56 research outputs found

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report on the first measurement of the triangular v3v_3, quadrangular v4v_4, and pentagonal v5v_5 charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2v_2 and v3v_3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.Comment: 10 pages, 4 figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Electroweak measurements in electron–positron collisions at w-boson-pair energies at lep

    Get PDF
    Contains fulltext : 121524.pdf (preprint version ) (Open Access

    B flavour tagging using charm decays at the LHCb experiment

    No full text
    An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %

    Identification of beauty and charm quark jets at LHCb

    No full text
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured

    Observation of the decay (B)over-bar(s)(0) -> psi(2S)K+pi(-)

    No full text
    The decay (B) over bar (0)(s) -> psi(2S)K+pi(-) is observed using a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. The branching fraction relative to the B-0 -> psi(2S)K+pi(-) decay mode is measured to be B((B) over bar (0)(s) -> psi(2S)K+pi(-))/B(B-0 -> psi(2S)K+pi(-)) = 5.38 +/- 0.36 (stat) +/- 0.22 (syst) +/- 0.31 (f(s)/f(d)) %, where f(s)/f(d) indicates the uncertainty due to the ratio of probabilities for a b quark to hadronise into a B-s(0) or B-0 meson. Using an amplitude analysis, the fraction of decays proceeding via an intermediate K*(892)(0) meson is measured to be 0.645 +/- 0.049 (stat) +/- 0.049 (syst) and its longitudinal polarisation fraction is 0.524 +/- 0.056 (stat) +/- 0.029 (syst). The relative branching fraction for this component is determined to be B((B) over bar (0)(s) -> psi(2S)K*(892)(0))/B(B-0 -> psi(2S)K*(892)(0)) = 5.58 +/- 0.57 (stat) +/- 0.40 (syst) +/- 0.32 (f(s)/f(d)) %. In addition, the mass splitting between the B-s(0) and B-0 mesons is measured as M(B-s(0)) - M(B-0) = 87.45 +/- 0.44 (stat) +/- 0.09 (syst) MeV/c(2). (C) 2015 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the track reconstruction efficiency at LHCb

    No full text
    The determination of track reconstruction efficiencies at LHCb using J/psi -> mu(+)mu(-) decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8% for data taking in 2010, and at a precision of 0.4% for data taking in 2011 and 2012. For hadrons an additional 1.4% uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    No full text
    A search for the rare decays B-s(0) -> pi(+) pi-mu(+) mu-and B-0 -> pi(+) pi-mu(+) mu-is performed in a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3GeV/c(2) and with muon pairs that do not originate from a resonance are considered. The first observation of the decay B-s(0) -> pi(+) pi-mu(+) mu- and the first evidence of the decay B-0 -> pi(+) pi-mu(+) mu-are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(B-s(0) -> pi(+) pi-mu(+) mu(-)) =(8.6 +/- 1.5(stat) +/- 0.7(syst) +/- 0.7 (norm)) x 10(-8) and B(B-0 -> pi(+) pi-mu(+) mu(-)) =(2.11 +/- 0.51(stat) +/- 0.15(syst) +/- 0.16(norm)) x10(-8), where the third uncertainty is due to the branching fraction of the decay B-0. -> J/Psi(mu(+) mu(-)) K*(892)(0)(-> K+ pi(-)), used as a normalisation. (C) 2015 The Authors. Published by Elsevier B.V

    Measurement of the (B)over-bar(0)-B-0 and (B)over-bars(0)-B-s(0) production asymmetries in pp collisions at root s=7 TeV

    No full text
    The (B) over bar (0)-B-0 and (B) over bar (0)(s)-B-s(0) production asymmetries, A(P)(B-0) and A(P)(B-s(0)), are measured by means of a time-dependent analysis of B-0 -> J/Psi K-*0, B-0 -> D-pi(+) and B-s(0) -> D-s(-)pi(+) decays, using a data sample corresponding to an integrated luminosity of 1.0 fb(-1), collected by LHCb in pp collisions at a centre-of-mass energy of 7 TeV. The measurements are performed as a function of transverse momentum and pseudorapidity of the B-0 and B-s(0) mesons within the LHCb acceptance. The production asymmetries, integrated over p(T) and eta in the range 4 < p(T) < 30 GeV/c and 2.5 < eta < 4.5, are determined to be A(P)(B-0) = (-0.35 +/- 0.76 +/- 0.28)% and A(P)(B-s(0)) = (1.09 +/- 2.61 +/- 0.66)%, where the first uncertainties are statistical and the second systematic. (C) 2014 The Authors. Published by Elsevier B.V
    corecore