Abstract

The energy and photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime are studied. The single-particle properties of reversed-spin quasielectrons (QER_{\rm R}'s) as well as the pseudopotentials of their interaction with one another and with Laughlin quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the short-range character of the QER_{\rm R}--QER_{\rm R} and QER_{\rm R}--QE repulsion, the partially unpolarized incompressible states at the filling factors ν=411\nu={4\over11} and 513{5\over13} are postulated within Haldane's hierarchy scheme. To describe photoluminescence, the family of bound h(h(QER)n_{\rm R})_n states of a valence hole hh and nn QER_{\rm R}'s are predicted in analogy to the found earlier fractionally charged excitons hhQEn_n. The binding energy and optical selection rules for both families are compared. The hhQER_{\rm R} is found radiative in contrast to the dark hhQE, and the h(h(QER)2_{\rm R})_2 is found non-radiative in contrast to the bright hhQE2_2.Comment: 9 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions