14,919 research outputs found

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Continuity of object tracking

    Get PDF
    2022 Spring.Includes bibliographical references.The demand for object tracking (OT) applications has been increasing for the past few decades in many areas of interest: security, surveillance, intelligence gathering, and reconnaissance. Lately, newly-defined requirements for unmanned vehicles have enhanced the interest in OT. Advancements in machine learning, data analytics, and deep learning have facilitated the recognition and tracking of objects of interest; however, continuous tracking is currently a problem of interest to many research projects. This dissertation presents a system implementing a means to continuously track an object and predict its trajectory based on its previous pathway, even when the object is partially or fully concealed for a period of time. The system is divided into two phases: The first phase exploits a single fixed camera system and the second phase is composed of a mesh of multiple fixed cameras. The first phase system is composed of six main subsystems: Image Processing, Detection Algorithm, Image Subtractor, Image Tracking, Tracking Predictor, and the Feedback Analyzer. The second phase of the system adds two main subsystems: Coordination Manager and Camera Controller Manager. Combined, these systems allow for reasonable object continuity in the face of object concealment

    Learning for Optimization with Virtual Savant

    Get PDF
    Optimization problems arising in multiple fields of study demand efficient algorithms that can exploit modern parallel computing platforms. The remarkable development of machine learning offers an opportunity to incorporate learning into optimization algorithms to efficiently solve large and complex problems. This thesis explores Virtual Savant, a paradigm that combines machine learning and parallel computing to solve optimization problems. Virtual Savant is inspired in the Savant Syndrome, a mental condition where patients excel at a specific ability far above the average. In analogy to the Savant Syndrome, Virtual Savant extracts patterns from previously-solved instances to learn how to solve a given optimization problem in a massively-parallel fashion. In this thesis, Virtual Savant is applied to three optimization problems related to software engineering, task scheduling, and public transportation. The efficacy of Virtual Savant is evaluated in different computing platforms and the experimental results are compared against exact and approximate solutions for both synthetic and realistic instances of the studied problems. Results show that Virtual Savant can find accurate solutions, effectively scale in the problem dimension, and take advantage of the availability of multiple computing resources.Los problemas de optimización que surgen en múltiples campos de estudio demandan algoritmos eficientes que puedan explotar las plataformas modernas de computación paralela. El notable desarrollo del aprendizaje automático ofrece la oportunidad de incorporar el aprendizaje en algoritmos de optimización para resolver problemas complejos y de grandes dimensiones de manera eficiente. Esta tesis explora Savant Virtual, un paradigma que combina aprendizaje automático y computación paralela para resolver problemas de optimización. Savant Virtual está inspirado en el Sı́ndrome de Savant, una condición mental en la que los pacientes se destacan en una habilidad especı́fica muy por encima del promedio. En analogı́a con el sı́ndrome de Savant, Savant Virtual extrae patrones de instancias previamente resueltas para aprender a resolver un determinado problema de optimización de forma masivamente paralela. En esta tesis, Savant Virtual se aplica a tres problemas de optimización relacionados con la ingenierı́a de software, la planificación de tareas y el transporte público. La eficacia de Savant Virtual se evalúa en diferentes plataformas informáticas y los resultados se comparan con soluciones exactas y aproximadas para instancias tanto sintéticas como realistas de los problemas estudiados. Los resultados muestran que Savant Virtual puede encontrar soluciones precisas, escalar eficazmente en la dimensión del problema y aprovechar la disponibilidad de múltiples recursos de cómputo.Fundación Carolina Agencia Nacional de Investigación e Innovación (ANII, Uruguay) Universidad de Cádiz Universidad de la Repúblic

    Modeling the impact of process architecture on cost and schedule risk in product development

    Get PDF
    Title from cover. "Revised April 2000."Includes bibliographical references (leaves 30-34).Tyson R. Browning, Steven D. Eppinger
    corecore