2,549 research outputs found

    Optical Levitation of a Droplet under Linear Increase of Gravitational Acceleration

    Full text link
    Optical levitation of a liquid droplet in gas phase was investigated under timedependent change of the gravitational acceleration with specific flight pattern of an airplane. Through multiple trials under linear increase of effective gravitational acceleration, we performed the experiment of ptical trapping of a droplet from 0.3g_0 to 0.9g_0, where g_0 = 9.8 m/s^2. During such change of the effective gravitational acceleration, the trapping position on a droplet with the radius of 14 μm was found to be lowered by ca. 100 μm. The essential feature of the change of the trapping position is reproduced by a theoretical calculation under the framework of ray optics. As far as we know, the present study is the first report on optical levitation under time-dependent gravitational change

    Microrheology with Optical Tweezers of gel-like materials 'is not an option'!

    Full text link
    Optical tweezers have been successfully adopted as exceptionally sensitive transducers for microrheology studies of complex 'fluids'. Despite the general trend, a similar approach cannot be adopted for microrheology studies of 'gel-like' materials, e.g. living cells.Comment: 3 pages, 1 figur

    Optically bound microscopic particles in one dimension

    Full text link
    Counter-propagating light fields have the ability to create self-organized one-dimensional optically bound arrays of microscopic particles, where the light fields adapt to the particle locations and vice versa. We develop a theoretical model to describe this situation and show good agreement with recent experimental data (Phys. Rev. Lett. 89, 128301 (2002)) for two and three particles, if the scattering force is assumed to dominate the axial trapping of the particles. The extension of these ideas to two and three dimensional optically bound states is also discussed.Comment: 12 pages, incl. 5 figures, accepted by Phys. Rev.

    Toward the Stable Optical Trapping of a Droplet with Counter Laser Beams under Microgravity

    Get PDF
    To identify the optimum conditions for the optical trapping of a droplet under microgravity, we theoretically analyzed the efficiency of trapping with counter laser beams. We found that the distance between the two foci is an important parameter for obtaining stable trapping conditions. We also performed an optical trapping experiment with counter laser beams under microgravity. The experimental results correspond well to the theoretical prediction

    Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

    Get PDF
    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised

    Single-particle motional oscillator powered by laser

    Full text link
    An ion, atom, molecule or macro-particle in a trap can exhibit large motional oscillations due to the Doppler-affected radiation pressure by a laser, blue-detuned from an absorption line of a particle. This oscillator can be nearly thresholdless, but under certain conditions it may exhibit huge hysteretic excitation. Feasible applications include a "Foucault pendulum" in a trap, a rotation sensor, single atom spectroscopy, isotope separation, etc.Comment: 9 pages, 1 fig; v2: the latest revision for Optics Expres

    Effect of Coherence on Radiation Forces acting on a Rayleigh Dielectric Sphere

    Get PDF
    The radiation forces on a Rayleigh dielectric sphere induced by a partially coherent light beam are greatly affected by the coherence of the light beam. The magnitude of the radiation forces on a dielectric sphere near the focus point greatly decreases as the coherence decreases. For the light beam with good coherence, the radiation force may be used to trap a particle; and for the light beam with intermediate coherence, the radiation force may be used to guide and accelerate a particle.Comment: 12 pages, 3 figure

    Measuring micro-interactions between coagulating red blood cells using optical tweezers

    Get PDF
    Agents that alter the dynamics of hemostasis form an important part in management of conditions such as atherosclerosis, cerebrovascular disease, and bleeding diatheses. In this study, we explored the effects of heparin and tranexamic acid on the efficiency of blood coagulation. Using optical tweezers, we evaluated the pN-range micro-interaction between coagulating red blood cells (RBCs) by measuring the minimum power required to trap them. By observing the mobility of RBCs and the intensity of cellular interactions, we found that the coagulation process can be separated into three phases. The effects of heparin and tranexamic acid were examined by observing variations in cellular interaction during the coagulation phases. Heparin attenuated the interaction between RBCs and prolonged the first phase whereas the samples containing tranexamic acid bypassed the first two phases and immediately proceeded to the final one

    Processing carbon nanotubes with holographic optical tweezers

    Full text link
    We report the first demonstration that carbon nanotubes can be trapped and manipulated by optical tweezers. This observation is surprising because individual nanotubes are substantially smaller than the wavelength of light, and thus should not be amenable to optical trapping. Even so, nanotube bundles, and perhaps even individual nanotubes, can be transported at high speeds, deposited onto substrates, untangled, and selectively ablated, all with visible light. The use of holographic optical tweezers, capable of creating hundreds of independent traps simultaneously, suggests opportunities for highly parallel nanotube processing with light.Comment: 3 pages, 1 figur
    • 

    corecore