60 research outputs found

    Population trends of waders on their boreal and arctic breeding grounds in northern Europe

    Get PDF
    Waders form a conspicuous part of the bird fauna in boreal and arctic areas, where they inhabit forests, wetlands, mires and tundra. These are important breeding areas for a large set of wader species, and may be particularly vulnerable to climate change. However, large-scale and systematic monitoring data from the breeding grounds of boreal and arctic waders are largely lacking. We present population trends for 22 wader species breeding in the boreal and arctic parts of Fennoscandia (Norway, Sweden and Finland) between 2006 and 2018. The trends are based on 9,713 surveys of 1,505 unique routes (6–8 km), each surveyed in at least two years, evenly distributed over an area of ~1 million km2. The trends were significantly negative for three species: Red-necked Phalarope Phalaropus lobatus (–7.9% year-1), Broad-billed Sandpiper Calidris falcinellus (–5.4% year-1), and Whimbrel Numenius phaeopus (–1.3% year-1). The trends were significantly positive for three species: Oystercatcher Haematopus ostralegus (+4.9% year-1), Dunlin Calidris a. alpina (+4.2% year-1) and Wood Sandpiper Tringa glareola (+0.8% year-1). For the remaining species, we found no statistically significant trends. On average, as shown by a multi-species indicator, there was no general change in numbers over time. On 1,539 routes with at least one survey, wader species richness as well as total number of wader pairs increased significantly with increasing latitude. Species population trend was not correlated with breeding latitude, but population trends of long-distance migrants tended to be more negative than those of medium-distance migrants. The recent fortunes of waders breeding in northern Fennoscandia have been more buoyant than those in other parts of Europe, but the trends for some species are worrying. © 2019, International Wader Study Group. All rights reserved.Peer reviewe

    Interspecific competition impacts the occupancy and range limits of two ptarmigan species along the elevation gradient in Norway

    Get PDF
    Many mountain species are expected to respond to climate change through upslope shifts of their range limits, but competition may restrict or alter this response. Under traditional range-limit theory, it is expected that lower-elevation species are better competitors than closely related higher-elevation species. However, recent work finds that this prediction is often unmet. We investigated evidence for the impact of competition during breeding season on the elevational range limits of a pair of closely related bird species, willow ptarmigan Lagopus lagopus and rock ptarmigan L. muta, in mainland Norway. The species share overlapping ranges that loosely divide slightly upslope from the treeline ecotone, with willow ptarmigan generally occupying lower sites and rock ptarmigan occupying higher sites. We used multi-species occupancy models to test four competing hypotheses for how competition may affect the range limit between willow ptarmigan and rock ptarmigan: 1) asymmetric competition that restricts the lower range limit of rock ptarmigan; 2) asymmetric competition that restricts the upper range limit of willow ptarmigan; 3) condition-specific competition that restricts both species’ range limits; and 4) range limits unaffected by competition. We found evidence for a negative pairwise interaction between the two species. Changes in interaction strength along the elevation gradient suggested evidence for condition-specific competition. However, a strong positive correlation between rock ptarmigan and higher-elevation habitat resulted in a highly asymmetric outcome, where the upper range limit of willow ptarmigan was restricted but rock ptarmigan occupancy was fairly independent of willow ptarmigan. This outcome is opposite to the prediction of traditional range-limit theory and may suggest a greater climate threat to willow ptarmigan than has been previously projected. Thus, our results demonstrate the importance of considering biotic interactions at both the higher and lower ends of species’ range limits along elevation gradients. elevation gradient, interspecific competition, occupancy, ptarmigan, range limitspublishedVersio

    Norsk hekkefuglovervåking

    Get PDF

    Covariation in population trends and demography reveals targets for conservation action

    Get PDF
    Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.Peer reviewe

    An assessment of relative habitat use as a metric for species' habitat association and degree of specialization

    Get PDF
    Corrigendum: Ecological Indicators, Volume 137, April 2022, Article number 108627, https://doi.org/10.1016/j.ecolind.2022.108627.In order to understand species' sensitivity to habitat change, we must correctly determine if a species is associated with a habitat or not, and if it is associated, its degree of specialization for that habitat. However, definitions of species' habitat association and specialization are often static, categorical classifications that coarsely define species as either habitat specialists or generalists and can fail to account for potential temporal or spatial differences in association or specialization. In contrast, quantitative metrics can provide a more nuanced assessment, defining species' habitat associations and specialization along a continuous scale and accommodate for temporal or spatial variation, but these approaches are less widely used. Here we explore relative habitat use (RHU) as a metric for quantifying species' association with and degree of specialization for different habitat types. RHU determines the extent of a species' association with a given habitat by comparing its abundance in that habitat relative to its mean abundance across all other habitats. Using monitoring data for breeding birds across Europe from 1998 to 2017; we calculate RHU scores for 246 species for five habitat types and compared them to the literature-based classifications of their association with and specialization for each of these habitats. We also explored the temporal variation in species' RHU scores for each habitat and assessed how this varied according to association and degree of specialization. In general, species' RHU and literature-derived classifications were well aligned, as RHU scores for a given habitat increased in line with reported association and specialization. In addition, temporal variation in RHU scores were influenced by association and degree of specialization, with lower scores for those associated with, and those more specialized to, a given habitat. As a continuous metric, RHU allows a detailed assessment of species' association with and degree of specialization for different habitats that can be tailored to specific temporal and/or spatial requirements. It has the potential to be a valuable tool for identifying indicator species and in supporting the design, implementation and monitoring of conservation management actions.Peer reviewe

    Overvåking av langtransporterte forurensninger 2009. sammendragsrapport

    Get PDF
    Rapporten presenterer sammendrag av resultatene for 2009 fra tre overvåkingsprogrammer: “Overvåking av langtrans­portert forurenset luft og nedbør”, ”Overvåkingsprogram for skogskader” (OPS) og “Program for terrestrisk naturovervåking” (TOV). The report presents results for 2009 from three national monitoring programmes on long-range transboundary air pollution

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Publisher Copyright: © 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February–May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations.Peer reviewe

    Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds

    Get PDF
    Around fifteen thousand fieldworkers annually count breeding birds using standardized protocols in 28 European countries. The observations are collected by using country-specific and standardized protocols, validated, summarized and finally used for the production of continent-wide annual and long-term indices of population size changes of 170 species. Here, we present the database and provide a detailed summary of the methodology used for fieldwork and calculation of the relative population size change estimates. We also provide a brief overview of how the data are used in research, conservation and policy. We believe this unique database, based on decades of bird monitoring alongside the comprehensive summary of its methodology, will facilitate and encourage further use of the Pan-European Common Bird Monitoring Scheme results.publishedVersio

    Temperature synchronizes temporal variation in laying dates across European hole-nesting passerines

    Get PDF
    Identifying the environmental drivers of variation in fitness-related traits is a central objective in ecology and evolutionary biology. Temporal fluctuations of these environmental drivers are often synchronized at large spatial scales. Yet, whether synchronous environmental conditions can generate spatial synchrony in fitness-related trait values (i.e., correlated temporal trait fluctuations across populations) is poorly understood. Using data from long-term monitored populations of blue tits (Cyanistes caeruleus, n = 31), great tits (Parus major, n = 35), and pied flycatchers (Ficedula hypoleuca, n = 20) across Europe, we assessed the influence of two local climatic variables (mean temperature and mean precipitation in February-May) on spatial synchrony in three fitness-related traits: laying date, clutch size, and fledgling number. We found a high degree of spatial synchrony in laying date but a lower degree in clutch size and fledgling number for each species. Temperature strongly influenced spatial synchrony in laying date for resident blue tits and great tits but not for migratory pied flycatchers. This is a relevant finding in the context of environmental impacts on populations because spatial synchrony in fitness-related trait values among populations may influence fluctuations in vital rates or population abundances. If environmentally induced spatial synchrony in fitness-related traits increases the spatial synchrony in vital rates or population abundances, this will ultimately increase the risk of extinction for populations and species. Assessing how environmental conditions influence spatiotemporal variation in trait values improves our mechanistic understanding of environmental impacts on populations

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14
    corecore