkably simple wavefunctions of these states involve clusters of k particles, and are related to correlators of parafermion currents in two-dimensional conformal field theory. The k=2 case is the Pfaffian. For k > 1, the quasiparticle excitations of these systems are expected to possess nonabelian statistics, like those of the Pfaffian. For k=3, these ground states have large overlaps with the ground states of the (2-body) Coulomb-interaction Hamiltonian for electrons in the first excited Landau level at total filling factors \nu=2+3/5, 2+2/5.Comment: 11 pages Revtex in two column format with 4 eps figures included in the M

    On Delays in Management Frameworks: Metrics, Models and Analysis

    Full text link
    Management performance evaluation means assessment of scalability, complexity, accuracy, throughput, delays and resources consumptions. In this paper, we focus on the evaluation of management frameworks delays through a set of specific metrics. We investigate the statistical properties of these metrics when the number of management nodes increases. We show that management delays measured at the application level are statistically modeled by distributions with heavy tails, especially the Weibull distribution. Given that delays can substantially degrade the capacity of management algorithms to react and resolve problems it is useful to get a finer model to describe them.We suggest theWeibull distribution as a model of delays for the analysis and simulations of such algorithms

    New physics, the cosmic ray spectrum knee, and pppp cross section measurements

    Full text link
    We explore the possibility that a new physics interaction can provide an explanation for the knee just above 10610^6 GeV in the cosmic ray spectrum. We model the new physics modifications to the total proton-proton cross section with an incoherent term that allows for missing energy above the scale of new physics. We add the constraint that the new physics must also be consistent with published pppp cross section measurements, using cosmic ray observations, an order of magnitude and more above the knee. We find that the rise in cross section required at energies above the knee is radical. The increase in cross section suggests that it may be more appropriate to treat the scattering process in the black disc limit at such high energies. In this case there may be no clean separation between the standard model and new physics contributions to the total cross section. We model the missing energy in this limit and find a good fit to the Tibet III cosmic ray flux data. We comment on testing the new physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure

    Energy, interaction, and photoluminescence of spin-reversed quasielectrons in fractional quantum Hall systems

    Full text link
    The energy and photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime are studied. The single-particle properties of reversed-spin quasielectrons (QER_{\rm R}'s) as well as the pseudopotentials of their interaction with one another and with Laughlin quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the short-range character of the QER_{\rm R}--QER_{\rm R} and QER_{\rm R}--QE repulsion, the partially unpolarized incompressible states at the filling factors ν=411\nu={4\over11} and 513{5\over13} are postulated within Haldane's hierarchy scheme. To describe photoluminescence, the family of bound h(h(QER)n_{\rm R})_n states of a valence hole hh and nn QER_{\rm R}'s are predicted in analogy to the found earlier fractionally charged excitons hhQEn_n. The binding energy and optical selection rules for both families are compared. The hhQER_{\rm R} is found radiative in contrast to the dark hhQE, and the h(h(QER)2_{\rm R})_2 is found non-radiative in contrast to the bright hhQE2_2.Comment: 9 pages, 6 figure

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei

    Full text link
    So far no theoretical tool for the comprehensive description of exclusive electroproduction of vector mesons off nuclei at medium energies has been developed. We suggest a light-cone QCD formalism which is valid at any energy and incorporates formation effects (color transparency), the coherence length and the gluon shadowing. At medium energies color transparency (CT) and the onset of coherence length (CL) effects are not easily separated. Indeed, although nuclear transparency measured by the HERMES experiment rises with Q^2, it agrees with predictions of the vector dominance model (VDM) without any CT effects. Our new results and observations are: (i) the good agreement with the VDM found earlier is accidental and related to the specific correlation between Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have been estimated earlier within the two channel approximation. They are even stronger at low than at high energies and can be easily identified by HERMES or at JLab; (iii) gluon shadowing which is important at high energies is calculated and included; (iv) our parameter-free calculations explain well available data for variation of nuclear transparency with virtuality and energy of the photon; (v) predictions for electroproduction of \rho and \phi are provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure

    Higgs Scalars in the Minimal Non-minimal Supersymmetric Standard Model

    Get PDF
    We consider the simplest and most economic version among the proposed non-minimal supersymmetric models, in which the μ\mu-parameter is promoted to a singlet superfield, whose all self-couplings are absent from the renormalizable superpotential. Such a particularly simple form of the renormalizable superpotential may be enforced by discrete RR-symmetries which are extended to the gravity-induced non-renormalizable operators as well. We show explicitly that within the supergravity-mediated supersymmetry-breaking scenario, the potentially dangerous divergent tadpoles associated with the presence of the gauge singlet first appear at loop levels higher than 5 and therefore do not destabilize the gauge hierarchy. The model provides a natural explanation for the origin of the μ\mu-term, without suffering from the visible axion or the cosmological domain-wall problem. Focusing on the Higgs sector of this minimal non-minimal supersymmetric standard model, we calculate its effective Higgs potential by integrating out the dominant quantum effects due to stop squarks. We then discuss the phenomenological implications of the Higgs scalars predicted by the theory for the present and future high-energy colliders. In particular, we find that our new minimal non-minimal supersymmetric model can naturally accommodate a relatively light charged Higgs boson, with a mass close to the present experimental lower bound.Comment: 63 pages (12 figures), extended versio

    Synthesis, antileishmanial activity and QSAR studies of 2-chloro- N -arylacetamides

    Get PDF
    ABSTRACT We describe herein the synthesis and evaluation of the antileishmanial activity against promastigote forms of Leishmania amazonensis and cytotoxicity to murine macrophages of a series of 2-chloro-N-arylacetamide derivatives. All compounds were active, except one (compound 3). Compound 5 presented the most promising results, showing good antileishmanial activity (CI50=5.39±0.67 µM) and moderate selectivity (SI=6.36), indicating that further development of this class is worthwhile. Preliminary QSAR studies, although not predictive, furnished some insights on the importance of electronic character of aryl substituent to biological activity, as well as an indirect influence of hydrophobicity on activity
    corecore