2,989 research outputs found
The single channel TripOff and the channel grouping on the WINER PL500F8 for the HMPID LV system
k-core organization of complex networks
We analytically describe the architecture of randomly damaged uncorrelated
networks as a set of successively enclosed substructures -- k-cores. The k-core
is the largest subgraph where vertices have at least k interconnections. We
find the structure of k-cores, their sizes, and their birth points -- the
bootstrap percolation thresholds. We show that in networks with a finite mean
number z_2 of the second-nearest neighbors, the emergence of a k-core is a
hybrid phase transition. In contrast, if z_2 diverges, the networks contain an
infinite sequence of k-cores which are ultra-robust against random damage.Comment: 5 pages, 3 figure
Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA–peptide tetramers
Stem cell transplantation is used widely in the management of a range of diseases of the hemopoietic system. Patients are immunosuppressed profoundly in the early posttransplant period, and reactivation of cytomegalovirus (CMV) remains a significant cause of morbidity and mortality. Adoptive transfer of donor-derived CMV-specific CD8(+) T cell clones has been shown to reduce the rate of viral reactivation; however, the complexity of this approach severely limits its clinical application. We have purified CMV-specific CD8(+) T cells from the blood of stem cell transplant donors using staining with HLA-peptide tetramers followed by selection with magnetic beads. CMV-specific CD8(+) cells were infused directly into nine patients within 4 h of selection. Median cell dosage was 8.6 x 10(3)/kg with a purity of 98% of all T cells. CMV-specific CD8(+) T cells became detectable in all patients within 10 d of infusion, and TCR clonotype analysis showed persistence of infused cells in two patients studied. CMV viremia was reduced in every case and eight patients cleared the infection, including one patient who had a prolonged history of CMV infection that was refractory to antiviral therapy. This novel approach to adoptive transfer has considerable potential for antigen-specific T cell therapy
Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
BACKGROUND:
MUC2 mucin
produced by intestinal goblet cells is the major component of the intestinal
mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted
goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we
used random mutagenesis to produce two murine models of inflammatory bowel disease,
characterised the basis and nature of the inflammation in these mice, and compared the
pathology with human ulcerative colitis.
METHODS AND FINDINGS:
By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing
missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both
strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis
scores versus wild-type mice, p , 0.01) and chronic diarrhoea. Monitoring over 300 mice of
each strain demonstrated that 25% and 40% of each strain, respectively, developed severe
clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored
mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced
by a luminal toxin. Enhanced local production of IL-1b, TNF-a, and IFN-c was seen in the distal
colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric
lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2
cytokines (IFN-c, TNF-a, and IL-13). This pathology was accompanied by accumulation of the
Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER)
stress in goblet cells, activation of the unfolded protein response, and altered intestinal
expression of genes involved in ER stress, inflammation, apoptosis, and wound repair.
Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant
Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate
similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with
ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue.
Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it
does not ascertain the genetic or environmental drivers of ER stress in human colitis.
CONCLUSIONS:
Characterisation of the mouse models we created and comparison with human disease
suggest that ER stress-related mucin depletion could be a fundamental component of the
pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related
pathology and relevant environmental epidemiology are warranted.
The Editors’ Summary of this article follows the references
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
Wave-guided optical waveguides
This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain. (C)2012 Optical Society of Americ
Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider
Measurements of multi-particle azimuthal correlations (cumulants) for charged
particles in p-Pb and Pb-Pb collisions are presented. They help address the
question of whether there is evidence for global, flow-like, azimuthal
correlations in the p-Pb system. Comparisons are made to measurements from the
larger Pb-Pb system, where such evidence is established. In particular, the
second harmonic two-particle cumulants are found to decrease with multiplicity,
characteristic of a dominance of few-particle correlations in p-Pb collisions.
However, when a gap is placed to suppress such correlations,
the two-particle cumulants begin to rise at high-multiplicity, indicating the
presence of global azimuthal correlations. The Pb-Pb values are higher than the
p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values
when the multiplicity increases. The negative values allow for a measurement of
to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also
found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find
which is indicative of a Bessel-Gaussian
function for the distribution. For very high-multiplicity Pb-Pb
collisions, we observe that the four- and six-particle cumulants become
consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and
Pb-Pb are measured. These are found to be similar for overlapping
multiplicities, when a gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
- …
