579 research outputs found

    Coevolutionary dynamics of a variant of the cyclic Lotka-Volterra model with three-agent interactions

    Full text link
    We study a variant of the cyclic Lotka-Volterra model with three-agent interactions. Inspired by a multiplayer variation of the Rock-Paper-Scissors game, the model describes an ideal ecosystem in which cyclic competition among three species develops through cooperative predation. Its rate equations in a well-mixed environment display a degenerate Hopf bifurcation, occurring as reactions involving two predators plus one prey have the same rate as reactions involving two preys plus one predator. We estimate the magnitude of the stochastic noise at the bifurcation point, where finite size effects turn neutrally stable orbits into erratically diverging trajectories. In particular, we compare analytic predictions for the extinction probability, derived in the Fokker-Planck approximation, with numerical simulations based on the Gillespie stochastic algorithm. We then extend the analysis of the phase portrait to heterogeneous rates. In a well-mixed environment, we observe a continuum of degenerate Hopf bifurcations, generalizing the above one. Neutral stability ensues from a complex equilibrium between different reactions. Remarkably, on a two-dimensional lattice, all bifurcations disappear as a consequence of the spatial locality of the interactions. In the second part of the paper, we investigate the effects of mobility in a lattice metapopulation model with patches hosting several agents. We find that strategies propagate along the arms of rotating spirals, as they usually do in models of cyclic dominance. We observe propagation instabilities in the regime of large wavelengths. We also examine three-agent interactions inducing nonlinear diffusion.Comment: 22 pages, 13 figures. v2: version accepted for publication in EPJ

    Mesoscopic Interactions and Species Coexistence in Evolutionary Game Dynamics of Cyclic Competitions

    Get PDF
    Date of Acceptance: 27/11/2014Peer reviewedPublisher PD

    Spatiotemporal dynamics in a spatial plankton system

    Full text link
    In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots \rightarrow spot-stripe mixtures\rightarrow stripes\rightarrow hole-stripe mixtures holes\rightarrow wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.Comment: Published Pape

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Noise and Correlations in a Spatial Population Model with Cyclic Competition

    Get PDF
    Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g. B. Kerr et al., Nature {\bf 418}, 171 (2002)]. To reach a better theoretical understanding of these phenomena, we consider a paradigmatic spatial model where three species exhibit cyclic dominance. Using an individual-based description, as well as stochastic partial differential and deterministic reaction-diffusion equations, we account for stochastic fluctuations and spatial diffusion at different levels, and show how fascinating patterns of entangled spirals emerge. We rationalize our analysis by computing the spatio-temporal correlation functions and provide analytical expressions for the front velocity and the wavelength of the propagating spiral waves.Comment: 4 pages of main text, 3 color figures + 2 pages of supplementary material (EPAPS Document). Final version for Physical Review Letter

    Co-existence in the two-dimensional May-Leonard model with random rates

    Full text link
    We employ Monte Carlo simulations to numerically study the temporal evolution and transient oscillations of the population densities, the associated frequency power spectra, and the spatial correlation functions in the (quasi-)steady state in two-dimensional stochastic May--Leonard models of mobile individuals, allowing for particle exchanges with nearest-neighbors and hopping onto empty sites. We therefore consider a class of four-state three-species cyclic predator-prey models whose total particle number is not conserved. We demonstrate that quenched disorder in either the reaction or in the mobility rates hardly impacts the dynamical evolution, the emergence and structure of spiral patterns, or the mean extinction time in this system. We also show that direct particle pair exchange processes promote the formation of regular spiral structures. Moreover, upon increasing the rates of mobility, we observe a remarkable change in the extinction properties in the May--Leonard system (for small system sizes): (1) As the mobility rate exceeds a threshold that separates a species coexistence (quasi-)steady state from an absorbing state, the mean extinction time as function of system size N crosses over from a functional form ~ e^{cN} / N (where c is a constant) to a linear dependence; (2) the measured histogram of extinction times displays a corresponding crossover from an (approximately) exponential to a Gaussian distribution. The latter results are found to hold true also when the mobility rates are randomly distributed.Comment: 9 pages, 4 figures; to appear in Eur. Phys. J. B (2011

    Stochastic population dynamics in spatially extended predator-prey systems

    Get PDF
    Spatially extended population dynamics models that incorporate intrinsic noise serve as case studies for the role of fluctuations and correlations in biological systems. Including spatial structure and stochastic noise in predator-prey competition invalidates the deterministic Lotka-Volterra picture of neutral population cycles. Stochastic models yield long-lived erratic population oscillations stemming from a resonant amplification mechanism. In spatially extended predator-prey systems, one observes noise-stabilized activity and persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively. The critical dynamics and the non-equilibrium relaxation kinetics at the predator extinction threshold are characterized by the directed percolation universality class. Spatial or environmental variability results in more localized patches which enhances both species densities. Affixing variable rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of cyclic competition with rock-paper-scissors interactions illustrate connections between population dynamics and evolutionary game theory, and demonstrate how space can help maintain diversity. In two dimensions, three-species cyclic competition models of the May-Leonard type are characterized by the emergence of spiral patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Extensions to general food networks can be classified on the mean-field level, which provides both a fundamental understanding of ensuing cooperativity and emergence of alliances. Novel space-time patterns emerge as a result of the formation of competing alliances, such as coarsening domains that each incorporate rock-paper-scissors competition games
    corecore