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Doctorado de la Universidad de Cádiz, como parte de

los requisitos necesarios para la obtención del t́ıtulo

de Doctor en Ingenieŕıa Informática.
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port. It was a pleasure for me to be under his supervision. Bernabé always
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to both Bernabé and Patricia for welcoming me to their home.

Another thanks goes to Juan Carlos for contributing with parts of the work

reported in this thesis but, more importantly, for making my time in Cádiz so

much more enjoyable.

Thanks are also in order for my friends in Uruguay and each of the amazing

people I have met throughout these years abroad. I will not list them here;

each one of them already knows how grateful I am.

A special thanks goes to my father, mother, and sister, for their love,

support, and patience while I was away from home during these years.

Finally, I would like to thank Fundación Carolina, Agencia Nacional de

Investigación e Innovación (ANII, Uruguay), Universidad de Cádiz, and Uni-

versidad de la República for the funding provided for this Ph.D.

v





ABSTRACT

Optimization problems arising in multiple fields of study demand efficient algo-

rithms that can exploit modern parallel computing platforms. The remarkable

development of machine learning offers an opportunity to incorporate learning

into optimization algorithms to efficiently solve large and complex problems.

This thesis explores Virtual Savant, a paradigm that combines machine learn-

ing and parallel computing to solve optimization problems. Virtual Savant is

inspired in the Savant Syndrome, a mental condition where patients excel at

a specific ability far above the average. In analogy to the Savant Syndrome,

Virtual Savant extracts patterns from previously-solved instances to learn how

to solve a given optimization problem in a massively-parallel fashion. In this

thesis, Virtual Savant is applied to three optimization problems related to

software engineering, task scheduling, and public transportation. The efficacy

of Virtual Savant is evaluated in different computing platforms and the ex-

perimental results are compared against exact and approximate solutions for

both synthetic and realistic instances of the studied problems. Results show

that Virtual Savant can find accurate solutions, effectively scale in the prob-

lem dimension, and take advantage of the availability of multiple computing

resources.

Keywords:

machine learning, optimization, Virtual Savant, next release problem,

heterogeneous computing scheduling problem, bus synchronization problem.
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RESUMEN

Los problemas de optimización que surgen en múltiples campos de estudio de-

mandan algoritmos eficientes que puedan explotar las plataformas modernas de

computación paralela. El notable desarrollo del aprendizaje automático ofrece

la oportunidad de incorporar el aprendizaje en algoritmos de optimización para

resolver problemas complejos y de grandes dimensiones de manera eficiente.

Esta tesis explora Savant Virtual, un paradigma que combina aprendizaje au-

tomático y computación paralela para resolver problemas de optimización.

Savant Virtual está inspirado en el Śındrome de Savant, una condición mental

en la que los pacientes se destacan en una habilidad espećıfica muy por encima

del promedio. En analoǵıa con el śındrome de Savant, Savant Virtual extrae

patrones de instancias previamente resueltas para aprender a resolver un de-

terminado problema de optimización de forma masivamente paralela. En esta

tesis, Savant Virtual se aplica a tres problemas de optimización relacionados

con la ingenieŕıa de software, la planificación de tareas y el transporte público.

La eficacia de Savant Virtual se evalúa en diferentes plataformas informáticas y

los resultados se comparan con soluciones exactas y aproximadas para instan-

cias tanto sintéticas como realistas de los problemas estudiados. Los resulta-

dos muestran que Savant Virtual puede encontrar soluciones precisas, escalar

eficazmente en la dimensión del problema y aprovechar la disponibilidad de

múltiples recursos de cómputo.

Palabras claves:

aprendizaje automático, optimización, Savant Virtual, problema del

próximo lanzamiento, planificación en sistemas de cómputo heterogéneos,

problema de sincronización de autobuses.
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Chapter 1

Introduction

The increasing complexity of optimization problems arising in different fields

of study requires algorithms that demand large computing resources (Ausiello

et al., 2012). Simultaneously, parallel computing has become a key piece

in scientific computing, as it provides the resources needed to solve com-

plex real-world problems that cannot be addressed using classic sequential

systems (Golub and Ortega, 2014). Consequently, widespread parallel archi-

tectures have led to an increase in the adoption of parallel algorithms that can

take advantage of the availability of multiple computing resources.

Software developers need to implement parallel programs to take profit

from current architectures. This requires highly-skilled programmers that can

design parallel programs from scratch or redesign legacy sequential implemen-

tations to profit from modern parallel architectures. Thus, there is an increased

interest in techniques that can automatically generate elastic programs that

can fully exploit highly-parallel computer platforms and scale in the number

of computing resources (Darte et al., 2012). The current growing interest in

machine learning techniques comes at hand to deal with this problem.

The fields of optimization and machine learning are closely related. How-

ever, the vast majority of research has explored one direction of this relation-

ship, i.e., optimization applied to machine learning techniques (e.g., parame-

ter optimization in machine learning models, feature selection problems) (Sra

et al., 2012). The inverse, i.e., applying machine learning to solve optimization

problems, while explored (Vlastelica et al., 2020; Vinyals et al., 2015), still has

plenty of room for contribution.
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This thesis deals with Virtual Savant (VS), a novel paradigm that takes

advantage of machine learning and parallel computing to address complex opti-

mization problems (Pinel et al., 2013). VS is inspired in the Savant Syndrome,

a mental condition where patients excel at certain abilities far above the av-

erage. In analogy to the Savant Syndrome, VS uses machine learning to find

patterns that allow solving the problem at hand. These patterns are learned

from a set of previously-solved instances of the problem. Due to its design,

VS can be executed in massively-parallel computing architectures, significantly

reducing execution times and effectively scaling in the problem instance.

The main goal of the research reported in this thesis is the implementation

of VS, its application to multiple optimization problems, and its evaluation on

different computing platforms. The main contributions of this work are:

1. A comprehensive review of the related literature in the automatic gen-

eration of parallel programs and the synergy between machine learning

and optimization.

2. A thorough definition of the VS workflow and its implementation.

3. The application and evaluation of VS to the Next Release Problem

(NRP), a combinatorial optimization problem arising in software engi-

neering that is modeled as a 0/1 Knapsack Problem (0/1-KP).

4. The application of VS to solve the Heterogeneous Computing Scheduling

Problem (HCSP) and the study of its scalability in different computing

platforms and with varying problem sizes.

5. The application of VS to the Bus Synchronization Problem (BSP), a com-

plex combinatorial optimization problem arising in public transportation

networks, and the evaluation over synthetic and real-world problem in-

stances.

The work related to this thesis has led to the publication of several journal

and conference articles. A list of these publications and on-going submissions,

along with a brief description of their contents, is presented next.

• “Generación automática de programas: Savant Virtual para el problema

de la mochila” presented at XI Congreso Español de Metaheuŕısticas, Al-

goritmos Evolutivos y Bioinspirados, Salamanca, Spain (Massobrio et al.,

2016). This article outlined the first application of VS to the 0/1-KP.
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• “Automatic program generation: Virtual Savant for the knapsack prob-

lem” presented at International Workshop on Optimization and Learn-

ing: Challenges and Applications, Alicante, Spain (Massobrio et al.,

2018b). This article extended the study of the behavior of VS when

solving the 0/1-KP.

• “Support Vector Machine Acceleration for Intel Xeon Phi Manycore Pro-

cessors” presented at Latin America High Performance Computing Con-

ference, Buenos Aires, Argentina (Massobrio et al., 2018c). This article

presented xphi-libsvm, a parallel implementation of the popular libsvm

library for Support Vector Machines (SVMs), specifically adapted to the

IntelR©Xeon PhiTM architecture.

• “Virtual Savant for the Heterogeneous Computing Scheduling Problem”

presented at International Conference on High Performance Computing

& Simulation, Orléans, France (Massobrio et al., 2018a). This article

outlined the application of VS to the HCSP.

• “Virtual Savant for the Knapsack Problem: learning for automatic re-

source allocation” published in the Proceedings of the Institute for Sys-

tem Programming of the Russian Academy of Sciences (Massobrio et al.,

2019). This article studied the scalability of VS when solving the 0/1-KP.

• “Parallel Virtual Savant for the Heterogeneous Computing Scheduling

Problem” published in the Journal of Computational Science (de la Torre

et al., 2020). This article presented a parallel implementation of VS for

the HCSP.

• “Urban Mobility Data Analysis for Public Transportation Systems:

A Case Study in Montevideo, Uruguay” published in Applied Sci-

ences (Massobrio and Nesmachnow, 2020). This article presented a study

on the public transportation network of Montevideo, Uruguay, that was

used to generate realistic problem instances to evaluate VS on the BSP.

• “Evolutionary approach for bus synchronization” presented at Latin

America High Performance Computing Conference, Turrialba, Costa

Rica (Nesmachnow et al., 2020). This article presented an evolutionary

algorithm for the BSP, which was later used to solve the same problem

with VS.
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• “Virtual Savant: learning for optimization” presented at the Learning

Meets Combinatorial Algorithms workshop of the 34th Conference on

Neural Information Processing Systems, Vancouver, Canada (Massobrio

et al., 2020). This article presented preliminary results of the application

of VS to the BSP.

• “Virtual Savant as a generic learning approach applied to the basic in-

dependent Next Release Problem” under review for possible publication

in Applied Soft Computing. This article presents the application of VS

to solve the NRP.

• “Learning to optimize timetables for efficient transfers in public trans-

portation systems” submitted to the Special Issue on Intelligent solutions

for efficient logistics and sustainable transportation of Applied Soft Com-

puting. This article presents the application of VS to solve the BSP.

The remainder of this thesis is structured as follows. Chapter 2 outlines

the VS paradigm, including its motivation, the idea that inspires the method,

the complete workflow, and implementation details, including the implementa-

tion and evaluation of xphi-libsvm, a parallel implementation of the libsvm

library that is used in VS. Then, Chapter 3 provides a literature review on the

automatic generation of programs that can run in parallel architectures and on

the synergy between machine learning and optimization. The first application

of VS is presented in Chapter 4, which outlines how VS can be used to solve

the NRP modeled as a 0/1-KP. A thorough experimental evaluation is pre-

sented using a large set of problem instances with varying size and difficulty.

Afterward, the application of VS to the HCSP is presented in Chapter 5. The

experimental evaluation for this problem focused on studying the scalability

of VS both in terms of the problem size and in the use of computational re-

sources. The application of VS to the BSP is presented in Chapter 6, where

VS is evaluated over synthetic and realistic problem instances. Finally, the

conclusions and main lines of future work are outlined in Chapter 7.
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Chapter 2

Learning for Optimization: the

Virtual Savant Paradigm

This chapter presents the VS paradigm. First, the motivation that drives VS

is outlined in Section 2.1. Then, Section 2.2 describes the Savant Syndrome,

which inspires the VS model. After that, Section 2.3 outlines the conceptual

framework of VS. Then, Section 2.4 provides details regarding the implemen-

tation of the VS paradigm. Finally, Section 2.5 presents the experimental

evaluation of xphi-libsvm, a parallel version of a machine learning library

that was implemented to execute VS in many-core computing platforms.

2.1 Motivation

Optimization consists in finding a solution over a defined set that optimizes

a given objective function. In particular, the subfield of combinatorial op-

timization deals with finding solutions over finite sets. Combinatorial opti-

mization problems arise in a plethora of domains, e.g., logistics, supply-chain

management, software engineering, transportation. Consequently, research on

algorithms that can solve optimization problems is vast in the literature and

includes exact approaches (Woeginger, 2003) and approximation algorithms

that find near-optimal solutions (Blum and Roli, 2003; Aarts and Lenstra,

2003).

In the case of complex optimization problems or very large problem in-

stances, which are ubiquitous these days, the execution time and computa-

tional performance of algorithms are of the essence, as they directly affect
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whether the computed solutions can be put into practice. Due to the increasing

availability of parallel computing platforms, parallel algorithms have become

a key piece of scientific computing in general and of optimization research in

particular.

At the same time, the field of machine learning has had an astounding

development, with new methods and applications emerging at a remarkably

fast pace (Jordan and Mitchell, 2015). Machine learning algorithms build a

model based on sample data and make predictions without being explicitly

programmed to do so. Thus, they can take advantage of historical data to

make accurate predictions in different domains, e.g., computer vision, speech

recognition, medical diagnosis, bioinformatics.

The fields of optimization and machine learning are intrinsically intertwined

and there is an increasing synergy between both research communities (Ben-

nett and Parrado, 2006). On the one hand, optimization plays a key role

within machine learning, since most learning problems reduce to optimization

problems. In this sense, several notions of optimization theory and algorithms

have been applied to machine learning methods, e.g., for effective parameter

tuning and feature selection (Sra et al., 2012; Bottou et al., 2018). On the

other hand, the application of machine learning methods to solve optimization

problems, while existing, is not nearly as prevalent in the literature (Bengio

et al., 2021).

VS, the paradigm explored in this thesis, aims to take advantage of machine

learning techniques to automatically generate programs that solve complex

optimization problems and can be run in parallel, making use of the multiple

resources available in modern computing platforms. The idea that inspires this

paradigm is presented next.

2.2 Inspiration: the Savant Syndrome

Natural computing refers to the process of extracting ideas from nature to cre-

ate computational tools that solve complex problems (de Castro, 2006). Bi-

ologically inspired—or bioinspired—techniques have been applied to a wide

range of complex optimization and decision-making problems (Olariu and

Zomaya, 2005). The power of these techniques lies in their capability to explore

complex search spaces with little to no problem-specific knowledge. Examples

of bioinspired techniques include: Artificial Neural Networks (ANNs), inspired

6



by the nervous system; Evolutionary Algorithms (EAs), inspired by evolution-

ary biology; Swarm Intelligence, inspired by the collective behavior of groups

of organisms; and Artificial Immune Systems, inspired by theoretical and ex-

perimental immunology. The paradigm explored in this thesis, Virtual Savant,

may also be considered as bioinspired since it emulates a natural phenomenon:

the Savant Syndrome.

The Savant Syndrome is a rare mental condition where patients with sig-

nificant mental disabilities develop certain abilities far above what would be

considered average (Treffert, 2006). Patients with Savant Syndrome—known

as savants—usually excel at a single specific activity, generally related to mem-

ory, rapid calculation, or artistic abilities. The underlying thought processes

of savants are not yet fully understood by researchers. However, the main

hypotheses state that savants learn through pattern recognition (Pring, 2005;

Heaton and Wallace, 2004). This mechanism allows them to solve problems

without understanding their underlying principles. For instance, some pa-

tients can enumerate large prime numbers or discriminate between prime and

non-prime numbers, without fully understanding what a prime number is.

Savant Syndrome often manifests along with other mental disabilities. Re-

ports suggest that half of the people with Savant Syndrome have autistic dis-

order while the other half endure other forms of developmental disability or

brain injury (Treffert, 2009). While rare, estimates suggest that up to one in

ten patients with autism present some degree of Savant Syndrome, with male

patients outnumbering females by an approximate 6:1 ratio (Rimland, 1978).

Reported skills of savants are limited to a rather narrow list comprised of:

music abilities, including extraordinaire performance and the ability to play

multiple instruments; art abilities, including prodigious drawing, painting, and

sculpting; calendar calculating, including complex date arithmetic (e.g., nam-

ing the day of the week corresponding to a given date, counting the number

of seconds between two very distant dates); mathematics, including lightning

calculations and prime number enumeration; and spatial skills, including map-

making, accurate distance estimation, and complex route planning. Generally,

savants show a single special skill, but some patients excel at multiple skills

simultaneously (Rimland and Fein, 1988). Regardless of the skill, prodigious

memory is an ability exhibited across all patients with Savant Syndrome. Tr-

effert (2009) suggested that savants’ skills exhibit a pattern of “replication to

improvisation to creation”. For instance, musical savants may begin accurately
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playing back complex classical music, then move forward to improvise over the

original piece, and finally, even create entire new pieces on their own.

Savants cannot usually give insights into how they perform their unique

skills. Since the condition often presents along with other mental disabilities,

understanding the thought processes of savants is remarkably challenging. Sny-

der (2009) argued that the skills of savants are the result of privileged access to

raw, less-processed sensory information. This information is available to every

person but is usually inaccessible due to top-down inhibition of the brain. The

author showed that some of these skills can be artificially induced in other-

wise average people by temporally inhibiting parts of the brain using magnetic

pulses. The author concluded that savants have a “tendency to concentrate

more on the parts than on the whole. . . [which] offers advantages for particular

classes of problem-solving. . . ”.

Some investigations have compared savants and non-savants with talents

in the same domain. A definitive answer to whether savants use the same or

different cognitive strategies than regular people is yet to be found. Nonethe-

less, the highly-efficient computational abilities of savants are claimed to be

different from existing methods (Pring, 2005). For instance, savants with cal-

endrical calculation skills lack the reading comprehension to understand exist-

ing algorithms to compute dates. Thus, savants are believed to combine rote

memorization with implicit learning to solve problems by allowing structured

regularities in the input to emerge. Supporting this hypothesis, Heaton and

Wallace (2004) argued that the thought processes of savants are influenced

by pattern recognition and the construction of artificial grammars, providing

building blocks for knowledge acquisition. Thus, savants tend to process in-

dividual features—which are easier to remember—to build highly structured

information. Consequently, concentration, repetition, and practice were found

to be important to maintain and reinforce the skills of savants.

Similarly, Hermelin et al. (1999) argued that the responses of savants are

based on the extraction of intrinsic rules and regularities from the material

given as input. Through a process of transformation, savants can derive knowl-

edge of a global system from a collection of single instances. However, the au-

thors highlighted that the answers of savants to a specific task are rarely 100%

accurate. In their study of an artistic savant, the authors noted that paintings

of memorized scenes, although precise, were not exact replicas. In the stud-

ied paintings, several features were added and others omitted, and changes in
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size and color transformations were also present. Similar results were assessed

when comparing the accuracy of artistic savants to that of average children

when drawing a memorized model (Hermelin and O’Connor, 1990). The con-

jecture that savants answers are not exact but rather probabilistic can also

be found in studies involving calendrical savants. Mottron et al. (2006) per-

formed several experiments with a calendrical savant, one of which consisted of

naming the day of the week corresponding to a given date. A subset of dates

was asked repeatedly in two independent sessions. The answers provided by

the studied savant were not consistent, exhibiting a different error pattern and

response time distribution each session.

Another factor that may contribute to the exhibited skills of savants is re-

lated to parallel processing. Treffert (2013) described the case of Leslie, a blind

musical savant with extraordinaire abilities to play back and even improvise

over musical pieces. In one experiment, Leslie was asked to play along with

another musician a previously-unheard piece of music. After three seconds

of hearing the musician play, Leslie started playing along without interrup-

tions. This behavior suggests that Leslie was parallel processing: simultane-

ously hearing the tune that was being played, processing what he heard, and

finally playing along with the musician. The ability to process in parallel calls

into question the IQ scores assigned to Leslie (in the 35-55 range). Thus, the

author suggested that this complex performance evidences “that more than

a single ‘intelligence’ was at work”. Mottron et al. (2009) suggested that

the independent cognitive processes of savants may allow integrating patterns

in parallel without information loss. Similarly, Yamaguchi (2009) speculated

about some parallel algorithms that may explain the abilities of a pair of savant

twins with extraordinary prime number identification skills.

Summarizing, although Savant Syndrome is a complex phenomenon yet

to be fully understood, literature agrees on a few key factors: i) savants are

unaware of the algorithms and fundamental principles related to the problem

they address; ii) savants use some form of pattern recognition on the input

data; iii) savants aggregate individual pieces to derive global knowledge; iv)

repetition and learning enhance the abilities of savants; v) the outcomes of

savants are probabilistic, giving different responses to the same input; and vi)

savants make use of some form of parallelization in their thought processes.

These aspects of the frame of thought of savants are the key concepts driving

the design of VS, which is presented next.
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2.3 Virtual Savant

This section presents VS. First, an overview of the technique is outlined and

then, each of its phases is described. Finally, the parallel design of VS is

presented.

2.3.1 Overview

VS is a novel technique, inspired by the Savant Syndrome, that aims to learn

how to solve a given optimization problem (Pinel et al., 2013). As an analogy

to the Savant Syndrome, VS proposes using machine learning techniques to

find patterns that allow solving the problem at hand. These patterns are

learned using machine learning from a set of previously-solved instances of

the problem. Solutions used for training are computed by one (or several)

reference algorithm(s) for the problem. VS does not require knowing the code

of the reference algorithms it learns from, in the same way that real-life savants

are unaware of the underlying principles related to their skill. The training of

VS involves partitioning the problem instance, and like savants, VS can derive

global solutions by combining smaller pieces.

Savants can enhance their abilities via repetition and learning. Analo-

gously, VS is able to compute more accurate results by improving the set of

solved problem instances used during training. Once the training phase is com-

pleted, VS can solve unseen and larger problem instances, without the need of

any further retraining. In resemblance to savants, VS is stochastic and does

not guarantee computing exact solutions. Thus, multiple VS executions may

return different approximate solutions to the problem at hand.

Similarly to real-life savants, which are thought to have parallel processing

capabilities, VS can also take advantage of multiple computing resources. Due

to its design, each phase in VS can be executed in a massively-parallel fashion.

Thanks to parallelism, VS can reduce execution times significantly, find better

solutions due to an improved exploration of the search space, and effectively

scale in the problem dimension.

2.3.2 Training of VS

VS is trained using previously-solved problem instances. Learning is solely

based on the input (i.e., the problem instance) and the output (i.e., the so-
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lution) computed by one or several reference algorithms, without the need to

know how those algorithms work or how the solutions were computed. In fact,

VS can learn from preexisting benchmarks of solved instances, which are fre-

quently available for widely-known optimization problems. Therefore, the first

step when applying VS to any optimization problem is to build a dataset of

solved problem instances from which a training set is generated for VS to learn

from.

One of the key design principles in VS is that it aims to learn relationships

between the elements of the problem. The simplest case models variables

(univariate analysis), but more complex models (bivariate, multivariate) can

be considered as well. For the sake of simplicity, the univariate case is used

to outline the VS workflow. The univariate case considers as many training

examples as variables in the problem being solved. Thus, each solved problem

instance yields as many training examples as variables in the problem being

solved. Figure 2.1 outlines the process of transforming a dataset of solved

instances into a training set, for a problem with n variables. The problem

instance is transformed into multiple training vectors that are included in the

training set. Each training vector j is comprised of k features xj1 . . . x
j
k, which

are taken from the problem instance and a label yj that corresponds to the

value of variable j in the solution. The main challenge during training, as in

most machine learning problems, lies in selecting the instance features that

maximize the accuracy of the trained model. This decision is highly problem-

specific and involves a process of instantiating the general VS schema to the

problem at hand. A discussion on which features to include during training is

presented for each case study outlined in Chapters 4–6

Once the training set is generated, a supervised machine learning model is

trained over that set. Supervised learning refers to the task of approximating

a mapping function that associates an input to an output based on input-

output pairs given as examples (Russell and Norvig, 2010). In the case where

the output is within a finite set of values, the supervised learning problem is

called a classification task.
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Figure 2.1: VS training set generation.

2.3.3 Execution of VS

Once training is completed, VS can solve new—unseen—problem instances by

following a two-phase process comprised of prediction and improvement. These

phases are described next.

2.3.3.1 Prediction phase

In the prediction phase, the trained classifier is used to predict a solution to

a new, unseen, problem instance. In the univariate case, each variable in the

new problem instance can be predicted independently, thanks to the design

followed in the training process of VS. Figure 2.2 outlines the prediction phase

of VS. Given an unsolved problem instance, features corresponding to each

variable in the problem are extracted in the same way as during the training

process. As a result, VS gets as many unlabeled feature vectors as variables

in the problem instance. Each of these feature vectors is separately fed to the

trained model, which outputs a prediction ŷi for the variable corresponding to

that feature vector. The predicted solution to the problem instance is returned

by aggregating the individual predictions of each problem variable.
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Figure 2.2: VS prediction phase.

Many machine learning libraries implement methods that allow estimating

label probabilities for multi-class classification problems (Wu et al., 2004). The

output of the trained model in these methods is not a single label but instead a

vector of size equal to the number of possible classes, indicating the probability

of labeling the given input to each of the possible classes. Figure 2.3 outlines

the prediction phase of VS when using this approach. In this case, the output

of the prediction phase is a probability distribution P (ŷi) for each of the i

variables in the problem. The predicted solution shown in Figure 2.2 can be

built by simply taking the arg max of each vector of probabilities.

Figure 2.3: VS prediction phase with label probabilities.
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2.3.3.2 Improvement phase

During the improvement phase, the predicted solutions are refined using search

procedures and heuristics. For instance, a local search (LS) algorithm can be

applied to the predicted solutions to improve their quality in terms of the

objective function of the optimization problem being solved. Additionally,

predicted solutions can be given as input seeds to more complex optimization

methods such as EAs and other metaheuristics. When solving problems with

constraints, generated solutions may be infeasible due to inaccuracies in the

prediction phase or modifications during the improvement phase that may lead

to unsatisfied constraints. Thus, corrective functions must be included in the

improvement operator to ensure that the returned solution satisfies all problem

constraints. In general, the rationale behind VS is to use general optimization

strategies during the improvement phase, without relying on problem-specific

techniques. By doing so, VS can be applied to solve multiple problems from

many different domains.

When using the strategy for the prediction phase that outputs probabil-

ity distributions of labels for each variable instead of a single prediction, the

improvement phase involves generating multiple candidate solutions following

those probability distributions P (ŷi). Each of these candidate solutions can be

improved using an improvement operator (e.g., LS algorithm, greedy heuris-

tic) or, instead, the whole set can be used to start a population-based strategy

(e.g., an EA). The workflow is outlined in Figure 2.4: r candidate solutions are

built drawing values using the probability distributions computed during the

prediction phase, which are then improved using the improvement operator.

The overall best solution found is returned.

2.3.4 Parallelism in VS

Thanks to its design, VS can be run in a massively-parallel fashion. The par-

allel model of VS can be interpreted as a case of a MapReduce approach (Dean

and Ghemawat, 2004). Both phases in VS are subject to parallelism.

In the prediction phase, predictions can be made in parallel by using mul-

tiple copies of the same trained classifier, since each element in the problem

is learned independently. These classifiers can make their predictions inde-

pendently of one another, without the need for costly communications. An

interesting aspect of the design of VS is that, when there are as many com-
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Figure 2.4: VS improvement phase.

puting nodes available as problem variables, it allows keeping nearly-constant

response time when increasing the size of the problem. Solving a larger prob-

lem instance is as simple as launching more copies of the trained classifier, one

for each variable in the problem.

Similarly, the improvement phase is also subject to a high degree of par-

allelism. After label probabilities are computed for each variable, multiple

candidate solutions can be built and improved in parallel. Thus, VS can take

advantage of available computing resources to improve its search of the so-

lution space, leading to better solutions. Once again, no communication is

required among the parallel processes, since each one is improving a different

candidate solution. Nevertheless, sophisticated cooperative models involving

communications can also be applied to further improve the computed solu-

tions. The best overall solution computed by the pool of parallel processes is

returned as the solution to the problem by VS.

Figure 2.5 outlines the complete workflow of VS when running in parallel.

For each of the n variables in the problem instance, a copy of the trained

classifier is spawn. Each classifier receives the vector of features corresponding
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to one of the problem variables and outputs a vector P (ŷi), indicating the

probability of predicting each of the possible m labels for that variable. The

first synchronization barrier (shown in red) allows waiting for all classifiers

to output their predictions. Once all classifiers have completed their task,

candidate solutions are generated by drawing values for each variable according

to the probabilities predicted by the classifiers. In the example, r candidate

solutions are built, each of which is improved by applying the improvement

operator in parallel. The second synchronization barrier is in charge of waiting

for all the improvement operators to finish. Finally, all solutions are gathered

and the best overall solution is returned.

Figure 2.5: Parallel VS workflow.
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2.4 Implementation of VS

This section describes the implementation details of VS.

2.4.1 Parallel implementation

Details on the computational platforms and parallel development libraries used

for the implementation of VS are outlined next.

2.4.1.1 Computational platforms

Different computational platforms were used to evaluate the performance and

scalability of VS when solving the optimization problems considered in this

thesis. These platforms included regular desktop PCs, standalone servers,

High Performance Computing (HPC) clusters, and the IntelR©Xeon PhiTM ar-

chitecture, which is briefly presented next.

Xeon PhiTM is a brand name given to a series of many-core processors

by IntelR©. Many-core processors are multi-core processors specially designed

for a high degree of parallelism, consisting of tens or thousands of simpler

independent cores. The use of many-core processors has been increasing in

the past years, with extensive applications in embedded systems and HPC

platforms. The Xeon PhiTM family of processors was initially designed as

an add-on PCIe card that could be connected to a standard CPU and used

for computing-intensive tasks. A second generation of Xeon PhiTM products,

with codename Knights Landing, was announced in June 2013. The main

difference with its prior generation is that Knights Landing are stand-alone

processors that can boot an off-the-shelf operating system. Therefore, Knights

Landing avoids the bottlenecks in PCIe communications—which are inherent

in coprocessors—and provides a powerful HPC platform in a standard CPU

form factor.

Sodani et al. (2016) presented an overview of the Knights Landing archi-

tecture, which consists of 38 physical tiles: at most 36 are active and the

remaining two are used for recovery purposes. Each tile has two cores, two

vector processing units per core, and a shared 1MB L2 cache. The processing

cores derive from the IntelR©AtomTM core microarchitecture but incorporate

several modifications specially designed to suit HPC workloads. Each core

supports up to four hardware contexts or threads through Hyper-Threading
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techniques. All these features make the Knights Landing architecture a good

candidate for HPC tasks, without requiring any special way of programming

other than the standard CPU programming model, and even having decent

support for serial legacy code.

2.4.1.2 Parallel tools and implementation libraries

The tools and libraries used for the parallel implementation of VS are outlined

next according to their level of abstraction.

2.4.1.2.1 Message Passing Interface (MPI) is a message-passing stan-

dard that supports a wide variety of parallel computing platforms (Message

Passing Interface Forum, 2015). MPI defines a core library of routines to

help developers of parallel applications and has become the de facto standard

for parallel computing in distributed-memory systems. The MPI interface

provides virtual topology, synchronization, and communication functionalities

between a set of processes that are mapped to computing resources (e.g., nodes,

servers), among several other functionalities. MPI was used in this thesis for

the parallel implementation of VS in distributed-memory architectures.

2.4.1.2.2 OpenMP is a specification of compiler directives and library

routines to implement high-level parallelism in Fortran and C/C++ pro-

grams (Dagum and Menon, 1998). OpenMP can significantly improve the

scalability of shared-memory parallel applications. Developers need to de-

fine specific directives in their sequential code to indicate how the program

should be parceled out among the individual processors in a symmetric multi-

processing computing platform. Then, the compiler that supports OpenMP

transforms the sequential code into an executable that takes advantage of the

multiple processors available. OpenMP standardizes this notation to be able

to support different hardware platforms. OpenMP was used in this thesis for

the parallel implementation of VS in shared-memory architectures.

2.4.1.2.3 IntelR©C++ Compiler is part of the IntelR©Parallel Studio XE

suite. The compiler incorporates many optimizations to take advantage of

specific processor features, such as the number of available cores and wider

vector registers, to speed up computations. IntelR©C++ compiler has broad
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support for current and previous C and C++ standards, including full sup-

port for C++11 and C99. Furthermore, it supports integration with OpenMP

for parallel implementations. IntelR©C++ compiler was used in this thesis to

implement xphi-libsvm: a parallel version of the libsvm machine learning

library, specifically adapted to the IntelR©Xeon PhiTM architecture.

2.4.1.2.4 IntelR©Math Kernel Library (MKL) supports a series of op-

timized and threaded mathematical functions to take advantage of the architec-

ture of IntelR©processors to solve large problems. MKL performs a hardware

check on runtime and selects suitable functions to improve execution time

through instruction-level and register-level Single instruction, Multiple data

(SIMD) parallelism (Wang et al., 2014). IntelR©MKL also incorporates thread-

safe functions to speedup computations using OpenMP. The library provides

Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACKage (LA-

PACK) routines, fast Fourier transforms, vectorized math functions, random

number generation functions, and many other features. Specific functions of

the IntelR©MKL were used in this thesis for the implementation of the xphi-

libsvm library.

2.4.2 Machine learning classifiers

The VS model is agnostic in terms of which classifier to use and the deci-

sion is left to the practitioner. Descriptions of the two classifiers used in the

implementations of VS developed in this thesis are presented next.

2.4.2.1 Support Vector Machines

SVMs are supervised machine learning models used for classification and re-

gression analysis. Used in many different fields of study, SVMs are considered

as a standard out-of-the-box classifier due to their good performance (James

et al., 2014). SVMs are an extension of support vector classifiers, which are

themselves a generalization of an even simpler classifier known as the maximal

margin classifier, which is described next.

Consider n training observations in a p-dimensional space, x1=(x11, x
1
2, . . . ,

x1p), . . . , x
n=(xn1 , x

n
2 , . . . , x

n
p ), corresponding to a binary classification problem,

i.e., each observation has a corresponding label y1 . . . yn ∈ {−1, 1} where −1

and 1 are the two possible classes. Given a test observation, i.e., a feature

19



vector x∗=(x∗1, x
∗
2, . . . x

∗
p) for which the label y∗ is unknown, the goal is to build

a classifier that can correctly classify the vector into one of the two possible

classes. The maximal margin classifier does so by finding a hyperplane that

separates the training observations in the p-dimensional space according to

their class labels, so that each observation of one of the classes lies in one side

of the hyperplane and the ones corresponding to the other class lie in the other

side. If training data is linearly separable, then an infinite number of possible

hyperplanes exist that can separate the observations according to their classes.

The maximal margin classifier consists in finding the separating hyperplane

that has the largest minimum distance to the training observations. Once the

hyperplane is set, a new—unseen—observation can be classified depending on

which side of the hyperplane it lies on. The mathematical formulation for the

maximal margin classifier is presented in Equations 2.1.

max
β0,β1,...,βp,M

M (2.1a)

subject to

p∑
j=1

β2
j = 1, (2.1b)

yi(β0 + β1x
i
1 + β2x

i
2 + . . .+ βpx

i
p) ≥M ∀i = 1, . . . , n. (2.1c)

The goal of the optimization problem is to find the hyperplane defined

by β0, β1, . . . , βp that maximizes M (Equation 2.1a), which is the positive

margin that ensures observations fall in the correct side of the hyperplane at

a distance of at least M . From Equations 2.1b and 2.1c it can be derived that

the perpendicular distance for the ith observation is given by yi(β0 + β1x
i
1 +

β2x
i
2 + . . .+ βpx

i
p). Constraint 2.1c ensures that all training vectors fall on the

correct side of the hyperplane according to their label.

In many cases, classification problems are not linearly separable, i.e., there

is no solution to the previous optimization problem with M > 0. In this case,

a hyperplane that almost separates the classes may be computed. This idea is

the basis for the support vector classifier, which finds a separating hyperplane

with a soft margin, allowing a certain number of training vectors to fall on the

wrong side of the hyperplane. The optimization problem corresponding to the

support vector classifier is presented in Equations 2.2.
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max
β0,β1,...,βp,M

M (2.2a)

subject to

p∑
j=1

β2
j = 1, (2.2b)

yi(β0 + β1x
i
1 + β2x

i
2 + . . .+ βpx

i
p) ≥M(1− εi) (2.2c)

εi ≥ 0,
n∑
i=1

εi ≤ C. (2.2d)

The optimization problem is similar to the one corresponding to the maxi-

mal margin classifier, but constraint 2.2c incorporates the notion of soft mar-

gins using variables ε1, . . . , εn, bounded by parameter C, which limits the num-

ber and magnitude of violations to the margin (Equation 2.2d). If C = 0 the

support vector classifier reduces to a maximal margin classifier. The support

vector classifier can be formulated by Equation 2.3, where 〈a, b〉 =
∑p

i=1 aibi

is the inner product of two p-dimensional vectors.

f(x) = β0 +
n∑
i=1

αi〈x, xi〉 (2.3)

Thus, the classifier is defined by parameters α1, . . . , αn and β0, which are

estimated by computing the inner product of all pairs of training observations.

Once trained, classifying a new vector does not depend on computing inner

products with all the training vectors, but only on those that lie in the margin

or in the wrong side of the margin for their class, where αi 6= 0. These training

vectors are known as support vectors.

SVMs extend the idea of support vector classifiers by replacing the inner

product by a function K known as kernel. The simplest function K is the

linear kernel, which reduces the SVM to a support vector classifier. However,

different functions can be used to take features to a higher dimensional space,

allowing for more complex decision boundaries. One of the most used kernel

functions for SVMs is the Radial Basis Function (RBF), which is defined in

Equation 2.4, where γ is a positive constant.

K(xi, xj) = exp
(
− γ

p∑
k=1

(xik − x
j
k)

2
)

(2.4)
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The advantage of using kernels is that it is far easier to compute inner-

products than to compute function values in higher dimensional spaces, which

might even be infinite and therefore intractable. One feature that makes the

RBF kernel so popular is the fact that it only incorporates one additional

parameter (γ). Thus, when training a SVM with the RBF kernel, only two

parameters need to be fine-tuned: C for the SVM and γ for the RBF kernel.

2.4.2.2 Random Forest

Random Forest (RF) is a tree-based machine learning method used for re-

gression and classification tasks (James et al., 2014). The core elements in

RF are decision trees. Decision trees involve segmenting the predictor space

into a certain number of regions and can be applied to both regression and

classification problems. Regions are defined as high-dimensional boxes and,

once defined, the same prediction is made for every test observation that falls

in a given region. In the case of classification trees, the predicted class for a

given observation is given by the most commonly occurring class in the re-

gion in which the observation falls. Regions are usually defined following a

recursive top-down greedy approach that begins with all observations as part

of the same region and iteratively splits the predictor space. Each split is rep-

resented by two new branches down the tree. The approach applies a greedy

heuristic decomposition since the best local split is made in each step. A usual

split criterion in classification trees is the Gini index, defined by Equation 2.5,

where K is the number of possible classes and p̂mk represents the proportion

of training observations that fall in region m and correspond to class k.

G =
K∑
k−1

p̂mk(1− p̂mk) (2.5)

The Gini index measures the variance of classes in a given region: a small

value indicates that most observations in the region correspond to a single

class. The iterative splitting strategy ends when all regions are comprised of

observations corresponding to the same class or a certain stopping criteria is

met (e.g., no region has more than a given number of training observations).

Decision trees are not very robust, since a small change in the training

data can lead to a major change in the estimated tree. When used individ-

ually, decision trees usually show high variance and a tendency to overfit the
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training set. RF aims to overcome these issues by incorporating two distinct

features: aggregating many decision trees to improve their predictive accuracy

and slightly modifying the split algorithm in decision trees during training.

Regarding the first feature, RF is an ensemble learning technique that

builds multiple decision trees which are then combined to yield a single pre-

diction. This is made possible by applying bootstrap aggregation to decision

trees. Consider a classification problem for which a training set of observations

x1, x2, . . . , xn corresponding to classes y1, y2, . . . , yn is given. RF repeatedly se-

lects a random sample of observations (with replacement) from the training

set and fits a decision learning tree after each draw. After training, predictions

for an unseen observation are made by each trained tree and are aggregated

to give the final prediction, usually using a voting mechanism. The voting

mechanism can be as simple as a majority vote or can incorporate weights to

the predictions of each tree based on the ratio of training observations of the

same class in the predicted region.

The second distinct feature in RF is included during training. When com-

puting the best possible split while building a decision tree, only a random

subset of features is considered as a split candidate (typically,
√
p features are

sampled, where p is the total number of features). The rationale of this proce-

dure is that, in the case that a feature is very strong, all the decision trees will

start by using this feature as their top split. As a result, all the trees in the

RF would be very similar. By restricting the possible features considered for

each split, RF decorrelates individual decision trees, significantly improving

their prediction accuracy.

2.4.3 Machine learning libraries

Three machine learning libraries were used for the implementation of VS, which

are described next.

2.4.3.1 Scikit-learn

Scikit-learn is an open-source machine learning library for Python (Pedregosa

et al., 2011). The library provides a collection of algorithms for both supervised

and unsupervised learning, as well as tools for data processing, parameter

tuning, and model evaluation. Scikit-learn was used in this thesis for the

application of VS to the BSP. For that problem, RF was used as a classifier.
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The scikit-learn implementation of RF uses the Gini index as a split criterion

and combines classifiers by averaging their probabilistic prediction, instead of

using a majority vote.

2.4.3.2 libsvm

Library for Support Vector Machines (libsvm) is a framework developed

by Chang and Lin (2011) that supports vector classification, regression, and

distribution estimation problems. It was designed to help users from out-

side the machine learning field to easily use SVM as a research tool. libsvm

provides a simple interface for users to link with their programs. The main fea-

tures of this framework include several SVM formulations, efficient multi-class

classification, cross-validation, probability estimates, various kernels (e.g., lin-

ear, polynomial, RBF, and sigmoid), and weighted SVM for unbalanced data.

It is implemented in both C++ and Java and has interfaces for many other

languages.

2.4.3.3 xphi-libsvm

The original libsvm code does not directly provide support for parallelism. As

part of this thesis xphi-libsvm was developed, which is a parallel version of

libsvm specifically adapted to the latest IntelR©Xeon PhiTM architecture (Mas-

sobrio et al., 2018c). The details of the implementation are outlined next.

A simple way to exploit the availability of multiple cores in a massively-

parallel architecture is by using OpenMP to parallelize the loop that pro-

cesses each training vector. This modification works with any C++ compiler

that supports OpenMP. In order to exploit the specific characteristics of the

IntelR©Xeon PhiTM architecture, and to be able to use the IntelR©MKL, the

proposed xphi-libsvm uses the IntelR©C++ compiler. The compiler options

were set according to the recommendations of the IntelR©MKL Link Line Advi-

sor (IntelR©Software, 2012) to tailor the compiled code to the specific hardware

architecture.

An initial profiling was performed to identify bottleneck functions on the

original libsvm code. The profiling was performed using gprof (Graham et al.,

1982) and training on the connect-4 dataset (Lichman, 2013) available at the

libsvm dataset repository (Chang and Lin, 2011). The profiling revealed

that 87.2% of the total training time was spent in the dot function of class
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Kernel. This function performs the dot product of two vectors. To improve the

overall training time the dot function was replaced by the threaded cblas ddot

routine, which is available in the BLAS Level 1 group of functions and routines

of IntelR©MKL.

Using the cblas ddot function instead of the original code in libsvm is not

as straightforward as interchanging only the calls to the functions, due to the

format in which libsvm stores the training vectors. libsvm uses a “sparse”

format, in which zero values are not stored. Instead, training vectors are

stored as <index:value> pairs. For instance, the training vector <0,1,0,3>

is internally represented as (2:1 4:3). This format does not allow using the

cblas ddot function directly. Therefore, it was necessary to modify other

sections of the libsvm code to implement a “dense” format, in which vectors

are directly stored as arrays, including zero values. This design decision may

achieve better or worse performance depending on the specific characteristics

of the training set used. Therefore, xphi-libsvm users can decide at compiling

time whether to use the original “sparse” format or the proposed “dense”

format, depending on the specific characteristics of the training dataset.

The evaluation of the xphi-libsvm framework is presented next.

2.5 Experimental evaluation of xphi-libsvm

This section reports the experimental evaluation of the proposed xphi-libsvm

framework.

2.5.1 Execution platform and problem instances

The xphi-libsvm framework was evaluated on an IntelR©Xeon PhiTM 7250 pro-

cessor, with 68 cores, and 64GB of RAM. The server was not shared with other

users or performed any other intensive tasks during the experiments, in order

to accurately measure the execution times.

Three learning datasets were used for the experimental evaluation of the

proposed implementation. These datasets were obtained from the libsvm

repository (Chang and Lin, 2011). The datasets, which correspond to classifi-

cation and regression problems, are:

• gisette, a dataset corresponding to a handwritten digit recognition prob-

lem with the goal of separating the digits ‘4’ and ‘9’ (Guyon et al., 2004).
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• E2006, a dataset with reports from thousands of publicly traded U.S.

companies, published in 1996–2006, and stock return volatility measure-

ments in the twelve-month period before and the twelve-month period

after each report (Kogan et al., 2009).

• usps, a database for handwritten text recognition research, consisting of

digitalized images at 300 pixels/in in 8-bit gray scale, corresponding to

U.S. post codes scanned from real mail (Hull, 1994).

The datasets gisette and E2006 were sub-sampled using a stratified se-

lection of training samples, keeping the rate of appearance of each label in

the dataset. A subset of 1000 samples of each dataset was used, which are

hereinafter referred to as gisette 1000 and E2006 1000. Table 2.1 shows the

main characteristics of each of the datasets used in the experimental evalua-

tion, including the type of problem (classification or regression), the number

of training vectors (# samples), the length of each training vector (# features)

and, for classification problems, the number of classes (# labels).

Table 2.1: Datasets used for the experimental evaluation of xphi-libsvm.

problem # samples # features # labels

gisette 1000 classification 1000 5000 2
E2006 1000 regression 1000 150 360 -

usps classification 7291 256 10

2.5.2 Coarse-grain parallelization

Initially, the experimental evaluation focused on the coarse-grain parallelism

of the outer loop that performs the kernel evaluations. These results cor-

respond only to the outer loop parallelization, without changing the vector

representation format and without using IntelR©MKL. Figure 2.6 shows the av-

erage execution time in seconds for the three studied instances, when varying

the number of threads (set by the OMP NUM THREADS environment variable) as-

signed to the outer loop. The results correspond to 30 independent executions

of each instance with each studied number of threads.

Results in Figure 2.6 show that acceptable execution time improvements

were achieved when using more than one core on all studied instances. How-

ever, execution times did not improve when using more than 64 cores for both

26



(a) gisette 1000 (b) E2006 1000

(c) usps

Figure 2.6: Mean execution time of xphi-libsvm with different number of OMP
threads.

gisette 1000 and E2006 1000 datasets, and there was even a significant neg-

ative impact when using large number of cores with the usps dataset. This

could be explained due to the fact that the IntelR©Xeon PhiTM processor used

has 68 physical cores. Therefore, when using more threads, some of the CPU

resources are shared among the threads, incurring in a noticeable overhead.

2.5.3 Vectorized dot product computation

Afterward, the experimental analysis studied the performance when chang-

ing from a “sparse” to a “dense” vector representation and including the

IntelR©MKL routines for the dot product calculation. Figure 2.7 shows the

average execution time in seconds for the three studied instances, when vary-

ing the number of threads (set by the MKL NUM THREADS environment variable)
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assigned to the dot product calculation. There is no coarse-grain paralleliza-

tion in these executions (i.e., OMP NUM THREADS = 1). The results correspond

to 30 independent executions of each instance with each studied number of

threads.

(a) gisette 1000 (b) E2006 1000

(c) usps

Figure 2.7: Mean execution time of xphi-libsvm with different number of MKL
threads.

Results in Figure 2.7 give information on two aspects. Firstly, on the

convenience (or not) of using the “dense” format and including IntelR©MKL

for the dot product calculation. Secondly, to discuss the usefulness of adding

parallelism at the vector level when computing the dot product.

To discuss the first aspect, execution times when using only one OMP

thread in Figure 2.6 should be compared against those achieved when us-

ing one MKL thread in Figure 2.7. It can be observed that execution times

significantly improved when running a sequential version with the “dense”

representation format and the IntelR©MKL dot product calculation for both
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gisette 1000 and usps instances. However, for E2006 1000 instance, since the

training vectors are much larger, using the “dense” format and only one MKL

thread negatively impacted the execution time. In this case, the effects of the

“dense” representation were only mitigated when adding more MKL threads

to reduce the execution times.

Regarding the second aspect, results showed that when using the “dense”

format, the improvements achieved by using a larger number of threads for the

dot product computation were only noticeable for very large vectors. For usps

instance, with vectors of size 256, the improvements when using more than

one thread were marginal. For gisette 1000, with vectors of size 5000, there

was even some minor performance decline when using more than one thread.

Additionally, there was a strange behavior when using exactly two threads,

possibly due to the overhead of creating the pool of threads. However, for in-

stance E2006 1000, with training vectors of size 150 360, there was a noticeable

improvement when using more threads for the dot product calculation.

In conclusion, dense vectors benefit from changing the original libsvm

representation and using IntelR©MKL for the dot product calculation, but only

dense and large vectors benefit from using multiple threads when computing

each dot product. The proposed implementation allows the user to control

both the vector representation and the number of outer (OMP) and inner

(MKL) threads, thus, enabling the user to tune the library to the specific

needs of their learning task.

2.5.4 Two-level parallelization approach

Taking into account the results discussed in the previous sections, thirty inde-

pendent executions of each training dataset were performed using the configu-

ration of threads that achieved the best results. The selected configurations are

reported in Table 2.2, where OMP NUM THREADS indicates the number of threads

used for the outer loop of kernel evaluations (i.e., coarse-grain parallelism) and

MKL NUM THREADS indicates the number of threads assigned to compute each

vector dot product, when the “dense” format is used. Additionally, thirty in-

dependent executions of the original libsvm library were performed over each

dataset.
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Table 2.2: Thread configurations used for each problem instance.

format OMP NUM THREADS MKL NUM THREADS

gisette 1000 dense 64 1
E2006 1000 sparse 64 -

usps dense 32 32

Table 2.3 presents the execution times achieved by the original libsvm code

and the proposed xphi-libsvm using the best configuration for each problem

instance. For each instance the minimum (best), average, and standard devi-

ation of execution times are presented with the following format: mean±std

(min). All times are expressed in seconds. Additionally, the average acceler-

ation achieved is presented for each instance, which is computed as the ratio

between the average execution time of libsvm and the average execution time

of the proposed xphi-libsvm implementation.

Table 2.3: Execution time in seconds (mean ± std (min)) and average acceleration
of xphi-libsvm vs. libsvm.

libsvm xphi-libsvm acceleration

gisette 1000 22.66 ± 0.06 (22.59) 7.07 ± 0.02 (7.03) 3.21x
E2006 1000 20.59 ± 0.03 (20.56) 4.98 ± 0.02 (4.96) 4.13x

usps 18.46 ± 0.06 (18.24) 3.84 ± 0.01 (3.81) 4.81x

Results in Table 2.3 show that the proposed implementation can efficiently

improve the training time while computing the same results than the orig-

inal libsvm. The proposed implementation achieved an acceleration of up

to 4.81x on average on the usps dataset. These training time improvements

are significant, especially when considering larger training datasets that would

otherwise be intractable for sequential SVM implementations. The best results

were achieved for classification problems with large and “dense” training vec-

tors, which take the most advantage of the vectorized dot product calculation

provided by IntelR©MKL.
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Chapter 3

Related Work

This chapter outlines the review of works in the literature related to VS. Firstly,

an overview of works related to the automatic generation of parallel programs

is presented in Section 3.1. Then, Section 3.2 reviews works that deal with

the application of machine learning to solve optimization problems. Methods

inspired in the Savant Syndrome are presented in Section 3.3. Finally, Sec-

tion 3.4 summarizes the findings of the review of related works and reflects on

the contribution of this thesis to the existing literature.

Works related to the optimization problems used in this thesis for the evalu-

ation of VS are not presented in this chapter but in the chapters corresponding

to each specific problem addressed.

3.1 Automatic generation of parallel

programs

VS aims to automatically generate—via learning—a solver that can be run in

parallel for a given optimization problem. The automatic generation of parallel

programs has been addressed in the past.

One research line in the literature corresponds to the parallelization of ex-

isting sequential programs by applying source-to-source transformations, which

rely on carefully inspecting dependencies to identify possible segments in the

original program that can be parallelized.

An early proposal for automatic parallelization of sequential code was pre-

sented by Irigoin et al. (1991). In their work, the authors proposed a source-

to-source parallelizer implemented in Fortran. The parallelizer performs a
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semantical analysis of the original source code and makes a series of trans-

formations including: privatization of variables, to remove dependencies; loop

distribution, where a loop with multiple (independent) instructions is replaced

by a set of loops that can be run in parallel; and nested loop parallelization,

which interchanges the order in nested loops in order to maximize the efficiency

when accessing memory. The proposed framework also supports computing

platforms with dedicated vector processing units.

The work of Midkiff (2012) describes the concepts behind the automatic

parallelization of unaltered and unannotated sequential programs. The author

outlined the fundamental principles used by compilers to parallelize numerical

programs, including source code analysis strategies to identify interactions and

dependencies, and code transformations aimed to expose parallelism targeted

at multicore and vector processors. The author focused on shared-memory

systems but also discussed parallelizing programs for execution on distributed-

memory platforms.

Some works in the literature have applied Genetic Programming

(GP) (Koza, 1992) to achieve automatic parallelization.

Ryan and Ivan (2000) presented Paragen, an automatic parallelization sys-

tem that combines GP and genetic algorithms (GAs). Paragen generates par-

allel programs that are functionally-equivalent to a sequential program given

as a reference. The source code of the sequential program is used as a starting

point and several transformations are iteratively applied until the framework

produces a parallel version of the program. GP is used to apply atomic trans-

formations (i.e., those that affect a single instruction) while a GA is used for

transformations involving loops. The method was evaluated on a very triv-

ial program involving loops and simple arithmetic operators and showed good

preliminary results. The authors highlighted the importance of increasing the

number of possible transformations and applying Paragen to solve more com-

plex benchmark problems.

Cheang et al. (2006) proposed using GP to generate entirely new programs

that can be run in parallel. The proposed paradigm was devised for Multi-

Arithmetic-Logic-Unit Processors, a type of tightly-coupled register machines.

The goal of the authors was to create parallel programs specifically adapted

to this underlying architecture without human intervention. They used GP

to evolve sequences of parallel-instructions selected from a defined set. The

implementation was evaluated over a benchmark of fourteen problems, includ-
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ing numeric and Boolean functions, Fibonacci sequence computation, among

others. Experimental results showed that it was easier to evolve parallel pro-

grams than sequential counterparts. The authors concluded that their ap-

proach needed to be extended with application-specific functions to solve more

complex problems.

Few works have applied machine learning to automatically generate pro-

grams that can run in parallel.

Tournavitis et al. (2009) argued that traditional static parallelism detection

techniques are ineffective due to the lack of information in the static source

code. Additionally, the authors highlighted that previous approaches did not

take into account the mapping of the parallel program to the underlying archi-

tecture. To overcome these issues, the authors proposed a framework for auto-

matic parallelization. The proposed framework is comprised of a profile-driven

parallelism detection phase and a mapping mechanism based on machine learn-

ing. Starting from a sequential code, the framework performs a dependence

analysis that builds upon traditional static analysis by incorporating profiling

information. The result is a parallel code with OpenMP annotations that are

later extended with allocation clauses using a machine learning model trained

with a set of known parallelization strategies. However, the framework needs

user intervention to approve the generated code since correctness is not guar-

anteed.

3.2 Learning for optimization

The idea of applying machine learning techniques to solve optimization prob-

lems has been addressed in the literature. A review of works in this area of

study is presented next.

Many real-world optimization problems follow the predict-then-optimize

paradigm, which consists of sequentially predicting a set of unknown parame-

ters or variables of the problem instance (e.g., travel times in a Vehicle Routing

Problem (VRP)) and then using an optimization solver to provide a solution

(e.g., near-optimal routes in the VRP) (Grimes et al., 2014; Demirović et al.,

2019).
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Elmachtoub and Grigas (2017)1 proposed Smart “Predict, then Opti-

mize” (SPO), a framework for problems that follow the predict-then-optimize

paradigm. The authors argued that traditional approaches for these problems

do not take into account how predictions in the first stage affect the optimiza-

tion in the second stage. Instead of focusing on prediction errors, the authors

proposed the SPO loss function, which measures the decision error induced

by a wrong prediction. Thus, the proposed SPO framework trains a machine

learning model that learns with respect to the error in the optimization prob-

lem instead of the error in the learning task. Due to the intractability of the

SPO loss function, the authors proposed a surrogate loss function that can

be computed using stochastic gradient descent. Experimental evaluation on

synthetic instances of the shortest path and portfolio optimization problems

showed that the proposed framework was able to outperform classic predict-

then-optimize approaches.

Later, Mandi et al. (2020) extended the work of Elmachtoub and Grigas

(2017) to solve more realistic discrete optimization problems. The main chal-

lenge in the original SPO framework is the need for repeatedly solving the

optimization problem during learning. Consequently, the authors proposed

strategies to relax the problem and offered ways to warm-start the learning

process using previous solutions. Experimental evaluation was performed on

small instances of the weighted knapsack and scheduling problems. Addition-

ally, experiments on five hard scheduling instances were performed, showing

that the proposed approach outperformed a traditional two-stage approach

that did not considered an optimization-directed loss.

Another line of work in the related literature consists of introducing com-

binatorial building blocks within machine learning algorithms.

Vlastelica et al. (2020) proposed an end-to-end architecture that integrates

blackbox implementations of combinatorial solvers into neural networks. The

proposed architecture can be used along with any combinatorial solver that

optimizes a linear function. The main idea behind the method consists in

applying a novel interpolation technique that allows computing gradients of

the piecewise constant function that characterizes the combinatorial optimiza-

tion problem. The authors trained architectures with implementations of

Gurobi (a general-purpose mixed integer linear programming solver), Dijkstra’s

shortest-path algorithm, and a state-of-the-art implementation of a minimum

1Unpublished work (arXiv preprint arXiv:1710.08005)
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cost perfect matching algorithm. Experimental evaluation was performed over

three optimization problems: shortest path finding, Traveling Salesman Prob-

lem (TSP), and minimum cost perfect matching. The proposed architecture

showed high accuracy and generalization capabilities. The authors proposed

embedding approximate solvers as future work, to be able to address real-world

problem instances that are not tractable using exact solvers.

Following a similar strategy, Berthet et al. (2020) proposed a systematic

method that transforms optimizers into differentiable operations that can be

learned and embedded into machine learning pipelines. The approach relies

on stochastically perturbing discrete optimizers with random noise and con-

sidering the perturbed solutions to the problem. The proposed strategy was

evaluated on the same shortest path problem instances used by Vlastelica et al.

(2020), outperforming their results in terms of accuracy and cost ratio.

Many works in the literature have focused on learning optimization solvers

for problems that are modeled using graphs, for which specific architectures

have been proposed.

Vinyals et al. (2015) introduced Pointer Networks (PNs), a model based

on Recurrent Neural Networks (RNNs). The proposal aimed to solve a com-

mon shortcoming of previous approaches that used RNNs to learn functions

over sequences: the size of the output dictionary needs to be fixed and known

beforehand. For this purpose, the authors proposed PNs, where an encoder is

used to parse an input graph and produce an encoding for each node in the

graph. Then, a decoder produces a probability distribution over these nodes,

following an attention mechanism that resembles the one proposed by Bah-

danau et al. (2015). By repeating this decoding step, the PN is able to output

a permutation of the nodes of the graph given as input. Thanks to its design,

PNs can handle graphs of arbitrary size. The proposed model was evaluated

when solving three discrete combinatorial optimization problems: finding pla-

nar convex hulls, computing Delaunay triangulations, and solving the planar

TSP. PNs were trained by observing solved instances of each problem and,

similarly to the VS paradigm, can also deal with problem instances of vary-

ing size. Experimental results showed that PNs were able to find competitive

results in problem instances larger than those seen during the training phase.

Later, Bello et al. (2017) outperformed the results of Vinyals et al. (2015)

when solving the TSP by using reinforcement learning over the PNs architec-

ture, using the inverse of the tour length as a reward signal. By using rein-
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forcement learning, the method does not depend on the availability of solved

instances for the problem. Experimental evaluation was performed on TSP

instances of up to 100 cities. To outline the applicability of the proposed ap-

proach to other optimization problems, the authors also studied the 0/1-KP.

For this problem, the experimental evaluation was performed on instances of

up to 200 items. The proposed approach found solutions to the studied in-

stances that were within 1% of the known optima. The authors concluded

that tackling problems with harder constraints is a difficult task and proposed

incorporating a penalization scheme into the reward function as a line of future

work. In Chapter 4, the VS framework is evaluated when solving the NRP,

a software-engineering optimization problem that is modeled as a 0/1-KP, on

instances of up to 1500 items.

More recently, Hu et al. (2017) extended the model proposed by Bello

et al. (2017) and applied it to the three-dimensional bin packing optimization

problem. The goal of the problem is to design a bin that can pack all the

items in the instance while minimizing the surface area of the bin. A deep

reinforcement learning approach was used to predict the sequence in which

items are packed. A PN receives as input the elements that need to be packed

and outputs a permutation of these items that indicates the order in which the

items should be added to the bin. The PN was trained using reinforcement

learning, according to the surface of the smallest bin that can pack all the

items in the output sequence. The specific empty spaces in which the items

are placed and the orientation of each item were computed separately, using

heuristic methods. The proposed approach outperformed a specific heuristic

for the problem during the experimental analysis. Improvements of 5% on

average over the baseline heuristic were achieved for the studied instances.

Kool et al. (2019) proposed an attention model trained with reinforcement

learning. The proposed model receives a graph as an input and sequentially

chooses nodes to add to a tour until a full tour has been constructed. The

model is independent of the order in which the nodes are given as input. The

authors trained their model using reinforce, a policy-gradient based algo-

rithm. The authors showed the flexibility of their approach over the TSP, two

variants of the VRP, and other routing problems over graphs. Experimental

results showed that the proposed model significantly improved over learned

heuristics on problem instances with up to 100 nodes. The authors concluded

that larger instances should be addressed in the future.
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Khalil et al. (2017) proposed using a single model based on graph embed-

dings instead of a separate encoder and decoder as used by Vinyals et al. (2015).

The authors advocated for taking advantage of the fact that, when solving op-

timization problems, the structure tends to remain nearly unchanged, with

problem instances only varying in the specific data. Thus, they proposed

a framework that combines reinforcement learning with graph embedding to

solve optimization problems over graphs. The proposed approach greedily

constructs solutions and takes advantage of a graph embedding network called

structure2vec to incorporate the graph structure into the learning process.

Three optimization problems over weighted graphs were used for the experi-

mental evaluation: the Minimum Vertex Cover, the Maximum Cut, and the

TSP. Experimental results showed that the proposed approach outperformed

traditional heuristics for the problem, both in synthetic and real-world prob-

lem instances. Results were better for problems where the graph structure is

important to compute the overall solution.

Other combinatorial optimization problems—besides those modeled

through graphs—have also been addressed.

Selsam et al. (2019) proposed NeuroSAT, a solver for the propositional sat-

isfiability problem (SAT) based on Message Passing Neural Networks (MPNN).

The proposed approach relies on training a MPNN using only the satisfiability

of the problem instance as a supervision bit. Experimental evaluation showed

that the network was able to predict satisfiability after several iterations. A

posthoc procedure based on clustering was used to derive the Boolean values of

each variable based on the activations in the neural network. The experimen-

tal evaluation showed that NeuroSAT was able to solve larger instances than

those used during training, albeit demanding a larger number of iterations and

incurring in a significant drop in accuracy. No execution time or performance

metrics were reported either for the training or prediction experiments.

Two recent works have applied reinforcement learning to solve scheduling

problems.

Waschneck et al. (2018) applied Deep Q Network (DQN) to the Job Shop

Scheduling Problem in a factory environment. Cooperative DQN agents were

trained using reinforcement learning according to user-defined objectives re-

lated to optimization in production scheduling. Each agent optimized the rules

corresponding to one workcenter in the factory and monitored the actions of

other agents to optimize a global reward. Experimental analysis over a small
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factory simulation showed that the proposed approach achieved solutions of

comparable quality to those computed by an expert but was not able to out-

perform classic dispatching heuristics.

More recently, Wang et al. (2019) applied a similar approach to that of

Waschneck et al. (2018) to study the multi-objective workflow scheduling prob-

lem. A DQN reinforcement learning model was used to schedule computing

tasks in a cloud environment with the goal of minimizing task completion time

and the cost for the user. The experimental evaluation of the model was done

using well-known scientific workflow templates as well as real data from the

Amazon EC2 cloud. The experimental evaluation showed that the proposed

approach was able to outperform several baseline heuristics and metaheuristics

for the problem.

Finally, a recent paper by Bengio et al. (2021) surveyed the literature on

machine learning for combinatorial optimization, outlined a methodology for

further integrating both fields of research, and enumerated the main challenges

in this regard. Based on their survey, the authors concluded that “Although

most of the approaches we discussed in this paper are still at an exploratory

level of deployment, . . . we strongly believe that this is just the beginning of a

new era for combinatorial optimization algorithms”.

3.3 Savant-inspired computational methods

According to the literature reviewed, the first attempt to mimic the behavior

of savants in a computational model was presented by Norris (1990). In this

work, the author presented a model of a calendrical savant using ANNs. The

proposed model aimed at predicting the day of the week in which a given date

falls, using a set of dates labeled with its corresponding day of the week as

training data. Initially, a simple single-layered neural network was devised

to predict dates between 1950–1999. The neural network had 31 inputs to

code the day, 12 inputs to code the month, and 15 inputs to code the year

(which was split between the decade and the year within the decade). The

output of the neural network consisted of seven units, one for each day in the

week. Training of the network was done using back-propagation on a set of

randomly-selected dates corresponding to one fifth of the considered period.

When predicting dates not seen during training, the neural network exhibited

poor performance, slightly above chance, showing poor generalization. The
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author argued that savants probably do not learn from examples taken at

random, but rather learn first about days, then months, and finally years. To

mimic this strategy, the author proposed a cascade learning model comprised

of three subnetworks: one focused on learning about days, one in months, and

one in years. Each subnetwork was iteratively trained. The first subnetwork,

which receives the day of the month as input, was trained with all dates from

January 1950. Once trained, the second subnetwork, which receives the month

and the output from the first subnetwork as input, was trained using every

date in 1950. Finally, the third subnetwork, which receives the year and the

output from the second subnetwork as input, was trained using one fifth of

randomly-selected dates from the whole period. With this design, the network

achieved an accuracy of 90% when predicting dates not seen during training,

which is comparable to the best calendrical savants reported in the literature.

Most errors produced by the network corresponded to dates in leap years,

with up to four times as many errors when compared to non-leap years. The

author concluded that, although the model was able to perform accurately,

the learning scheme was not completely automated since it used problem-

specific knowledge (i.e., training separately for days, months, and years). To

overcome this issue, the author posed that multi-layer networks may be a

suitable solution for the task. However, training multi-layer networks involved

a significant computational effort for the hardware available at the time this

paper was published.

Weijters (1995) extended Norris’s approach to learn how to predict the

day of a given date by combining neural networks with Self Organizing Maps

(SOMs). The author proposed an architecture that combines multi-layered

feed-forward neural networks with SOMs (as many as hidden layers in the

network). While the neural network is trained, the SOMs are also trained

using the hidden-unit activations of the neural network as input. Then, in-

formation from the SOMs is used when updating the connection weights in

the neural network. Weijters highlighted Norris’s remarks stating that his

proposed neural network would not be able to solve the calendar calculation

task had it not had human assistance. In his experimental analysis, Weijters

replicated the experiments performed by Norris, using the same date ranges

and a similar network topology. The proposed approach of neural networks

combined with SOMs was compared against the simpler neural network with

backpropagation proposed by Norris. Results showed a great improvement of
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the proposed approach over the original model presented by Norris, achieving

an average classification error below 3%. Later, Weijters et al. (2000) further

demonstrated that a single hidden-layer feedforward neural network combined

with a SOM can become a successful date calculator, thus challenging Norris’s

statement that expert-based knowledge is mandatory to solve the problem.

The first version of VS was presented by Pinel et al. (2013). In this work,

an independent task scheduling problem was addressed, which is further stud-

ied in this thesis in Chapter 5. The authors presented the VS paradigm, its

analogy to the Savant Syndrome, and described the model as a single iteration

of a MapReduce application. The optimization problem addressed consists in

assigning independent tasks to computational resources such that the finishing

time of the last task is minimized. Multi-class SVMs were used to predict the

machine assigned to a given task and a random LS was used as an improve-

ment operator to refine the predicted assignment. The training of the model

was done using solutions computed by MinMin, a well-known greedy heuristic

for the problem. The experimental evaluation was done using 100 instances

of 128×4 and 512×16 (i.e., tasks×machines). Considering only the prediction

phase, VS was able to compute solutions 10% worse (in median) than MinMin

in the small instances and even outperform MinMin after the application of the

LS. In the case of the largest instances, the improvement step was necessary to

compute comparable solutions to those of the reference algorithm. Later, Pinel

and Dorronsoro (2014) provided a more in-depth description of the model, ad-

ditional details of the feature selection strategy, and an extended experimental

evaluation where better results were computed thanks to an increase in the

number of training observations.

More recently, Dorronsoro and Pinel (2017) addressed the same task

scheduling problem but proposed a different operator for the improvement

phase of VS. In this work, the assignment probabilities returned from the

SVMs were used to generate the initial population of a Parallel Asynchronous

Cellular GA previously designed for the problem. Two variants of VS were pre-

sented: one that was trained based on the solution computed by MinMin and

one that used the genetic algorithm as a reference. The experimental evalua-

tion showed that both variants were able to improve the results of the reference

genetic algorithm (which used the MinMin solution as a seed). Particularly, in

the case of small instances (i.e., 12×4 and 128×4), VS was able to find better

solutions in half a second than those found by the reference algorithm in 10
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seconds. Experiments demonstrated that initializing the population with the

predictions from the SVMs helped the GA to start from better regions of the

search space and to compute accurate solutions faster. An extended experi-

mental evaluation (including a comparison to state-of-the-art solvers for the

problem) along with further details on the training process of VS was later

presented by Pinel et al. (2018).

In Chapter 5 this task scheduling problem is further addressed. The main

contributions over the previous works include studying larger problem in-

stances (up to 65536×16) and assessing the scalability of VS when using vary-

ing number of resources in different computing platforms, including multi-core

and many-core systems, and a cluster of distributed computing nodes.

3.4 Summary and discussion

Table 3.1 summarizes the related works included in the literature review, pro-

viding a brief comment on each reviewed work.

The automatic generation of parallel programs has already been studied in

the literature, with initial proposals dating back as far as thirty years. VS,

the paradigm explored in this thesis, is related to this line of research, since it

generates solvers for optimization problems that can run in parallel. Some of

the reviewed works applied source-to-source transformations while others used

GP to evolve a program in order to achieve parallelism. These approaches to

parallelization preserve the algorithm and most of the source code, since they

apply transformations that respect the semantics of the original program. In

contrast, VS does not need access to the source code of the algorithm used as

a reference. Moreover, VS can even use a set of previously-solved instances

of the problem being addressed. Another limitation of the reviewed works is

that the programs used for evaluation are extremely simple (in terms of the

number of instructions). In this regard, VS is evaluated when solving large

instances of three complex optimization problems.

The analysis of related works shows an increasing interest in applying ma-

chine learning to solve optimization problems. This interest is very recent, with

most of the reviewed works published within the past five years. Many of these

works aimed to learn solvers for optimization problems defined over graphs.

However, other optimization problems were also addressed in the literature,

including variants of some of the problems studied in this thesis.

41



Table 3.1: Summary of the related works included in the literature review.

Automatic generation of parallel programs
reference comment

Irigoin et al. (1991)
Proposed an automatic source-to-source paral-
lelizer.

Midkiff (2012)
Addressed the automatic parallelization of unal-
tered and unannotated sequential programs.

Koza (1992)
Proposed GP, which some authors used to auto-
matically generate parallel programs.

Ryan and Ivan (2000)
Proposed Paragen, an automatic parallelization
system based on GP and GAs.

Cheang et al. (2006)
Used GP to build parallel programs for a tightly-
coupled computing architecture.

Tournavitis et al. (2009)
Proposed a framework for automatic parallelization
considering the underlying architecture.

Learning for optimization
reference comment

Grimes et al. (2014)
Demirović et al. (2019)

Used a predict-then-optimize approach to solve op-
timization problems.

Elmachtoub and Grigas
(2017)

Introduced SPO, a framework for problems that
follow the predict-then-optimize paradigm.

Mandi et al. (2020)
Extended the work of Elmachtoub and Grigas
(2017) with relaxations for discrete problems.

Vlastelica et al. (2020)
Integrated blackbox implementations of combina-
torial solvers into neural networks.

Berthet et al. (2020)
Integrated perturbed optimizers into learning
pipelines.

Vinyals et al. (2015)
Introduced PNs based on RNNs and solved discrete
combinatorial problems.

Bahdanau et al. (2015) Proposed the attention mechanism used in PNs.

Bello et al. (2017)
Combined PNs with reinforcement learning to solve
the TSP and 0/1-KP.

Hu et al. (2017)
Combined PNs with deep reinforcement learning to
solve the three-dimensional bin packing problem.

Kool et al. (2019)
Proposed an attention model with reinforcement
learning for routing problems over graphs.

Khalil et al. (2017)
Combined reinforcement learning with graph-
embedding to solve graph problems.

Selsam et al. (2019) Proposed a model based on MPNN for SAT.
Waschneck et al. (2018)
Wang et al. (2019)

Applied DQN to solve single and multiobjective
scheduling problems.

Bengio et al. (2021)
Reviewed the application of machine learning to
combinatorial optimization.

Savant-inspired computational methods
reference comment

Norris (1990)
Proposed the first attempt to mimic the behavior
of savants in a computational model.

Weijters (1995)
Weijters et al. (2000)

Extended the work of Norris (1990) by combining
neural networks with SOMs.

Pinel et al. (2013)
Pinel and Dorronsoro
(2014)

Introduced the VS model to solve an independent
task scheduling problem.

Dorronsoro and Pinel (2017)
Pinel et al. (2018)

Combined VS with a cellular GA to solve an inde-
pendent task scheduling problem.
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Some of the reviewed techniques involve iteratively executing the solver

that is being learned. This constitutes a major obstacle when addressing large

instances of complex optimization problems, since the cumulative time exe-

cuting the solver during learning may be unbearable. Once again, the fact

that VS can learn from a benchmark of previously-solved instances is a major

advantage over these methods.

Many approaches in the literature only learn from exact solvers for the

problem. This comes at a large expense to applicability, since these methods

can only address problem instances up to the largest size that the exact solver

can adequately handle. In this regard, the design of VS presents a major

advantage over these approaches, since it can learn from instances solved by

both exact and approximate algorithms. Out of the problems addressed in this

thesis, one of them used solutions computed by an exact algorithm as reference

(NRP) and the remaining two used approximate solutions as reference (HCSP

and BSP). The experimental evaluation of VS when solving the HCSP and

the BSP involved studying the scalability when solving problem instances that

were significantly larger than those seen during training. This represents a

major advantage over some of the reviewed works in the literature that can

only scale up to a problem size that is tractable for the exact solver used as a

reference.

Since many of the proposals in the literature correspond to novel tech-

niques, experimental evaluation is sometimes not sufficiently exhaustive, with

many approaches being evaluated only over synthetic and very small problem

instances. This calls into question the applicability of such proposals to large

real-world problem instances. In this thesis, VS is evaluated over three prob-

lems of vastly different fields. Out of these problems, the BSP addressed in

Chapter 6, is a complex optimization problem in public transportation net-

works and VS is evaluated when solving realistic instances of this problem.

The computational performance of the proposed models found in the re-

viewed works is rarely studied and few mentions are made to the use of multiple

computing resources in parallel. In contrast, Chapter 5 outlines the evaluation

of the performance of VS over four different computing platforms. For each

platform, the scalability of VS in terms of the use of computational resources

is studied.

According to the literature reviewed, the first savant-inspired method was

proposed by Norris (1990) and later extended by Weijters (1995); Weijters et al.
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(2000). Since then, no other works in this regard were found in the literature up

to the proposal of VS by Pinel et al. (2013). This thesis significantly expands

the previous studies of VS by defining and implementing solutions to three

highly-relevant optimization problems arising in different fields of study and

evaluating its performance in different computational platforms.
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Chapter 4

Virtual Savant for the Next

Release Problem

This chapter presents how VS can be used to automatically learn from an exact

algorithm how to solve the NRP. Section 4.1 presents the NRP formulated as

a specific variant of the 0/1-KP and briefly reviews the related literature on

the problem. Then, Section 4.2 outlines how the VS framework is adapted

to solve the NRP and Section 4.3 presents the implementation details. The

experimental evaluation is presented and discussed in Section 4.4, followed by

some concluding remarks in Section 4.5.

4.1 The NRP and the 0/1-KP

This section introduces the NRP formulated as a 0/1-KP and presents a brief

review on the literature related to both optimization problems.

4.1.1 NRP overview

Requirements Engineering (RE) can be described as the process of formulat-

ing, documenting, and maintaining a set of requirements during an engineer-

ing design process (Nuseibeh and Easterbrook, 2000). RE is an important

discipline in many areas of engineering, and it is especially useful in software

engineering, where defining and analyzing software requirements is crucial to

properly define a system (Aurum and Wohlin, 2005). Particularly in early

stages, or during the inception of the new release of a product, requirements

can be classified into two groups. One group comprised of core or mandatory
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requirements that cannot be dispensed with and will likely be present in any

version of a product for technical, strategical, or policy compliance reasons. A

second group, composed of optional requirements, usually reflecting different

product features, which may be demanded by stakeholders. The selection of

the optional requirements to implement is a key problem in RE.

The NRP is a related problem in Software Engineering (Bagnall et al.,

2001). In essence, the NRP consists of selecting a subset of requirements

or features to include in the next release of a software product, taking into

account their expected revenues and other factors, such as which requirements

are demanded by the stakeholders (users or customers) and their perceived

relevance. This selection problem is constrained in practice by the resources

available for the development process, as requirements have implementation

costs that cannot exceed a given budget. There are also potential interactions

between requirements, like dependencies or precedence constraints. The NRP

is a relevant problem when it comes to developing and maintaining modern

complex software systems and is one of the most popular problems for which

search-based RE approaches have been applied.

Among the different NRP variants proposed in the seminal work by Bagnall

et al. (2001), the basic independent NRP considers no dependencies between

requirements, disjoint sets of requirements for different stakeholders, and a

single objective function to maximize. The objective function takes into ac-

count the revenues of the requirements and the preferences of the stakeholders

for the next release of a software product. The goal is maximizing the total

revenue without incurring in a total cost that exceeds the available budget.

More elaborate NRP variants exist in the literature. For instance, depen-

dencies among requirements are considered in the original general NRP for-

mulation (Bagnall et al., 2001). However, many algorithms addressing these

variants work by transforming instances into one or several instances of the ba-

sic independent NRP, thus effectively resorting to this simpler version to solve

them under the hood. Consequently, the basic independent NRP is relevant

even when considering more complex scenarios.

The basic independent NRP is the specific variant addressed in this Chap-

ter and, for simplicity, it is referred hereinafter as NRP. The mathematical

formulation of the problem is presented next.
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4.1.2 NRP formulation

The NRP deals with the selection of a subset of requirements or features to

include in the next release of a particular software product. Each requirement

has an associated implementation cost and expected revenue, usually related

to the stakeholders’ preferences. The goal is to find the subset of requirements

that maximizes the total revenue, subject to a budget limit for the total cost

of the requirements included in the next software release.

At a lower level of abstraction, the NRP can be characterized as a spe-

cific variant of the 0/1-KP, a classical NP-hard combinatorial optimization

problem (Kellerer et al., 2004; Bagnall et al., 2001). This problem can be

mathematically formulated as follows. Given a set of n items, each with a

weight wk and a profit pk, the 0/1-KP consists in finding a subset of items to

include in the knapsack that maximizes the total profit, without exceeding the

weight capacity C of the knapsack. Equation 4.1 outlines the problem formu-

lation, where decision variables xk ∈ {0, 1} indicate whether the corresponding

item is included (1) or not (0) in the knapsack. The knapsack capacity is anal-

ogous to the budget in the NRP formulation while items model the possible

requirements to include in the next software release, each with an associated

cost (i.e., the item’s weight) and a given revenue (i.e., the item’s profit).

arg max

{
n∑
k=1

pkxk

∣∣∣∣∣
n∑
k=1

wkxk 6 C

}
(4.1)

4.1.3 Related work

The 0/1-KP is a widely studied problem in Operations Research. Dantzig

(1957) studied this problem and called it “the knapsack problem”, recognizing

its importance from an integer programming perspective. Nemhauser and Ull-

mann (1969) proposed an exact algorithm to solve the 0/1-KP using dynamic

programming. The algorithm was applied to solve a well-known problem in

the field of management: allocating capital within constrained budgets. The

basic capital allocation problem can be modeled as a 0/1-KP considering in-

vestment opportunities, or projects, as the items to select for inclusion in the

knapsack and the available budget for investments as the knapsack capacity.

Each project has a required investment and an expected return of investment,

which are analogous to the weight and profit of items in the 0/1-KP formu-
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lation. Thus, the capital allocation problem consists in finding a portfolio of

projects in which to invest within a given constrained budget. A myriad of

algorithms and techniques have been developed for the 0/1-KP. The books

by Martello and Toth (1990) and, more recently, Kellerer et al. (2004) are

authoritative sources on knapsack-related problems and algorithms, including

both the underlying theory and a discussion on practical aspects.

Bagnall et al. (2001) introduced the NRP as an optimization problem of

industrial importance in RE. Several variants of the problem are discussed in

this work, where the objective function aims to maximize the satisfaction of

stakeholders subject to different constraints. Given the limitations of exact

algorithms, approximation algorithms and heuristics were used to solve the

different variants.

Harman et al. (2014) studied the NRP modeled as a 0/1-KP and presented

a sensitivity analysis tool to help stakeholders deal with inaccuracy when esti-

mating the cost and revenue of requirements in a project. The underlying idea

is to identify those requirements for which a small deviation in cost or revenue

estimation leads to a large difference in the optimal requirements set. Once

those problematic requirements are identified, a decision-maker can potentially

assign more resources to the estimation process of these sensitive requirements.

An optimized implementation of the original algorithm from Nemhauser and

Ullmann (1969) was used to solve NRP instances modeled as a 0/1-KP. This

optimized implementation is the one used as a reference algorithm during the

training phase of VS.

Veerapen et al. (2015) solved different versions of the NRP, including single

and bi-objective problems, using integer linear programming. cplex was used

to solve the problem instances and it was observed that the performance of

this approach significantly improved since Bagnall’s seminal work. This im-

provement does not just stem from the dramatic increase in computing power,

but also from the steady advances in integer linear programming solvers. In

the approach proposed by Veerapen et al., the goal was to provide an exact

optimization method capable of managing instances of reasonable size. Since

the problem is NP-hard, execution times grow dramatically for large problem

instances.

Some works in the literature have used machine learning to address the

NRP. Araújo and Paixão (2014) proposed an architecture that combined ma-

chine learning with an interactive genetic algorithm to solve the NRP. In their
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proposed approach, a machine learning model was used to replace the human

interaction needed to model the requirements engineer preferences. The goal

was to eventually replace the human interactions needed for the execution of

the genetic algorithm. In their model, user preference is learned based on

the inputs made in the first iterations of the interactive genetic algorithm.

The machine learning model was only proposed in this article. The model

implementation and experimental evaluation were reported in a more recent

article (Araújo et al., 2016). Their approach differs significantly to the one

proposed in this thesis. In their approach, the underlying optimization prob-

lem was solved using the genetic algorithm, i.e., machine learning was solely

applied to predict the revenue of the items in the instance based on the users

preference. In turn, VS learns how to solve the underlying optimization prob-

lem using an exact algorithm as a reference.

Applying VS to the NRP aims to provide a good approximation method

that is fully scalable, with fast execution times. The goal is not to provide a

state-of-the-art algorithm for the NRP, but to show that it is possible to solve

the problem with high accuracy using machine learning.

4.2 VS design for the NRP

The general framework of VS (presented in Section 2.3) needs to be instanti-

ated to the specific problem being solved. In the case of the NRP, a dataset of

instances solved by an exact algorithm is used to train VS. Figure 4.1 outlines

the process used to build a training set for the NRP. Each problem instance

in the dataset is iteratively processed and each requirement is treated as a

separate observation during the training phase of VS. Different combinations

of features can be considered during training. In fact, different combinations

were analyzed and the experimental results are reported in Section 4.4.2.1.

The training set generation process depicted in Figure 4.1 is described using

the combination of features that achieved the best results in these experiments.

The training vector corresponding to one requirement includes the following

features: the cost of the requirement, the revenue the requirement renders,

and the total budget (which is fixed for all requirements in a given problem

instance). The classification label is a binary value, indicating whether the

requirement is to be included (1) or not (0) in the next software release, ac-

cording to the reference algorithm. Each problem instance contributes to the
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training set with as many observations as the number of requirements in the

instance. This allows drastically reducing the number of reference solutions

required in the learning process.

Figure 4.1: VS training set generation for the NRP.

After training the machine learning classifier, VS can handle new, previ-

ously unknown, and even bigger instances than those used for learning. Fig-

ure 4.2 outlines the workflow of VS when solving the NRP. As described in

Section 2.3, the execution of VS is comprised of two phases: prediction and

improvement. In the prediction phase, VS receives as input an unknown NRP

instance to solve. Since the machine learning classifier is trained consider-

ing each requirement individually, several copies of the same classifier can

be spawned, forming a pool, splitting the new problem instance and making

predictions for each variable in parallel. Potentially, each requirement in the

problem instance can be handled by a different copy of the same classifier. The

output of each classifier corresponds to the probability of including the given

requirement in the next software release. The results computed by each classi-

fier in the pool are gathered to form a single vector that holds the probability

of including each requirement in the next software release.

During the improvement phase, the probability vector built in the predic-

tion phase is used to generate different candidate solutions. Several strategies

to build these candidate solutions can be devised. For the NRP, a generic

method that performs random samples was used, guided by the probabilities
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Figure 4.2: VS workflow for the NRP.
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of including each requirement as reported by the machine learning classifiers.

Each generated solution is then subject to an improvement operator, which

aims to modify the solution to achieve better results. This phase also plays an

important role in specific problem instances where the prediction phase may

perform poorly. The improvement phase is also subject to massive parallelism

since one candidate solution can be generated and improved per computing

resource available. It is worth noting that the generated solutions may be in-

feasible, i.e., they may not satisfy the budget constraint. Therefore, during the

improvement phase, it is necessary to include a correction operator to ensure

the feasibility of the computed solutions. Several alternatives for improvement

and correction operators were taken into account, which are described in the

following section.

Algorithm 1 outlines a pseudocode of the VS design applied to solve the

NRP. The loop at lines 3 to 5 corresponds to the prediction phase, where the

probability of including each requirement is predicted based on its cost and

revenue and the total budget available. The loop at lines 6 to 9 corresponds to

the improvement phase of VS, where candidate solutions are generated based

on the probabilities computed in the prediction phase and are further refined

using improvement operators. Finally, the best generated solution is returned

(line 10). As mentioned earlier, it is straightforward to parallelize both loops.

Despite the massively-parallel nature of VS, only a sequential implementation

is presented for the NRP since the goal is to evaluate its capability to solve

a well-known NP-hard problem. The parallel potential of VS is addressed in

Chapter 5 when solving the HCSP.

Algorithm 1: Pseudocode of VS applied to the NRP.

input : instance
1 probability vector ← []
2 candidate solutions ← []
3 foreach requirement in instance do
4 probability vector[requirement] ← predict(requirement.cost,

requirement.revenue, instance.budget)

5 end
6 for i← 0 to candidate solutions.size− 1 do
7 candidate solutions[i] ← generate solution(probability vector)
8 improvement operators(candidate solutions[i])

9 end
10 return best(candidate solutions)
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4.3 VS implementation for the NRP

The implementation details of each phase of VS applied to the NRP are pre-

sented next.

4.3.1 Prediction phase

The VS implementation for solving the NRP used SVMs as supervised machine

learning classifiers. The training set was built using problem instances solved

by the Nemhauser-Ullmann algorithm, which computes exact solutions for the

NRP (Nemhauser and Ullmann, 1969; Harman et al., 2014). The libsvm

framework (Chang and Lin, 2011) was used for the SVM classifier, using the

RBF kernel to map vectors into a higher dimensional space.

4.3.2 Improvement phase

Two different proposals were implemented for the improvement phase, which

are described next and are later compared and evaluated.

4.3.2.1 LS and corrections

The first proposed scheme for the improvement phase was to apply a simple LS

heuristic to each generated solution. This LS operator simply performs random

modifications to the candidate solution to exclude or include requirements

from the next software release. In each step of the LS, a randomly-chosen

bit of the candidate solution is flipped, the new solution is evaluated using

a score assignment function, and the LS continues from that solution if an

improvement is found. Algorithm 2 describes the score assignment function

used to guide the LS. The function considers a solution with total cost C, total

revenue R, and an overspent budget O = C −B, where B is the total budget.

C, R, and O are scaled using the minimum and maximum cost and revenue

values in the problem instance. A constant f > 0 is used as a penalty factor

for solutions that exceed the budget, while m ∈ (0, 1) is used to define the

maximum overspent budget allowed for a solution to be considered by the LS

operator.
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Algorithm 2: Score assignment for solutions during the LS.

input : solution, instance
1 scale(C, R, O, B, instance)
2 if O ≤ 0 then return R
3 else if O ≤ m ·B then return C − f ·O
4 else return −O

The score assignment function was devised to allow the LS to explore in-

feasible solutions with a total cost exceeding the budget constraint by up to a

factor of m, but penalizing such solutions in order to guide the search towards

feasible solutions. Since the solution returned by the LS operator might be in-

feasible, it is necessary to include a correction operator to guarantee feasibility.

Two different correction approaches were considered:

1. revenue correction: iteratively removes the requirement with the lowest

revenue until the total cost of the solution is not greater than the budget.

2. cost correction: iteratively searches for requirements with costs equal to

or greater than the amount spent over the budget, removing the require-

ment with the lowest cost among them. If no requirement satisfies this

condition, the requirement with the overall greatest cost is removed.

4.3.2.2 Greedy correction and improvement

Alternative operators for the correction and improvement of solutions, inspired

by a popular greedy strategy for knapsack problems, were also implemented

and are described next.

• greedy correction: while the total cost of the candidate solution exceeds

the budget, the requirement with the lowest revenue/cost ratio is itera-

tively removed to correct infeasible solutions.

• greedy improvement: while the total cost of the candidate solution is

within the budget (i.e., there is still budget available to add requirements

to the next software release), iteratively add the leftover requirements

that fit, one by one, in descending order of revenue/cost ratio.
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4.4 Experimental analysis

This section reports the experimental analysis of VS when solving the NRP

modeled as a 0/1-KP. The NRP instances used in the experiments are de-

scribed and the results of each phase in VS (i.e., training, prediction, and

improvement) are reported and discussed.

4.4.1 Problem instances

VS was trained and evaluated using a standard benchmark of NRP instances.

These instances were solved to optimality using the Nemhauser-Ullmann algo-

rithm (Nemhauser and Ullmann, 1969). The benchmark is comprised of prob-

lem instances with different sizes (i.e., number of requirements) and Pearson

correlations between cost and revenue of the requirements. Pearson correlation

is a measure that is usually applied to characterize the difficulty of solving an

NRP instance (Harman et al., 2014). The benchmark includes a total of 50

datasets, each with 300 instances with varying size and Pearson correlation.1.

Within each dataset, instance sizes vary from 100 to 1500 requirements

(stepsize: 100). For each instance size, Pearson correlation between cost

and revenue of requirements varies from 0.0 to 0.95 (stepsize: 0.05). Fig-

ures 4.3 and 4.4 show two examples of the relation between cost and revenue

in NRP instances with different Pearson correlation.
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Figure 4.3: Relation between cost and revenue in a sample NRP instance with
Pearson correlation = 0.00.

1The benchmark is publicly available at ucase.uca.es/nrp
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Figure 4.4: Relation between cost and revenue in a sample NRP instance with
Pearson correlation = 0.95.

Out of the 50 datasets in the benchmark, dataset #1 was used to train VS,

datasets #2 through #5 were used to define the size of the training set and

for feature selection, and datasets #6 to #15 were used for the experimental

evaluation of VS.

4.4.2 SVM training

Training experiments were performed following an incremental approach, fo-

cused on studying different features of the problem, relations between them,

and parameter values of the training method. The goal of the study was to

determine the configuration of parameters and the combination of features

that allowed achieving the best accuracy in the prediction phase of VS for the

NRP. Accuracy measures the number of correct predictions out of all predic-

tions made. A three-step analysis was performed, which is described next.

4.4.2.1 First step: study of the input features

In this first step, three different feature configurations were compared.

• C1 : requirement cost, requirement revenue, and budget (3 features).

• C2 : requirement cost, requirement revenue, and ratio between the bud-

get and the total number of requirements in the instance (3 features).

• C3 : requirement cost, requirement revenue, budget, and total number

of requirements in the instance (4 features).

56



The average accuracy (i.e., the percentage of accurate predictions of the

trained SVM compared to the optimal solution) for each dataset was evalu-

ated using the three feature configurations. Results showed minor differences

among the different feature configurations considered, with accuracy values

between 89.4% and 89.7%. Consequently, configuration C1 was chosen for the

remainder of the experimental analysis due to its simplicity.

4.4.2.2 Second step: study of the number of training observations

A study of the number of observations used to train the SVM was performed.

Table 4.1 shows the prediction accuracy when varying the number of obser-

vations of dataset #1 used during training. Training with 15% of dataset #1

resulted in a 31% improvement in prediction accuracy when compared to us-

ing only 10%. However, increasing the size of the training set beyond 15%

of dataset #1 resulted in marginal accuracy improvements. Since training

times increase drastically with larger training sets, a SVM trained with 15%

of dataset #1 was used for the remainder of the experimental evaluation.

Table 4.1: SVM accuracy for different training set sizes.

number of observations (% of the total)

252000 126000 63000 37800 25200
(100%) (50%) (25%) (15%) (10%)

dataset #2 89.6% 89.5% 89.4% 89.4% 58.0%
dataset #3 89.5% 89.4% 89.3% 89.3% 57.9%
dataset #4 89.6% 89.5% 89.3% 89.3% 58.0%
dataset #5 89.7% 89.6% 89.4% 89.4% 58.0%

4.4.2.3 Third step: parameter configuration

SVM and RBF kernel parameters were configured (parameters C and γ, re-

spectively). For this purpose, cross-validation was performed over a set of

5000 observations randomly selected from the training set. Parameter config-

uration was performed using the script provided by the libsvm framework,

which performs a grid-search of parameters. Five-fold cross-validation was

performed in a grid defined by C ∈ [2−5, 215] (stepsize: 22) and γ ∈ [23, 2−15]

(stepsize: 2−2). Results show that the best accuracy values were computed

with C = 213 = 8192 and γ = 2−1 = 0.5. Average accuracy values before and
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after cross-validation are reported in Table 4.2. An improvement of ∼ 1% in

datasets #2 through #5 is achieved after the parameter configuration.

Table 4.2: Average accuracy before and after parameter configuration.

before after

dataset #2 89.4% 90.4%
dataset #3 89.3% 90.5%
dataset #4 89.3% 90.5%
dataset #5 89.4% 90.5%

4.4.3 Prediction phase

Once the training phase was completed, VS was evaluated using the unseen

problem instances from datasets #6 through #15. The experimental evalua-

tion was performed using the best configuration of features, training size, and

parameters, which are summarized in Table 4.3.

Table 4.3: Configuration for the experimental evaluation of VS in NRP.

parameter value

feature vector 〈requirement cost, requirement revenue, budget〉
training set size 37800
C 8192
γ 0.5

Firstly, the study focused on the prediction phase of VS. Boxplot in Fig-

ure 4.5 shows the accuracy achieved by the SVM with problem instances

grouped by size. The accuracy is defined as the percentage of variables that are

correctly predicted when comparing to the optimal solution provided by the

Nemhauser-Ullmann algorithm. Analogously, Figure 4.6 shows the accuracy

values achieved when grouping instances by the revenue/cost Pearson correla-

tion of their requirements. The notches in the boxes display the variability of

the median between samples. If the notches of two boxes are not overlapped,

then it means that there are statistically significant differences in the data with

95% of confidence.
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Figure 4.5: SVM accuracy to predict the optimal solution with varying problem
size.
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Figure 4.6: SVM accuracy to predict the optimal solution with varying correlation.

The median accuracy achieved by the SVM was over 90% for all prob-

lem sizes studied, with no significant differences among instances of different

size. This might be explained due to the prediction scheme of VS, where

each requirement is considered individually. When grouping instances by rev-

enue/cost correlation, it is noticeable that instances with a correlation of 0.5

were the simplest to predict for the SVM, with a median accuracy of over

97%. In the worst case, when the revenue/cost correlation is 0.0, the median

accuracy of the SVM was still above 80%. Overall, the mean accuracy for all

studied instances was 92.3%, with a standard deviation of 5.3%. The worst

prediction was made for an instance of size 100 and correlation 0.0, with a

prediction accuracy of 74.0%. The best prediction accuracy was achieved in

two instances of size 100, with correlations 0.35 and 0.65, where the prediction

accuracy was 100% (i.e., the optimal solution was predicted).
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In order to measure the contribution of the prediction phase of VS, the

predicted solutions were evaluated prior to the application of the improvement

operators. As explained in Section 4.2, predicted solutions might be infeasible

(when the sum of the costs of the requirements exceeds the budget). Thus, in

some cases, it was necessary to apply a correction scheme to ensure solution fea-

sibility. For this experiment, the greedy correction described in Section 4.3.2.2

was applied, without using any of the improvement operators. Results show

that no corrections at all were needed for over 58% of the studied problem in-

stances. On average, only 2.2% of the requirements in a given instance needed

correction. Figures 4.7 and 4.8 show the ratio to the optimum achieved in the

prediction phase of VS with varying problem size and correlation, respectively.

The ratio to the optima is defined as the quotient between the revenue of the

computed solution and the revenue of the optimal solution.
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Figure 4.7: Ratio to optimum of SVM predictions with varying problem size.
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Figure 4.8: Ratio to optimum of SVM predictions with varying correlation.
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Results show that the prediction phase of VS computed good quality solu-

tions in most problem instances. On average, solutions computed based only

on the prediction phase of VS differed in 9% from the known optima. No sig-

nificant differences were noticed among the quality of solutions when grouping

problem instances by size, with predicted solutions within 10% of the optimal

value in median. When grouping problem instances by correlation, results

show that the SVM predictions were able to compute better solutions for in-

stances with larger correlation. This result is consistent with the previous

analysis of prediction accuracy.

4.4.4 Improvement phase

The experimental results when using the different strategies for the improve-

ment phase are presented next.

4.4.4.1 Corrections and LS

The ratio to the optima was used as a metric to evaluate the results computed

by VS. Figures 4.9 and 4.10 show the average ratio to optima achieved when

applying only the revenue correction, only the cost correction, the LS followed

by the revenue correction, and the LS followed by the cost correction. Average

results are presented when grouping instances by size (Figure 4.9) and by

revenue/cost correlation (Figure 4.10). Results correspond to 30 independent

executions of each problem instance. The LS was executed for 1000 steps. The

score function of the LS used the following parameters: m = 0.2 and f = 2,

thus allowing the LS operator to explore solutions that exceeded the budget

constraint by up to 20%.

Results show that VS computed accurate results for the studied instances.

When grouping instances by size, solutions computed by VS were, on average,

only 3% worse than the known optima. When only the correction schemes

were applied (without the LS), VS was still able to compute accurate solu-

tions, within 10% from the optima. When grouping instances by correlation,

it is particularly interesting to notice that VS was able to solve to optimality

instances with correlations of 0.5 and 0.95. On average for all correlations, VS

differed by 3.15% from the known optima when using the LS followed by the

revenue correction and by 3.20% when using the LS with the cost correction.
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Figure 4.9: Average ratio to optimum grouped by problem size with different
improvement operators.

Figure 4.10: Average ratio to optimum grouped by revenue/cost correlation with
different improvement operators.

4.4.4.2 Greedy correction and improvement

Finally, the results achieved by VS when using the greedy correction and im-

provement are presented. Figure 4.11 presents the achieved ratio to the op-

timum when grouping instances by size. Similarly, Figure 4.12 shows the

computed results when grouping instances by the revenue/cost correlation of

their requirements.

The results achieved when using the greedy and correction improvements

were within 1% from the optima in all the instances under study. On average,

computed results were within 0.04% from the optima. In the worst case, for an

instance of size 100 and correlation 0.7, the solution computed by VS differed

in only 0.66% from the known optima. Additionally, the optimal solution was
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Figure 4.11: Average ratio to optimum with varying problem size using greedy
correction and improvement.
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Figure 4.12: Average ratio to optimum with varying revenue/cost correlation using
greedy correction and improvement.

computed for 5.5% of all problem instances studied. VS solved to optimality

instances of all sizes and correlations. The group of instances having size 100

and correlation 0.40 was the one with the highest number of instances that were

optimally solved. When looking at instances by size, VS performed better on

larger instances. The median ratio to the optima was less than 0.2% for all

problem sizes studied. No significant differences were noticed among problem

instances when grouping by revenue/cost correlation. It is worth noting that

this correction and improvement schemes are based on a well-known greedy

heuristic for the 0/1-KP, thus providing valuable domain-specific information

to VS, unlike the LS and corrections presented earlier.

The greedy correction and improvement operators, which achieved the best

overall results, were applied to random solutions to further show the contribu-
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tion of the prediction phase of VS. The goal of this experiment was to show

that the prediction phase plays an important role in computing a good qual-

ity initial solution which is then improved using the improvement operators.

Figures 4.13 and 4.14 show the ratio to the optimum achieved when applying

the greedy correction and improvement to randomly-generated solutions on

problem instances with varying size and correlation, respectively.
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Figure 4.13: Average ratio to optimum with varying problem size starting from
random solution and using greedy correction and improvement.
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Figure 4.14: Average ratio to optimum with varying revenue/cost correlation start-
ing from random solution and using greedy correction and improvement.

Results achieved when starting from a randomly-generated solution are, on

average, 20% away from the optima. The importance of both phases of VS

can be noticed when comparing these poor results against those reported in

Figures 4.11 and 4.12.
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4.5 Conclusions

This chapter presented how VS can be used to efficiently solve a complex

problem in RE: the basic independent NRP, which can be formulated as a

0/1-KP. A thorough study of the training and prediction phases of VS was

presented, and five different variants for the improvement phase of VS were

analyzed for the problem. Experimental evaluation was performed using a

publicly-available benchmark of problem instances of varying size and correla-

tion between the revenue and the cost of the requirements, which is a measure

of instance difficulty. The Nemhauser-Ullmann algorithm, an exact method

for the problem, was used as the reference algorithm for VS.

Firstly, a brief comparison of different feature configurations was per-

formed, which showed no significant differences among the considered options.

Secondly, a study on the training set size required for accurate learning was

presented. Smaller subsets of 10%, 15%, 25%, 50%, and 100% of the observa-

tions in dataset #1 in the benchmark were considered. Results showed that a

training set built using 15% of the dataset was enough to make accurate pre-

dictions. Beyond that percentage, only marginal improvements were observed.

Thirdly, model parameters were configured using cross-validation. When con-

sidering only the efficacy of the prediction phase on unseen instances, VS was

able to predict the exact solution with a median accuracy larger than 90%

when grouping instances by their size and larger than 80% when grouping

instances by their revenue/cost correlation.

The improvement phase in VS helps further refining the solutions generated

in the prediction step. Experimental results showed that VS can compute

highly-accurate solutions. Among the five improvement strategies presented

in this chapter, the simplest variant (a greedy mechanism that first corrects the

solution and then improves it, based on the revenue/cost ratio of requirements)

was the one that achieved the best results. The solutions computed by the

VS version implementing this greedy mechanism were within 1% from the

optima in all studied instances. Furthermore, VS was able to generate the

optimal solution in many cases, and the computed solutions were within 0.2%

(in median) of the known optima computed by the exact algorithm used as a

reference. It was also observed that, interestingly, difficult instances for the

reference algorithm were not necessarily difficult to solve for VS.
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Chapter 5

Virtual Savant for the

Heterogeneous Computing

Scheduling Problem

This chapter presents the application of VS to the HCSP. Section 5.1 intro-

duces the HCSP, a widely studied scheduling problem in the context of HPC.

Then, Section 5.2 presents the VS implementation to solve the HCSP. The

experimental analysis is outlined in Section 5.3 and, finally, conclusions are

presented in Section 5.4.

5.1 Heterogeneous Computing Scheduling

Problem

This section presents the HCSP, its mathematical formulation, and a brief

review of the related literature on the problem.

5.1.1 HCSP overview

A heterogeneous computing system is a coordinated set of processing elements,

often called resources, processors or simply machines, interconnected by a net-

work, which can work cooperatively to solve complex problems. The heteroge-

neous aspect refers to the variable computational capabilities of the resources,

most commonly the CPU processing power, but often other features such as

RAM or external storage (Khokhar et al., 1993). Taking into account the
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diverse computing capabilities of heterogeneous computing systems, finding

suitable task-to-machine assignments is a key issue to achieve an appropriate

load-balancing. Generally, the goal of the scheduling problem is to find an

assignment that optimizes a given metric related to efficiency, economic profit,

or quality of service offered to the users of the system.

In the context of HPC, finding accurate schedules has an important effect

on the performance of systems for both users—since it improves the quality of

service—and providers—contributing to efficiently use the available resources.

Traditional scheduling problems are NP-hard (Garey and Johnson, 1990),

thus, classic exact methods are only useful for solving problem instances of re-

duced size. When dealing with large computing environments, approximate al-

gorithms emerge as promising methods for solving scheduling problems. These

methods allow computing accurate solutions in reasonable execution times,

which usually satisfy the efficiency requirements of real-life scenarios.

Computing the schedule for all arriving tasks directly impacts the response

time offered to users. The response time of the system is defined as the time

since the user submits his/her job until its execution is started. For this reason,

modern schedulers are simple heuristics that can offer acceptable solutions in

short computation times (generally less than a second). In contrast, more

complex optimization methods, such as metaheuristics, offer more accurate

solutions to the problem, but at the cost of considerably longer response times.

Therefore, there is a need for new methodologies that can quickly find high-

quality schedules.

5.1.2 HCSP formulation

The HCSP considers a heterogeneous computing system comprised of several

resources (i.e., machines) and a set of tasks with variable computational re-

quirements to be executed in the system. A task is defined as an atomic

workload unit, i.e., it must be executed without interruptions and cannot be

split into smaller chunks, which corresponds to a non-preemptive scheduling

model. The execution time of any individual task varies from one machine to

another and is assumed to be known beforehand, following a static schedul-

ing approach. The HCSP proposes finding a task-to-machine assignment that

optimizes some quality metric.
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Several variants of the HCSP have been proposed by considering task-

to-machine assignments that optimize different quality metrics (Nesmachnow

et al., 2010; Nesmachnow, 2013; Iturriaga et al., 2014). The scheduling prob-

lem addressed in this thesis focuses on optimizing the makespan, a well-known

optimization criterion related to the productivity of a computing system.

Makespan is defined as the time between the start of the first task (in the

set of tasks to be executed) and the completion of the last task. Makespan

is considered as a measure of productivity (i.e., throughput) of computing

systems. This problem model is suitable for applications following the bag-

of-tasks approach for independent executions as well as for the scheduling of

tasks submitted by different users, a usual scenario on modern cluster, grid,

and cloud computing platforms.

The mathematical formulation for the HCSP considers:

• A set of tasks T = {t1, . . . , tn} to be scheduled and executed on the

system.

• A set of heterogeneous machines M = {m1, . . . ,mm}.
• A function ET : T ×M → R+ where ET (ti,mj) indicates the execution

time of task ti on machine mj.

The HCSP proposes finding an assignment function f : T → M that

minimizes the makespan, defined by Equation 5.1.

makespan = max
mj∈M

∑
ti∈T,f(ti)=mj

ET (ti,mj) (5.1)

The proposed model does not account for dependencies among tasks: the

problem formulation assumes that all tasks can be independently executed,

without considering the execution order. Even though more general formu-

lations of the HCSP exist—e.g., accounting for task dependencies and other

objectives (Dorronsoro et al., 2014)—the independent task model is highly

relevant, especially in distributed computing environments. Independent-task

applications frequently appear in many lines of scientific research as well as

in shared infrastructures, where different users submit tasks to be executed.

Thus, the relevance of the HCSP version dealt with in this thesis is justified

due to its significance in realistic distributed computing environments.
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5.1.3 Related work

In the last twenty years, research on the HCSP has been increasing due to the

popularity of modern parallel and distributed computing systems. Heuristic

and metaheuristics approaches are good candidates to address the HCSP, es-

pecially in real-life scenarios where schedulers are expected to provide accurate

solutions in short execution times. A large number of heuristics (Braun et al.,

2001; Ibarra and Kim, 1977) and metaheuristics (Nesmachnow et al., 2010,

2012; Wang et al., 1997; Pinel and Dorronsoro, 2014; Pinel et al., 2010; Xhafa

et al., 2012) have been proposed for efficiently solving the HCSP. Among other

metaheuristic techniques, EAs have been widely applied for solving scheduling

problems in heterogeneous computing systems.

Braun et al. (2001) presented a systematic comparison of eleven scheduling

heuristics for the HCSP, including an EA and a hybrid algorithm that com-

bined an EA with Simulated Annealing. The proposed algorithms were seeded

during the population initialization to significantly improve the search. Both

methods were able to obtain the best-known makespan values at that time for

the studied HCSP scenarios.

Duran and Xhafa (2006) studied a steady-state GA and the Struggle GA

for the HCSP. Both GAs outperformed previous results in more than half of

the studied instances. A memetic algorithm (MA) proposed by Xhafa (2007)

included subordinate LS methods to find high-quality solutions in short exe-

cution times. Later, the structured population of a cellular MA was used to

control the trade-off between the exploitation and exploration of the HCSP

solution space (Xhafa et al., 2008). Using a seeded population initialization

and three LS methods, the cellular MA outperformed previous GA results for

half of the instances from Braun et al. (2001).

Recent works explored applying the use of machine learning methods

for estimating the performance of applications on different heterogeneous re-

sources (Nemirovsky et al., 2017), for performance estimation and resource

selection (Zhao et al., 2009), and for predicting the speedup of CPU/GPU

kernels (Wen et al., 2014). However, according to the literature reviewed, no

other approaches for automatically designing schedulers using machine learn-

ing techniques exist besides VS (Dorronsoro and Pinel, 2017; Pinel et al., 2018,

2013; Pinel and Dorronsoro, 2014). The VS implementation for HCSP uses

MinMin as a reference algorithm, which is presented next.
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MinMin is one of the most widely used methods for solving the HCSP (Luo

et al., 2007). MinMin is a two-phase greedy scheduler that greedily picks the

task that can be completed the soonest. Starting from a set U of all unmapped

tasks, MinMin determines the machine that provides the Minimum Completion

Time (MCT) for each task in U , and assigns the task with the minimum overall

MCT to its best machine. The mapped task is removed from U , and the process

is repeated until all tasks are mapped. MinMin does not consider a single

task at a time but all the unmapped tasks sorted by MCT. The availability

status of the machines is updated accordingly after each assignment. The idea

behind Minmin is to select at every time the task from the unscheduled ones

that causes the minimum increase in the overall makespan value. Therefore,

the algorithm focuses on balancing the load among all the processors. This

procedure generally leads to more balanced schedules and better makespan

values than other heuristics, since tasks that can be completed the earliest are

assigned first to the corresponding machine (Braun et al., 2001).

5.2 VS for the HCSP

This section presents the application of VS to the HCSP. Section 5.2.1 outlines

the design of VS when solving this problem and Section 5.2.2 presents the

details of the parallel implementation.

5.2.1 VS design for the HCSP

The VS implementation for the HCSP uses SVMs as machine learning classi-

fiers. SVMs are trained using MinMin as the reference algorithm. The custom

xphi-libsvm framework (described in Section 2.4.3.3) was used with RBF as

the kernel function. Figure 5.1 outlines the training scheme of VS to solve the

HCSP. Each task in the instance is considered individually during the training

phase of VS. Therefore, each feature vector holds the execution time of one

task on each machine and the classification label corresponds to the machine

assigned to that task by the MinMin heuristic. This way, one single MinMin

solution yields as many observations as the number of tasks in the problem

instance.
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Figure 5.1: VS training set generation for the HCSP.

The complete model of VS to solve the HCSP is presented in Figure 5.2.

VS receives as input an HCSP instance, which consists of a matrix with the

execution time of each task on each machine. Given that the training phase

is done considering each task separately, predictions (i.e., task-to-machine as-

signments) can be made independently for each task. Thus, multiple copies

of the same SVM can be spawned, forming a pool. The problem instance is

split among this pool and predictions are made for each task independently,

providing VS with a high degree of parallelism. At the finest grain, VS can

predict the machine assigned to each task in the problem instance using a dif-

ferent copy of the same SVM classifier. The output of each SVM corresponds

to the probability of assigning the task given as input to each of the possible

machines. The predictions of all SVMs in the pool are gathered to form a

matrix that holds, for each task, its assignment probability on each machine.

Because tasks are independently assigned, VS can scale to problem in-

stances with any number of tasks, without requiring any additional training

process. However, since the length of the training vectors depends on the num-

ber of machines, different SVMs must be trained to solve problem instances

with a varying number of machines. This does not impose a huge limitation on

the proposed scheme since, in a real environment, the number of machines has

usually a low variability when compared to the number of tasks to schedule.

72



Figure 5.2: VS workflow for the HCSP.

During the improvement phase, the matrix with assignment probabilities—

computed in the prediction phase—is used to generate a set of candidate so-

lutions to the problem instance. This set is randomly generated according to

the probability of assigning each task to each machine. Then, a simple LS

heuristic is applied over each generated solution, which is described in Algo-

rithm 3. The LS heuristic iteratively moves a randomly-chosen task from the

most loaded machine, i.e., the one with the highest completion time (lines 2–

3), to a machine selected among a subset of the least loaded ones (lines 5–12).

Parameter N ∈ (0, 1] controls the size of this subset. The selected machine is

the one with the smallest completion time after the task is moved (lines 7–10).
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Algorithm 3: LS for the improvement phase of VS in HCSP.

1 foreach step in steps do
2 sort machines on ascending completion time
3 task ← random task from last machines
4 best score ← completion time(last machines) // makespan

5 foreach mac in dN ·#machinese first machines do
6 new score ← completion time(mac) + ET(task,mac)
7 if new score<best score then
8 best mac←mac
9 best score←new score

10 end

11 end
12 move task to best mac if any

13 end

The improvement phase is also inherently parallel since the improvement of

a given generated solution is independent of the others. Thus, one candidate

solution can be generated and improved per computing resource available.

After all LSs are completed, the overall best solution found is returned.

5.2.2 Parallel implementation of VS for the HCSP

The parallel implementation of VS for HCSP works for both distributed- and

shared-memory architectures. It is based on the mpich implementation of

the MPI standard and the OpenMP library. The fact that the two phases of

VS that can be executed in parallel (i.e., the prediction and the improvement

phases) have no data dependencies allows developing efficient implementations

of the model that take advantage of multiple computing resources.

The parallel implementation of VS for HCSP follows the same structure

as the design presented in Figure 5.2. A master node launches the prediction

phase, which is performed in parallel using as many processes as the number of

available computing nodes. Assuming a homogeneous architecture, the number

of problem variables assigned to each process (i.e., the number of predictions

every process should compute) in order to balance the load of all computing

resources is dnumber of variables/number of corese.
The master node sends to every slave process the information required

by the SVM. This information is taken from the problem instance and, in the

particular case of the HCSP, corresponds to the execution time on all machines
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for each task assigned to each slave. Therefore, the amount of data transmitted

to every computing node is equal to the number of variables to be predicted

using the SVM times the number of machines in the problem instance times

the space needed to store an integer number. If several variables are to be

predicted in a given computing node, these predictions are done in parallel,

using as many SVM replicas as the number of threads each core can execute.

The master node waits until all processes are finished to build the proba-

bilities matrix. Every process sends, for each assigned variable, the probability

of assigning the corresponding task to each machine, so the amount of infor-

mation is the same as that received from the master at the beginning of the

execution. After this matrix of probabilities is built—by just merging all col-

lected results into one single matrix—the master node spawns as many LSs as

processes the system can execute in parallel. Each slave process receives the

matrix of probabilities from the master, builds a randomly-generated solution

according to these probabilities, and iteratively applies the LS algorithm to

this candidate solution. Once the slave finish executing the LS algorithm, it

returns the best solution found to the master. Among all received solutions,

the master node reports the best one as the final result of VS. It is worth

noting that, VS increases the number of LSs spawned—therefore the num-

ber of computations performed—when the number of computing resources is

increased.

5.3 Experimental analysis

Firstly, an overview of the experimental analysis is presented in Section 5.3.1.

Then, Section 5.3.2 presents the results of VS when solving a large set of HCSP

instances on a many-core computing platform. Afterward, Section 5.3.3 out-

lines the experimental analysis performed in four different computing platforms

when scaling the number of computational resources. Finally, Section 5.3.4

presents the results of VS when solving very large problem instances.

5.3.1 Overview

The experimental evaluation of VS for HCSP focused on studying the accu-

racy of the computed solutions and the scalability when increasing both the

number of computational resources and the size of the problem. Experiments
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used SVMs from previous works (Pinel et al., 2013; Pinel and Dorronsoro,

2014), which were trained using the MinMin algorithm as reference. Thus, the

experimental analysis does not focus on the training phase of VS but on its

execution when solving new, unseen, HCSP instances on different computing

infrastructures.

5.3.2 Execution in a many-core environment

This section reports the experimental analysis of VS when solving a set of 180

HCSP instances in a many-core computing infrastructure.

5.3.2.1 Methodology and problem instances

Experiments were performed on a server with an IntelR©Xeon PhiTM 7250 pro-

cessor (68 cores and 64GB RAM). The server was used exclusively during

the experiments to accurately measure execution times. As explained in Sec-

tion 5.2.1, the LS algorithm randomly gets a task from the machine with the

highest completion time and assigns it to a machine among the N least loaded

ones. The value of N was set to 50% of the total number of machines based

on the results from previous works (Pinel et al., 2013; Pinel and Dorronsoro,

2014). The LS operator was set to iterate for 10 000 steps in these experi-

ments since preliminary results showed that no significant improvements were

achieved with larger executions.

A set of HCSP instances were generated according to the methodology de-

scribed by Braun et al. (2001). Tasks were considered as highly heterogeneous

and machines were considered consistent (i.e., a machine cannot be faster than

another for a given task and slower for a different task). High (hi) and low

(lo) machine heterogeneity configurations were considered in the experimental

evaluation. Three problem dimensions were studied (tasks×machines): 128×4,

512×16, and 1024×16, and 30 different problem instances were generated for

each combination of problem dimension and machine heterogeneity, totaling

180 problem instances. The notation used to describe each problem instance

is: T×M H i, where T is the number of tasks, M is the number of machines, H

is either hi or lo indicating high or low machine heterogeneity, and i indicates

the instance number (i ∈ [1 . . . 30]).
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5.3.2.2 Scalability using parallel processing threads

Boxplots in Figure 5.3 show the distribution of makespan and execution times

(in seconds) when varying the number of threads used for the prediction and

improvement phases. Results correspond to the 30 independent executions

performed with each number of threads on instance 512×16 hi 1 and are rep-

resentative of the trends observed for other problem instances. Results are

summarized in Table 5.1, which reports the best, mean, median, and standard

deviation values of makespan and execution times.

(a) makespan (b) execution time

Figure 5.3: Results on HCSP instance 512×16 hi 1 with varying number of
threads.

Results show that increasing the number of threads allowed computing bet-

ter results in terms of makespan since more LSs are performed (1.4% average

improvement over the sequential version when using 260 threads). Regarding

execution times, the average increase was only 6% when varying from 1 to

260 threads. These results confirm the good scalability properties of VS when

increasing the number of computing elements.

Figure 5.4 shows how the results and conclusions obtained for instance

512×16 hi 1 hold in the case of a smaller instance with low heterogeneity,

namely 128×4 lo 1. When comparing Figures 5.3 and 5.4 it can be seen that

the trend on the evolution of the makespan of solutions when increasing the

number of threads is similar in both cases. In the same way, a similar trend

is observed when considering execution times. For the rest of the experiments

presented in this section, the number of threads was set to 260, because it

allows computing the best results without a negative impact on the execution

time.
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Table 5.1: Results on HCSP instance 512×16 hi 1 with varying number of threads.

threads
makespan execution time (s)

best mean median std best mean median std

1 1707.78 1722.62 1720.03 10.44 6.19 6.55 6.52 0.17
20 1698.94 1705.72 1705.40 3.61 6.30 6.62 6.62 0.21
40 1697.67 1704.99 1705.20 3.05 6.33 6.65 6.67 0.18
60 1691.55 1702.30 1702.80 3.09 6.39 6.71 6.65 0.25
80 1695.61 1703.38 1704.59 2.94 6.39 6.79 6.72 0.52

100 1696.52 1702.02 1702.32 3.06 6.32 6.71 6.71 0.21
120 1697.44 1701.73 1701.74 2.14 6.43 6.73 6.71 0.23
140 1695.41 1700.78 1701.16 2.71 6.44 6.78 6.73 0.25
160 1694.68 1701.38 1701.37 2.31 6.44 6.78 6.77 0.20
180 1693.32 1699.99 1700.78 3.02 6.41 6.73 6.74 0.16
200 1693.81 1700.43 1700.96 2.40 6.45 6.86 6.78 0.34
220 1693.30 1700.25 1700.78 2.44 6.44 6.82 6.77 0.19
240 1692.38 1698.78 1699.01 2.65 6.49 6.85 6.77 0.27
260 1690.91 1698.65 1699.07 2.77 6.62 6.90 6.86 0.21

(a) makespan (b) execution time

Figure 5.4: Results on HCSP instance 128×4 lo 1 with varying number of threads.
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5.3.2.3 Comparison against MinMin

This section presents a comparison of VS against MinMin, the greedy heuristic

used as a reference algorithm. The main goal was to analyze how accurately

VS can learn from MinMin to solve the HCSP. The largest instances used

during the training phase of VS were of size 512×16. As a preliminary study

on the scalability of VS in the problem dimension, VS was executed on larger

instances (1024×16) than those used for the training phase. An extended study

on the scalability of VS in the problem dimension is presented in Section 5.3.4.

Table 5.2 reports the ratio between the makespan achieved by VS and the

makespan of the MinMin solution. Reported results include the best, mean,

median, and standard deviation of the ratios achieved on each instance type (30

independent executions of 30 problem instances for each type). Since the goal

is to minimize the makespan, ratios lower than 1.0 indicate an improvement

of VS over MinMin. Additionally, the last column in the table reports the

number of times when VS outperformed MinMin, for every instance type. The

distribution of results are also outlined in the boxplot in Figure 5.5.

Table 5.2: Makespan comparison of VS against MinMin for the HCSP.

instance type
makespan(VS )/makespan(MinMin)

#improvement
best mean median std

128×4 hi 0.85 0.94 0.95 0.02 900/900
128×4 lo 0.93 0.96 0.96 0.01 900/900

512×16 hi 0.89 0.93 0.93 0.02 900/900
512×16 lo 0.92 0.94 0.94 0.01 900/900

1024×16 hi 0.94 0.98 0.98 0.01 853/900
1024×16 lo 0.95 0.97 0.97 0.01 900/900

VS outperformed MinMin on every execution of each problem instance with

the same dimensions used for training. The best overall improvement consid-

ering all executions was achieved on instances of type 128×4 hi with a 15%

improvement over MinMin. On average, the best improvement was achieved

on instances 512×16 hi with a 7% improvement over MinMin. Additionally,

results show that VS was able to accurately solve problem instances of larger

dimensions than those used during the training phase. For instances of size

1024×16 (i.e., double the size of the instances used for training) VS was still

able to outperform MinMin in most cases, with improvements up to 6%.
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Figure 5.5: Ratio of makespan: VS over MinMin for the HCSP. Values below 1.0
represent the cases when VS outperforms MinMin.

5.3.3 Scalability on different computing platforms

This section reports the experimental results of evaluating the performance

of VS when scaling the number of resources used in four different computing

platforms.

5.3.3.1 Methodology and problem instances

For this part of the experimental evaluation, two different problem instances

of the HCSP were considered: i) instance 512×16, consisting of 512 tasks

and 16 machines, ii) instance 4096×16, consisting of 4096 tasks and 16 ma-

chines. Both problem instances were generated according to the methodology

described by Braun et al. (2001), with highly-heterogeneous tasks and ma-

chines and consistent machines. The largest instances used during the train-

ing phase of VS were of size 512×16. Thus, instance 4096×16 allows further

studying the scalability of VS in the problem dimension, solving an instance

four times larger than those used for the training phase. A study involving

even larger problem instances is presented in Section 5.3.4. For this analysis,

the LS was set to perform 1000 steps since preliminary studies showed that this

value provided a good compromise between the quality of solutions and the

execution times. Parameter N was set to consider 50% of the total number of
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machines when moving tasks as defined by previous works (Pinel et al., 2013;

Pinel and Dorronsoro, 2014). Results on each architecture are compared in

terms of speedup, which is defined as the ratio between the execution time of

the sequential implementation and the execution time of its equivalent parallel

implementation.

5.3.3.2 Computational platforms

Four different hardware architectures were considered during the experimental

evaluation. These architectures include single-, multi-, and many-core comput-

ing infrastructures with both shared- and distributed-memory systems. This

provided a diverse array of platforms for the experimental evaluation comprised

of:

• Desktop, which corresponds to a regular desktop PC with an Intel i7

4792MQ quad-core processor with 3.20GHz of peak frequency and 8 GB

of RAM.

• Xeon, a standalone server comprised of an Intel Xeon E5-2620 CPU with

six cores and a maximum peak frequency of 2.6 GHz.

• Cluster, which consists of a supercomputing sever composed of three

rack-server type-C (c7000) from HP. Each of them contains sixteen nodes

bl460c, with two Intel Xeon E5 2670 with 2.60 GHz processors per node.

Each of these processors has eight cores, thus it has 48 × 2 × 8 = 768

cores. Nodes are equipped with 128 GB of RAM and are connected

through a 10 Gigabit Ethernet.

• Phi, comprised of an IntelR©Xeon PhiTM 7250 processor, with 1.60 GHz

maximum frequency speed and 68 cores, and 48 GB of RAM.

5.3.3.3 Numerical results

The performance of VS was studied on each considered architecture for both

HCSP instances studied.

5.3.3.3.1 Desktop architecture. Figure 5.6 shows the execution times of

VS on the Desktop architecture when varying the number of threads. For each

of the studied instances, the average execution time of 10 independent runs

is reported. Additionally, the obtained speedup when using different number
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of threads is shown. Results show that the execution time was reduced when

increasing the number of threads, due to the parallel capabilities of the VS

model. For a correct interpretation of the provided results, it is worth not-

ing that the computational load of the improvement phase does not remain

constant since the number of LSs increases with the number of threads. The

ideal case for the improvement phase is that the execution time remains almost

constant when increasing the number of threads. This means that there is no

overhead or bottlenecks when increasing the number of threads, a desirable

condition for parallel algorithms. Consequently, the only improvement in ex-

ecution times due to the use of multiple computing resources can be achieved

during the prediction phase of VS.

(a) 512×16 (b) 4096×16

Figure 5.6: Average execution times with varying number of threads on Desktop
architecture.

The maximum speedup achieved in Desktop architecture was 2.63 for in-

stance 512×16 and 3.50 for instance 4096×16. These are highly successful

results, taking into account that the architecture implements just four physi-

cal cores. In both cases, a desirable scalability of the algorithm when using up

to four threads can be appreciated, considering that speedups of roughly 2.5

and 3 are obtained when using four threads for the small and large instances,

respectively. Then, the increase in speedup values is reduced when more than

four threads are spawned. The explanation is that, in these cases, the proces-

sor is using Hyper-Threading since the number of physical cores is only four.

Hyper-Threading is a form of simultaneous multithreading technology. A pro-

cessor with Hyper-Threading consists of two logical processors per core, each

of which can execute a specified thread. Unlike two separate physical proces-

sors, the logical processors in a Hyper-Threaded core share execution resources

(e.g., caches, systems buses). Results show that VS is able to further reduce
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execution times even when Hyper-Threading, despite the overhead introduced

by the shared resources.

Figure 5.7 presents the average makespan values achieved in the experi-

ment. The trend is that the average makespan values obtained decrease when

increasing the number of threads used. Again, the reason is that the higher the

number of threads used, the more LSs are executed and, therefore, the higher

the chance of computing better results. Consequently, the increase in the qual-

ity of the solutions found comes at no cost in the execution time, thanks to

the parallel capabilities of the VS paradigm.

(a) 512×16 (b) 4096×16

Figure 5.7: Makespan with varying number of threads on Desktop architecture.

5.3.3.3.2 Xeon architecture. Figures 5.8 and 5.9 show the average exe-

cution times and speedup values, and the makespan values, respectively, of VS

when executing on the Xeon architecture using different number of threads.

The results are reported for the two problem instances considered.

(a) 512×16 (b) 4096×16

Figure 5.8: Average execution times with varying number of threads on Xeon
architecture.
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(a) 512×16 (b) 4096×16

Figure 5.9: Makespan with varying number of threads on Xeon architecture.

The experiments performed in the Xeon architecture allowed studying the

parallel capabilities of VS in a standalone workstation in addition to a regular

desktop PC. Speedup values of up to 3.59 and 5.53 were achieved for the

512×16 and 4096×16 instances, respectively. As for the Desktop architecture,

results show the good parallel capabilities of the VS paradigm, given that the

processor has six physical cores. As in the Desktop case, Hyper-Threading can

help in some cases to reduce computation times, but speedup reduces when

using this technique. Significant improvements in the quality of the solutions

found (i.e., better makespan values) can be computed when increasing the

number of threads, without negatively impacting the overall execution time.

5.3.3.3.3 Cluster architecture. The performance of VS was also evalu-

ated on a distributed computing infrastructure. Figure 5.10 shows the execu-

tion times and speedup of VS executing on the Cluster architecture when vary-

ing the number of processes used. Similarly, Figure 5.11 reports the makespan

achieved in this experiment. As in the previous cases, the makespan value

decreases (i.e., solutions are better) when increasing the number of processes.

Results show that VS was also able to make efficient use of a distributed

computing infrastructure. When comparing the execution times of VS in the

Xeon and the Cluster infrastructure, no significant penalties in execution times

exist when moving from a shared-memory computing infrastructure to a dis-

tributed environment. A slight time execution penalty was observed when

comparing the case when only one server is used (threads values 1 to 8 in

the plot) to that of using 23 servers (the rightmost results in the plots). The

method found the solution in less than 0.4 seconds using 23 servers, in the case
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of the small problem instance. A higher computational load in every node is re-

quired to achieve better speedup values. This issue is studied in Section 5.3.4,

where results for very large problem instances are presented.

Regarding the quality of solutions achieved, a similar trend to the other

studied architectures was observed: better makespan values are achieved when

increasing the number of computing resources. The presence of spikes in the

plots is due to the stochastic nature of the LS. However, the desired downward

trend occurred in all studied architectures.

(a) 512×16 (b) 4096×16

Figure 5.10: Average execution times with varying number of threads on Cluster
architecture.

(a) 512×16 (b) 4096×16

Figure 5.11: Makespan with varying number of threads on Cluster architecture.

5.3.3.3.4 Phi architecture. The last experiment evaluated the perfor-

mance of VS on the massively-parallel Phi architecture. Mean execution times

with varying number of threads are presented in Figure 5.12, alongside speedup

values, while average makespan values are reported in Figure 5.13. Results
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show that VS can take advantage of the massive parallel capabilities the Phi

architecture offers. Execution times are reduced when increasing the num-

ber of threads up to the number of physical cores available, and then slightly

increase when more threads are spawned. However, execution times in the

Phi architecture are the longest compared to the other studied architectures.

The reason is that the computation units in the Phi system are highly limited

in resources and speed compared to the other architectures. The processor

frequency in the Phi architecture is 1.60 GHz vs. 3.20 GHz in Desktop and

2.60 GHz in Xeon and Cluster architectures. In terms of the quality of the

computed solutions, results show that the average makespan is reduced when

increasing the number of threads spawn. Thus, VS can take advantage of

the availability of more computing resources to further refine the predicted

solutions during the improvement phase.

(a) 512×16 (b) 4096×16

Figure 5.12: Average execution times with varying number of threads on Phi
architecture.

(a) 512×16 (b) 4096×16

Figure 5.13: Makespan with varying number of threads on Phi architecture.
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5.3.4 Scalability on the problem size

The final experiments on the HCSP studied the performance of the parallel

implementation of VS on two very large instances in terms of tasks: 32768×16

and 65536×16. The study on larger problem instances was done on one of

the shared-memory architectures (Desktop) and on the distributed-memory

architecture (Cluster).

Figure 5.14 shows the results obtained for the Desktop architecture on both

problem instances. The number of steps of the LS was increased to one million,

given that the complexity of the problem raises with the size of the instance.

Figure 5.14 shows that, for the two very large instances, VS exhibits similar

behavior to the case of the smaller instances previously studied. Speedup

raised almost linearly when increasing the number of cores used, reaching up

to 3.4 for four cores. Then, a slight performance loss was noticed when Hyper-

Threading was used, but speedup increased again until the whole capacity of

the processor was in use, when the best results were obtained.

(a) 32768×16 (b) 65536×16

Figure 5.14: Average execution times with varying number of threads on Desktop
architecture.

The comparison with the MinMin algorithm indicates that it took more

than two minutes to find a solution to the largest studied instance (65536×16)

in the Desktop architecture. This means that VS, which was trained using

MinMin results, was eleven times faster than MinMin on this architecture,

and the solution it found was only 3.85% worse than the one reported by

MinMin. Execution time is of the essence in heterogeneous computing facilities

with online scheduling, as schedulers need to provide quality solutions with

reasonable response times. In these cases, faster schedulers may be preferred

at the cost of some losses in the computed solutions.
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The same problem instances were also solved using the Cluster architecture.

Results are presented in Figure 5.15. An improvement in the speedup of VS

is appreciated when increasing the problem size. Results show that speedups

of up to 12 were achieved for the largest instance in the Cluster architecture.

The execution time was around 2.5 seconds, approximately seven times faster

than the Desktop architecture. However, thanks to the efficient parallel design

of VS, it could be possible to further improve speedup values by assigning

a higher workload to the nodes in the cluster, e.g., by implementing a more

demanding optimization algorithm for the improvement phase, which might

also lead to better results.

(a) 32768×16 (b) 65536×16

Figure 5.15: Average execution times with varying number of threads on Cluster
architecture.

5.4 Conclusions

This chapter presented the application of VS to solve the HCSP, which corre-

sponds to the first parallel implementation and evaluation of VS. The mpich

and OpenMP libraries were used for the implementation, which allowed effi-

ciently dealing with both shared- and distributed-memory architectures.

The results computed by VS were compared to those computed by the

well-known MinMin heuristic, the algorithm used by VS as a reference. Exper-

imental results showed that VS outperformed MinMin in most of 180 problem

instances, achieving up to 15% of improvement in terms of makespan. Addi-

tionally, VS showed excellent scalability properties when increasing both the

computational resources and the problem dimensions.
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Then, VS was evaluated on different computing platforms. Experimen-

tal evaluation over four different computing infrastructures showed that the

massively-parallel design of VS allowed taking advantage of available comput-

ing resources to find accurate solutions for the HCSP. Increasing the number

of parallel resources helped reducing the execution time of the prediction phase

and did not increase the overall execution time, even though the computational

demand of VS increases with the number of resources available. Besides, the

makespan value (that evaluates the quality of the obtained results) generally

decreased (i.e., improves) when increasing the number of threads.

Finally, VS was evaluated when solving very large problem instances—

larger than those used during training—comprised of 32 768 and 65 536 tasks

and 16 machines. Similar results to those obtained for the smaller instances

were found, where the speedup increased with the number of cores, with a loss

due to Hyper-Threading when the number of spawned threads exceeded the

number of physical cores. However, speedup values were better for the largest

instances studied.
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Chapter 6

Virtual Savant for the Bus

Synchronization Problem

This chapter presents the application of VS to solve the BSP. Section 6.1

introduces the BSP, its mathematical formulation, and a review of related

work on the subject. Then, Section 6.2 outlines the application of VS to the

BSP. Experimental results are presented and discussed in Section 6.3 and some

final remarks are detailed in Section 6.4.

6.1 The Bus Synchronization Problem

This section presents the BSP. A general overview on the subject is presented

in Section 6.1.1, the mathematical formulation of the BSP as an optimization

problem is outlined in Section 6.1.2, and a brief discussion on the related

literature is presented in Section 6.1.3.

6.1.1 Overview

Transportation systems play a major role in urban scenarios and are a fun-

damental element of modern smart cities (Grava, 2002; Nesmachnow et al.,

2017). Public transportation accounts for the majority of trips in large cities

and provides the most efficient and environmentally-friendly mean of trans-

portation for citizens. However, the efficacy of public transportation systems

requires proper planning of routes, timetabling, buses, drivers, and other rel-

evant subproblems, to provide good quality of service to citizens (Ceder and

Wilson, 1986).
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Public transportation planners often prefer network topologies comprised

of few, short, and densely interconnected bus lines. This design is good from an

operational point of view since it provides higher bus frequencies with smaller

vehicle fleets. However, passengers are demanded to make more bus transfers

instead of traveling directly from their origin to their destination. Passengers

dislike transfers. Studies have shown that the perceived time when waiting for

a bus or when walking between bus stops can be up to 2.5 times larger than the

actual time spent (International Transport Forum, 2014). Consequently, lim-

iting the waiting times experienced by passengers when transferring between

buses is a desirable goal from the point of view of citizens.

The BSP consists in finding the headways (i.e., the time between consecu-

tive vehicles) of each bus line in a public transportation network, which allow

maximizing the number of synchronized bus transfers. A bus transfer is consid-

ered synchronized when the waiting time experienced at the transfer bus stop

does not exceed a given threshold. Some public transportation fare schemes

impose no limitations on the number of transfers that a passenger can make

and consider all bus stops in the network as possible transfer stops, providing

flexibility to passengers when planning their routes. In this scenario, the BSP

is more complex, as the bus transfer may not be done in the same bus stop

and may involve walking between bus stops.

The BSP accounts for the main goals of modern transportation systems:

providing a fast and reliable way for the movement of citizens while maintaining

reasonable operational costs. Synchronization is one of the most difficult tasks

in public transportation planning and has often been addressed intuitively,

assuming that experienced operators can take proper decisions (Ceder and Tal,

1999). The mathematical formulation for the BSP, modeled as an optimization

problem, is presented next.

6.1.2 Mathematical formulation

The problem model focuses on the quality of service provided to the users,

i.e., a better traveling experience with limited waiting times when transferring

between buses. This formulation extends the one proposed by Ibarra and

Rios (2012) by considering transfers at any pair of bus stops in the public

transportation network and accounting for the walking time between bus stops.
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The mathematical formulation for the BSP considers the following ele-

ments:

• A set of bus lines I = {i1, i2, . . . , in}. For each bus line i ∈ I, J(i) is the

set of lines that may synchronize with line i (in a synchronization node,

see next item). Buses that operate each line have a maximum capacity

of C transfers, i.e., passengers that board the bus in the second leg of a

transfer trip.

• A set of synchronization nodes B = {b1, b2, . . . , bm}. Each node b ∈ B is

a triplet <i, j, di,jb > indicating that lines i (inbound line) and j (outbound

line) may synchronize in b, and that the bus stops for lines i and j are

separated by a distance di,jb .

• A planning period [0, T ], expressed in time units, and the number of trips

of each line i, fi, needed to fulfill the transfer demand for each line in

that period.

• A traveling time function TT : I ×B → Z. TT ib = TT (i, b) indicates the

time for buses of line i to reach synchronization node b (measured from

the origin of the line). In general, this value depends on several features,

including bus type, bus speed, traffic in roads, etc.

• A walking time function WT : I × I × B → N. WT i,jb = WT (i, j, b) =

di,jb /ws indicates the time needed for a pedestrian to walk between bus

stops at the synchronization node according to a given walking speed ws.

• A demand function P : I × I × B → Z. P i,j
b = P (i, j, b) indicates the

number of passengers that transfer from line i to line j in synchronization

node b, within the planning period.

• A maximum waiting time W i,j
b for each synchronization node, indicating

the maximum time that passengers are willing to wait for line j, after

alighting from line i and walking to the stop of line j, in synchronization

node b.

• A valid range of headways, which define the separation (measured in time

units), between consecutive trips of the same line. The range of valid

headways for bus line i is defined by an interval [hi, H i], where values of

hi and H i are usually enforced by public transportation administrators.

The BSP proposes finding appropriate values for the headways of each bus

line to guarantee the best synchronization for all lines with transfer demands in

the planning period T . The mathematical model is formulated in Equation 6.1.
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The departure time of trip r of bus line i is represented by an integer variable

X i
r. A binary variable Zi,j

r,s,b indicates whether trip r of line i and trip s of

line j are synchronized or not in node b. The proposed objective function

weighs synchronizations according to the number of passengers that transfer

in the planning period, thus giving priority to synchronization nodes with

larger transfer demands.

maximize
∑
b∈B

∑
i∈I

∑
j∈J(i)

fi∑
r=1

fj∑
s=1

Zi,j
r,s,b ×min(

P i,j
b

fi
, C) (6.1a)

subject to X i
1 ≤ H i (6.1b)

T −H i ≤ X i
fi
≤ T (6.1c)

hi ≤ X i
r+1 −X i

r ≤ H i (6.1d)

(Xj
s + TT jb )− (X i

r + TT ib ) > WT i,jb if Zi,j
r,s,b = 1 (6.1e)

(Xj
s + TT jb )− (X i

r + TT ib ) ≤ W i,j
b +WT i,jb if Zi,j

r,s,b = 1 (6.1f)

X i
r −X i

r−1 = X i
s −X i

s−1∀r, s, r > 1, s > 1 (6.1g)

X i
r ∈ {0, . . . , T}, Z

i,j
r,s,b ∈ {0, 1} (6.1h)

The objective function of the problem (Equation 6.1a) proposes maximizing

the number of synchronized transfers, weighed by the corresponding transfer

demand for each trip in each synchronization node. When computing the

objective function, the demand is split uniformly among the fj trips of line j.

This is a realistic assumption for planning periods where demand does not vary

significantly. The number of passengers considered on each synchronization

node is bounded by the transfer capacity for buses C. Equations 6.1b–6.1h

specify the constraints of the problem.

Equation 6.1b states that the first trip of each line must start before the

upper bound for headways for that line. A similar constraint in Equation 6.1c

is included for the last trip of each line, which must end before the planning

period T , thus, it must start after the end of the period minus the upper bound

for headways for that line. The constraint in Equation 6.1d guarantees that the

computed headways of each line are bounded to the range of valid headways.

Equations 6.1e and 6.1f define the condition for two trips to be synchronized

at a given node: trip r of line i and trip s of line j are synchronized at node b

if passengers are able to transfer, considering the time needed to walk between
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the bus stops in the node WT i,jb and the maximum time that users are will-

ing to wait for the second bus in the transfer to arrive, W i,j
b . Equation 6.1g

states that all headways for a given bus line are constant. This constraint

is consistent with the assumption of uniformly distributed transfer demands

within the planning period. However, the proposed problem formulation al-

lows relaxing this constraint to model a more complex variant of the BSP,

where bus headways of a given line may change within the planning period.

This is a distinction of the proposed model, considering that related works

usually split the problem in multiperiod timetabling planning, forcing to solve

several chained problems with fixed headways (Ibarra et al., 2016). Finally,

Equation 6.1h defines the domain for the decision variables of the problem.

6.1.3 Related work

Daduna and Voß (1995) studied the timetable synchronization problem on bus

networks to minimize the waiting time of passengers. Different objectives were

formulated, including a weighted sum considering transfers and the maximum

waiting time while transferring. Simulated Annealing and Tabu Search were

analyzed for simple versions of the problem. Tabu Search computed better so-

lutions than Simulated Annealing over randomly generated examples based on

the Berlin Underground network. Besides, three real-world cases from different

German cities were studied. The trade-off between operational costs and user

efficiency suggested that multiobjective approaches should be considered.

Ceder et al. (2001) studied the problem of maximizing the number of syn-

chronization events between bus lines at shared stops, i.e., maximizing the

number of simultaneous arrivals. A heuristic greedy approach that selects

nodes from the bus network was proposed to efficiently solve the problem by

defining custom timetables. The work focused on simultaneous bus arrivals and

the reported results consisted of examples that illustrated synchronizations on

small instances with few nodes and few bus lines.

Fleurent et al. (2004) considered a synchronization metric including weights

defined by experts and public transportation authorities to minimize vehicle

costs. A heuristic algorithm was proposed to solve network flow problems that

account for the synchronization metric and other operation costs. Experiments

performed on just two small scenarios from Montréal, Canada, computed dif-

ferent timetables when varying the weights used in the proposed metric.
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Ibarra and Rios (2012) studied the bus synchronization problem in the bus

network of Monterrey, Mexico. A flexible formulation of the problem was pro-

posed, considering a time window between travel times to account for traffic

congestion and other situations. A Multi-start Iterated Local Search (MILS)

was evaluated over eight instances modeling the bus network in Monterrey (15

to 200 bus lines and 3 to 40 synchronization points). MILS was compared

against a Branch & Bound method (which failed to compute optimal solutions

in two hours) and a simple upper bound computed by adding the possible

trips to synchronize. The method was able to compute efficient solutions for

medium-sized instances in less than one minute, but the gaps of MILS did not

scale properly. Later, Ibarra et al. (2016) solved the multiperiod bus synchro-

nization problem, optimizing multiple trips of a given set of bus lines. MILS,

Variable Neighborhood Search, and a simple population-based approach were

proposed to solve the problem. All methods computed solutions with similar

quality to an exact approach over synthetic instances with few synchronization

points. Multiperiod timetables were up to 20% better than merging single pe-

riod timetables. Results for a sample case study using data for a single bus line

showed that maximizing synchronizations for a specific node usually reduces

synchronizations for other nodes.

Our conference article presented the BSP formulation outlined in Sec-

tion 6.1.2 and an EA to solve it (Nesmachnow et al., 2020) . The problem

formulation extended the one proposed by Ibarra and Rios (2012) by con-

sidering scenarios where every pair of bus stops are possible transfer nodes to

synchronize. Candidate solutions to the problem were modeled in the EA using

integer vectors, where each value represented the headway (in minutes) of a bus

line. The initial population of the EA was comprised of randomly generated

solutions that satisfied the problem constraints as well as seed solutions cor-

responding to the current reality defined by the city authorities of the studied

scenario and from greedy approaches for the problem. Evolutionary operators

included a traditional tournament selection, a two-point crossover operator,

and a Gaussian mutation which modified the headway of the lines. The fitness

function accounted for the number of synchronized trips and their correspond-

ing demands, according to the problem formulation. Problem instances based

on real data from the public transportation system in Montevideo, Uruguay

were used for the experimental evaluation. Results showed that the proposed

evolutionary approach computed accurate solutions, improving up to 13.33%
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in the fitness values and up to 24.20% in the waiting times, when compared

to the current real timetable in Montevideo. This EA is used as the reference

algorithm for the VS implementation for BSP which is presented next.

6.2 VS for the BSP

Due to its flexible design, VS is agnostic in terms of which machine learning

classifier is used. In order to show this flexibility, the VS design for the BSP

uses RF as a classifier for the prediction phase, in contrast with the previous

implementations of VS which used SVMs. RF and SVM were compared in

preliminary experiments for the BSP and RF achieved a higher accuracy.

The process of generating the training set for the BSP is outlined in Fig-

ure 6.1. RFs are trained using the solutions computed by an EA used as a

reference (Nesmachnow et al., 2020). The best solution found on each inde-

pendent execution of the reference EA over each training instance is used to

build the dataset of solved BSP instances.

Each synchronization node in a given instance is independently considered

in the learning process of VS. Different combinations of features can be con-

sidered during training. In fact, different combinations were analyzed and the

experimental results are reported in Section 6.3.3.1. The training set gen-

eration process depicted in Figure 6.1 is described using the combination of

features that achieved the best results in these experiments, where each feature

vector is comprised of:

• Synchronization node features : walking time between the pair of bus

stops, transfer demand, and maximum waiting time.

• Inbound line features : travel time to synchronization node, minimum

allowed headway, and maximum allowed headway.

• Outbound line features : travel time to synchronization node, minimum

allowed headway, and maximum allowed headway.

Two different classifiers are trained: one to predict the headway of the in-

bound line (yib) and another one for the headway of the outbound line (yjb).

Thus, two different training datasets are built, each comprised of the same

number of training vectors with identical features but with different labels,

corresponding to the headways of the inbound and outbound lines as com-

puted by the reference EA. In summary, one BSP instance yields as many
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Figure 6.1: VS training set generation for the BSP.

training observations to each dataset as the number of synchronization nodes

in the instance times the number of independent executions of the reference

EA. The scikit-learn library (presented in Section 2.4.3.1) was used for the

implementation of VS with RF as classifiers.

The workflow of VS when solving the BSP is presented in Figure 6.2. VS

receives as input the BSP instance, including the features corresponding to the

synchronization nodes and bus lines. Since the training phase considers each

synchronization node independently, the prediction can be highly parallelized.

The prediction for each synchronization node can be performed in parallel using

copies of the two trained classifiers. Moreover, the prediction of the headways

of the inbound and outbound lines for a given synchronization node can also

be parallelized, since they are performed by different classifiers. The output

of each RF classifier is the predicted headway of the inbound or outbound line

of the synchronization node (ŷib and ŷjb in Figure 6.2).
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Figure 6.2: VS workflow for the BSP.
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A given bus line can be part of multiple synchronization nodes, acting

as either the inbound or outbound line. Thus, when the predictions of each

classifier are gathered, multiple—possibly conflicting—predictions can be made

for a given bus line. Therefore, predictions are gathered forming a list for each

bus line with the different predicted headways. Additionally, a prediction

may be invalid if the predicted headway is not within the range of allowed

headways for that line (defined by hi and H i). This is a possible scenario

since the set of classification labels is comprised of every allowed headway for

every bus line in the training set. Thus, a classification error could lead to

predicting a label that corresponds to a valid headway for some line in the

training set but not for the bus line being predicted. Consequently, predicted

headways are checked in this step and unfeasible predictions are not included

in the list of candidate headways for the line. Once all the predictions are

gathered, multiple candidate solutions are generated to be refined through the

improvement operator. Candidate solutions are built using the list of headways

computed in the prediction phase and according to the following criteria. For

a given bus line:

• if only one valid prediction is available for the line, the corresponding

headway is fixed for the line in the candidate solution.

• if more than one valid prediction is available for the line, a random

headway is selected among the set of valid predictions (according to a

uniform probability distribution).

• if no valid predictions are available for the line, a random headway is

chosen within the valid range of headways for that line (according to a

uniform probability distribution). This extreme case can happen when

all the predictions for a given bus line correspond to headways outside

the valid range of headways for the line.

Following this procedure, multiple candidate solutions are generated to be

refined. The refinement of solutions can also be made in parallel by generating

and improving solutions using a master-slave approach. The improvement op-

erator consists of a simple LS that selects a bus line in each step and randomly

changes its assigned headway according to a uniform distribution in the range

of valid headways for the line. The change is accepted if the quality of the

solution improves and is discarded otherwise. The quality of the solution is

measured through a score function, which reflects the problem formulation,
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and is used by the reference EA as a fitness function. The score function

accounts for the number of synchronized transfers and their corresponding de-

mands. The score of a given solution is computed by the procedure described

in Algorithm 4, which is described next.

Algorithm 4: Score function to evaluate BSP solutions.

input : solution, instance
output: score

1 T ← planning period(instance)
2 C ← bus capacity(instance)
3 score← 0
4 foreach node b in get sync nodes(instance) do

5 TT ib , TT
j
b ,WT i,jb , P i,j

b ,W i,j
b ← get features(b)

6 yib, y
j
b ← get headways(solution, b)

7 for m=0 to T step yib do // Iterate over inbound trips

8 for n=0 to T step yjb do // Iterate over outbound trips

9 wait time = (n+ TT jb )− (m+ TT ib )−WT i,jb
10 if wait time > yjb then

// At most, passengers wait for the full headway

wait time← yjb
11 end

12 if wait time > 0 & wait time ≤ W i,j
b then

// objective function is multiplied by T

// to avoid the division in fi = T/yib

13 score← score + min(P i,j
b · yib, C · T )

14 break

15 end

16 end

17 end

18 end

The planning period T and the capacity for transfers C are global informa-

tion obtained from the problem instance (lines 1- 2). The score function iter-

ates over each synchronization node in the instance (loop in line 4), obtaining

all the features of the synchronization node from the problem instance (line 5),

i.e., travel time for the inbound and outbound lines (TT ib , TT
j
b ), walking time

between bus stops (WT i,jb ), passenger demand (P i,j
b ), and maximum allowed

waiting time (W i,j
b ). Additionally, the headway for the inbound and outbound

lines (yib and yjb) are retrieved from the solution being evaluated (line 6). The

algorithm then iterates over each pair of trips of the inbound and outbound
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lines (loops in line 7 and 8). The waiting time for a pair of trips is computed

as the difference between the time the outbound and the inbound lines arrive

at the synchronization node, subtracting the walking time between bus stops

(line 9). In the worst case, passengers have to wait for the full headway of the

outbound line (lines 10-11). A pair of trips is synchronized if the computed

waiting time is below the threshold W i,j
b that passengers are willing to wait for

the outbound line (line 12). In this case, the demand is accumulated accord-

ing to the problem formulation (line 13). The objective function is multiplied

by the planning period T to avoid the division present in fi = T/yib in the

original formulation. This simple transformation was included to be able to

solve small problem instances to optimality using integer linear programming

solvers, which is regarded as a line of future work. The break directive in

line 14 ensures that each trip of the inbound line is synchronized with one trip

of the outbound line at most.

Once all candidate solutions are improved, results are gathered and the

best computed solution is returned.

6.3 Experimental evaluation

This section presents and discusses the experimental results of VS when solving

the BSP. First, the problem instances used for the experiments are described in

Section 6.3.1. Then, the baseline algorithms used for comparison are presented

in Section 6.3.2. The experimental results over a set of synthetic problem

instances are outlined in Section 6.3.3 and the results corresponding to realistic

instances from the public transportation network of Montevideo, Uruguay, are

presented in Section 6.3.4.

6.3.1 Problem instances

Two sets of problem instances were considered: synthetic instances and realis-

tic instances corresponding to the public transportation system of Montevideo,

Uruguay. The methodologies for building both sets of instances are described

next.
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6.3.1.1 Synthetic BSP instances

A set of 130 synthetic instances for the BSP was built using a grid topology

that models the streets in a city. The process to generate each problem instance

is described next.

First, a grid of size M×N blocks was defined, on which the bus network was

designed. Bus lines were randomly generated considering two different types:

i) regular lines, with starting and ending points far apart; and ii) circular lines,

with the start and end of the line close to each other. This two types of bus

lines model characteristics usually present in the design of real bus networks.

L lines were generated, α·L were regular lines and (1−α)·L were circular lines,

with α ∈ [0, 1]. Once the bus lines were defined, bus stops for each line were

placed at intersections of the grid, considering a fixed distance d∗ between bus

stops of the same line. A set of candidate synchronization nodes was selected

over the defined bus network, considering those lines with nearby bus stops.

Two bus stops s1 and s2 must be at a distance d(s1, s2) ≤ r (measured in

blocks) to be considered as a candidate synchronization node. Out of the S

candidate synchronization nodes, subsets of size β ·S, β ∈ [0, 1] were randomly

selected to define different problem instances using the same network topology.

The walking time between bus stops WT i,jb is expressed in minutes and is

computed using the Manhattan distance, assuming a walking speed ws = 1

(measured in blocks per minute). The travel times of each bus were defined

assuming a constant speed s, expressed in blocks per minute. For each line, the

minimum allowed headway hi was randomly selected with uniform probability

from [hmin, hmax] with hi ∈ N. The maximum allowed headway H i was defined

as H i = dc · hie, with c randomly selected with uniform probability from

[cmin, cmax]. The demand P i,j
b ∈ N0 for each synchronization node was selected

at random from [Pmin, Pmax] with uniform probability. The maximum allowed

waiting time for each transfer was defined according to the maximum allowed

headway of the outbound line: WT i,jb = λ ·Hj. Smaller values of λ correspond

to instances with a tighter time constraint, modeling passengers unwilling to

wait for the bus for long periods. The set of problem instances were defined

according to the parameters outlined in Table 6.1.
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Table 6.1: Parameter configuration for synthetic BSP instances.

parameters values

T 120 minutes
C 5

M ×N (50× 50), (300× 300), (350× 350), (400× 400), (450× 450)
L 50, 300, 350, 400, 450
β 0.5
α 0.5
d∗ 3 blocks
r 2 blocks
ws 1 block per minute
s 4 blocks per minute

(hmin, hmax) (5, 15) minutes
(cmin, cmax) (3, 5)
(Pmin, Pmax) (6, 40)

λ 0.7, 0.9, 1.0

6.3.1.2 Realistic BSP instances

Realistic BSP instances were built using data from the public transportation

system in Montevideo, Uruguay. Different sources of data were combined to

generate the problem instances including open data and ticket sales data from

smartcard transactions. Open data from the city transportation authorities in-

cluded bus lines, bus stops, and timetables for the entire public transportation

system. Transfers information corresponded to real data from ticket sales in

2015 using smartcards (Massobrio, 2018). Smartcards are compulsory for pas-

sengers transferring between bus lines: if paying using cash, passengers must

purchase two separate tickets. Since smartcards are required for transfers, it

is fair to assume that the transfer records of passengers using smart cards are

a good estimator of the behavior of the complete universe of passengers in the

system. The key elements of the generated instances are described next.

A planning period of T = 120 minutes was used, considering bus trips

on working days departing between 12.00 and 14.00, when the public trans-

portation system is at peak usage in terms of ticket sales (Massobrio and

Nesmachnow, 2020). A set of 45 problem instances was defined, 15 for each

of the three different dimensions considered (30, 70, and 110 synchronization

nodes). Synchronization nodes were randomly chosen with uniform probabil-

ity among the 170 most demanded transfers for the considered period, which
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are depicted in Figure 6.3. The demand on each synchronization node P i,j
b

was assigned according to the real transfer demand in May 2015, as registered

in the smartcard transactions. The available transfer capacity C on each syn-

chronization node was fixed to C = 5 for all problem instances. This value

was set based on real data from ticket sales in 2015 (Massobrio, 2018) and

accounts for other passengers that may be already on the bus as well as pas-

sengers directly boarding the bus (without transferring from another line). A

preliminary sensitivity analysis was performed that showed that the computed

solutions were weakly dependent on the chosen value of C for the studied in-

stances. The walking time between bus stops WT i,jb was computed according

to the distance between bus stops and assuming a constant walking speed of

6 km/h. The travel time of the bus lines to the synchronization node TT ib
and TT jb were defined using the publicly-available timetables, averaging the

travel times of all trips of each line within the considered planning period.

The range of allowed headways for each line [hi, H i] was also computed based

on the public timetables, considering all trips within the planning period. The

maximum waiting time for each transfer was defined according to the maxi-

mum headway for the outbound line of the transfer, i.e., WT i,jb = λ ·Hj, with

λ ∈ {0.7, 0.9, 1.0}.

Figure 6.3: Location of synchronization nodes in realistic BSP instances in Mon-
tevideo, Uruguay.
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6.3.2 Baseline solutions for results comparison

A set of baseline solutions were considered to evaluate the efficacy of VS, which

are presented next.

• EA: the best solution computed by the reference EA.

• hi: a solution where the headway of each bus line is assigned to its min-

imum allowed value. This solution is too expensive to put into practice,

since configuring all lines to operate at minimum headways accounts for

a very large number of vehicles and operating costs.

• random: a randomly generated solution where the headway of each bus

line is chosen within the valid range of headways for that line (according

to a uniform probability distribution).

• LS (1000): a random solution followed by 1000 steps of the same LS

operator used in the improvement phase of VS.

• real : the current solution according to the public timetable available

for the transportation system of Montevideo, Uruguay, only used in the

experimental evaluation of realistic BSP instances. This solution was

computed by assigning to each bus line the average headway determined

by the city authorities for the considered planning period.

6.3.3 Results on synthetic instances

This section outlines the experimental evaluation of VS over the set of synthetic

BSP instances.

6.3.3.1 Training of VS

The set of 130 problem instances described in Section 6.3.1.1 was divided into

two subsets: a training set comprised of 70 instances and a test set comprised of

60 instances, including the larger instances in terms of the number of bus lines.

Thirty independent executions of the reference EA were performed over each

instance of the training set and the best solution found on each execution was

included to generate the dataset of solved instances, as described in Section 6.2.

Several feature configurations were evaluated and compared in terms of

accuracy (i.e., the number of correct predictions out of all predictions made).

The first configuration (C1) considers the features corresponding to the syn-

chronization node for the feature vector of the classifiers. More precisely, con-
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figuration (C1) holds the bus lines identifiers i and j, the walking time between

bus stops WT i,jb , the transfer demand P i,j
b for the node, the maximum allowed

waiting time W i,j
b , and the traveling times of both bus lines to the synchro-

nization node (TT ib and TT jb ). The second configuration (C2) corresponds to

the same feature vector as C1 but without the bus line identifiers. Configura-

tion C3 consists of adding three global features from the problem instance to

configuration C2: the total number of bus lines L, the total number of syn-

chronization nodes S, and the planning period T . Finally, configuration C4

is comprised of the same features as C2 but including also the minimum and

maximum allowed headways for the inbound and outbound bus lines. Table 6.2

outlines the different feature configurations considered and their corresponding

accuracy.

Table 6.2: Accuracy of different feature configurations for synthetic BSP instances.

conf. feature vector
accuracy

inbound outbound

C1 〈i, j,WT i,jb , P i,j
b ,W i,j

b , TT ib , TT
j
b 〉 0.17 0.31

C2 〈WT i,jb , P i,j
b ,W i,j

b , TT ib , TT
j
b 〉 0.17 0.29

C3 〈L, S, T,WT i,jb , P i,j
b ,W i,j

b , TT ib , TT
j
b 〉 0.17 0.29

C4 〈hi, H i, hj, Hj,WT i,jb , P i,j
b ,W i,j

b , TT ib , TT
j
b 〉 0.50 0.48

The similar results of configuration C1 and C2 suggest that the bus line

identifiers are not necessary for accurately predicting headways. Similarly,

results achieved using C3 suggest that the accuracy does not improve when

adding global information from the problem instance. Configuration C4 signif-

icantly outperformed all the other feature configurations, achieving accuracy

values of 0.50 and 0.48 for the inbound and outbound lines, respectively. Con-

sequently, configuration C4 was used for the remainder of the experimental

evaluation.

6.3.3.2 Accuracy per instance

The prediction phase of VS was evaluated in terms of accuracy. Figure 6.4

presents a bar plot of the prediction accuracy for each of the 60 instances in

the test set of BSP synthetic instances. Blue bars correspond to the accuracy

achieved by the classifier for inbound lines and orange bars correspond to the

accuracy of the classifier for outbound lines.
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Figure 6.4: Prediction accuracy per instance for synthetic BSP instances.

The classifier for predicting the headways of inbound lines has 59 classes,

i.e., it must predict one headway value from within a set of 59 possible values.

The classifier for outbound lines has 68 possible classes. Thus, a random

prediction over the possible values would render an average accuracy of 0.017

for the inbound classifier and 0.015 for the outbound classifier. Taking this

into account, results in Figure 6.4 show a very good prediction accuracy across

all problem instances for both classifiers. The maximum prediction accuracy

was 0.60 and 0.56 for the inbound and outbound classifiers, respectively. In

median over all problem instances, the inbound classifier achieved an accuracy

of 0.49 while the outbound classifier achieved an average accuracy of 0.47.

6.3.3.3 Number of valid predictions

Since predictions are independently made for each synchronization node, many

different valid predictions can be made for the same line, acting as either the

inbound or outbound line of multiple synchronization nodes. Additionally,

predictions may not fall within the allowed range of headways for the line, and

thus some lines may be left without a valid headway in the prediction phase.

As explained in Section 6.2, the process of generating candidate solutions
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depends on the number of valid predictions for each line. With zero valid

predictions the headway is randomly set within the allowed range, and when

more than one valid prediction is available one is picked at random to generate

the candidate solution. Thus, it is important to study the number of valid

predictions per line for the studied instances. Figure 6.5 shows a histogram of

the number of valid predictions accumulated over all studied instances. Dis-

aggregated histograms for each instance can be found in Figures A.1 and A.2

in Appendix A.

Figure 6.5: Number of valid predictions per line for synthetic BSP instances.

A single headway value was predicted for most lines, which was used di-

rectly when generating candidate solutions. No valid prediction was made for

just two bus lines, considering all studied instances. For each of these bus

lines, the headway value was randomly selected according to a uniform proba-

bility distribution defined within the allowed range of headway values for the

line. In some cases, more than one valid headway was predicted for the same

line. At most four values were predicted for the same bus line. In these cases,

one of the predicted values was selected at random (according to a uniform

distribution) during the generation of candidate solutions.

6.3.3.4 Comparison with baseline solutions

VS was compared against the baseline solutions described in Section 6.3.2.

Figure 6.6 shows the best scores achieved by VS and the baseline solutions.
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Score values are computed as defined in Algorithm 4 and normalized using

the results computed by the EA as reference. Results correspond to 30 in-

dependent executions of each algorithm on each problem instance, except for

hi, which is deterministic. Results for three different configurations of VS are

displayed: VS (0), corresponds to the prediction phase of VS (i.e., without

applying the improvement operator), VS (1000) and VS (5000) correspond to

VS with a 1000-step and 5000-step LS improvement operator, respectively.

Numerical results for each instance are reported in Table A.1 and raw results

(without normalizing) are outlined in Table A.2, both in Appendix A. More-

over, Figures A.3–A.6 in Appendix A present boxplots comparing the results

achieved with the different configurations of VS against the results computed

by the reference EA. Boxplots considering all baseline solutions can be found

in Figures A.7–A.10 also in Appendix A.

Figure 6.6: Normalized results comparison of VS with baseline solutions for syn-
thetic BSP instances.

Results show that VS computed accurate results even when considering

only the prediction phase. VS (0) outperformed the randomly generated solu-

tion by up to 26.4% and the minimum headway solution by up to 3.0%. The

prediction phase of VS computes solutions that are up to 99.1% as good as the

reference EA (98.8% in median and 98.4% in the worst case). These results

show that the prediction phase of VS is enough to compute highly-accurate

solutions for the evaluated instances.
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Including the LS improvement operator of VS allowed further refining the

computed solutions. When adding a 1000-step LS improvement operator, so-

lutions computed by VS were up to 99.4% as good as the reference EA (99.3%

in median and 98.9% in the worst case). With an LS of 5000 steps, VS com-

puted solutions 99.9% as good as the reference EA in the best case (99.8% in

median and 99.7% in the worst case). The effectiveness of the LS operator

is demonstrated when comparing the results of the random solution with the

results of LS (1000), which refines the random solution with 1000 steps of the

LS. Results show that the LS allowed improving the random solution by up to

19%. Thus, each phase of VS contributes to the overall computed result.

VS was trained using instances generated over grids of up to 400×400 and

evaluated on instances corresponding to grids of size 450×450. Results show

that VS was able to accurately scale in the problem dimension, computing

high-quality solutions in instances larger than those seen during training.

6.3.4 Results on realistic instances

This section outlines the experimental evaluation of VS over the realistic BSP

instances from the public transportation network in Montevideo, Uruguay.

6.3.4.1 Training of VS

The set of instances described in Section 6.3.1.2 was divided into a training set,

comprised of the 30 instances of smaller size (30 and 70 synchronization nodes)

and a test set comprised of 15 instances with 110 synchronization nodes. The

training set includes the best solution found on each of the 30 independent

executions of the reference EA. Thus, the training sets for the inbound and

outbound lines each had 45 000 vectors, corresponding to the 30 independent

executions of each of the 15 instances of sizes 30 and 70 synchronization nodes

(30× 15× (30 + 70) = 45000 vectors).

The features included in the training vector were those that achieved the

best results in the analysis described in Section 6.3.3.1 for the synthetic in-

stances, i.e., the range of allowed headways and travel times for both lines in

the synchronization node, the walking time between the bus stops, the maxi-

mum allowed waiting time, and the passenger demand. As with the synthetic

BSP instances, two separate RF classifiers were trained: one to predict the

headways of inbound lines and one for the outbound lines.
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6.3.4.2 Accuracy per instance

Figure 6.7 outlines the prediction accuracy of each classifier for each instance

in the dataset. Blue bars correspond to the inbound line headway predictions

while orange bars correspond to the outbound lines.

Figure 6.7: Prediction accuracy per instance for realistic BSP instances.

Results show an overall good prediction accuracy across all problem in-

stances. For the inbound line classifier, the maximum prediction accuracy was

0.77, the minimum was 0.63, and the median was 0.67. The highest prediction

accuracy for the outbound lines was 0.79, the minimum was 0.54, and the

median was 0.72. These are promising results when considering the number

of class labels (i.e., number of possible predictions) of each classifier: 42 for

the inbound line predictor and 27 for the outbound line predictor. Thus, a

random prediction over the possible values would render an average accuracy

of 0.02 (inbound classifier) and 0.04 (outbound classifier).

6.3.4.3 Number of valid predictions

Figure 6.8 presents histograms of the number of valid predictions per line for

each studied instance. Results show that most bus lines had a single valid

prediction on all problem instances. In these cases, the predicted headways
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were directly used for generating the candidate solutions. Some instances had

lines with no valid predictions. No valid predictions could be made at most

for two out of the 78 bus lines in each problem instance (instances #3, #6,

and #9). In such cases, the headways assigned to that lines were randomly

generated within the allowed ranges. Conversely, some lines have more than

one valid prediction. The largest number of valid predictions for the same line

in all problem instances was four (instances #2 and #4). In these cases, the

headway for the line was randomly selected among the valid set of predictions

when computing the candidate solutions for the problem.

Figure 6.8: Number of valid predictions per line for realistic BSP instances.

6.3.4.4 Comparison to baseline solutions

VS was compared against the baseline solutions described in Section 6.3.2. Ta-

ble 6.3 outlines the best results found by each algorithm in all 30 independent

executions of each instance, except for hi and real, which are deterministic. Re-

sults correspond to the score values computed using the procedure described

in Algorithm 4. Results for three different configurations of VS are displayed:

VS (0), corresponding to VS when using no improvement operator (i.e., only

the prediction phase of VS); VS (1000), corresponding to VS with a 1000-step

113



LS improvement operator; and VS (5000), corresponding to VS with a 5000-

step LS improvement operator. Score results are normalized using the score

computed by the EA as reference to ease the comparison. The best result

achieved on each problem instance is highlighted in gray. Raw results without

normalization can be found in Table A.3 in Appendix A. Figure 6.9 shows

boxplots of the score distribution over the 30 independent executions of each

instance. For the sake of clarity, only the results computed by the different

configurations of VS and the reference EA are displayed. Boxplots considering

all the baseline solutions are reported in Figure A.11 in Appendix A.

Table 6.3: Results comparison of VS with baseline solutions for realistic BSP
instances.

instance real hi random LS (1000) EA VS (0) VS (1000) VS (5000)

0 0.9282 0.9757 0.9168 0.9939 1.0 0.9952 0.9987 0.9989
1 0.8816 0.9689 0.8835 0.9924 1.0 0.9964 0.9999 1.0002
2 0.9290 0.9765 0.9093 0.9927 1.0 0.9965 0.9990 0.9994
3 0.9161 0.9769 0.9090 0.9904 1.0 0.9877 0.9985 0.9994
4 0.9279 0.9749 0.9059 0.9950 1.0 0.9984 1.0003 1.0005
5 0.9170 0.9740 0.9182 0.9923 1.0 0.9984 1.0002 1.0008
6 0.8861 0.9695 0.8639 0.9896 1.0 0.9895 0.9993 1.0009
7 0.8973 0.9670 0.8787 0.9955 1.0 0.9958 0.9996 1.0004
8 0.8817 0.9647 0.8842 0.9907 1.0 0.9951 1.0014 1.0017
9 0.9165 0.9773 0.9027 0.9924 1.0 0.9907 0.9988 0.9996
10 0.9280 0.9750 0.9127 0.9955 1.0 0.9985 1.0004 1.0008
11 0.9170 0.9740 0.9142 0.9931 1.0 0.9976 0.9998 1.0003
12 0.9239 0.9747 0.9268 0.9906 1.0 0.9912 0.9999 1.0006
13 0.8883 0.9683 0.8707 0.9913 1.0 0.9933 1.0003 1.0010
14 0.9238 0.9746 0.9074 0.9921 1.0 0.9954 0.9996 1.0002

VS was able to compute accurate results even when considering only the

prediction phase. VS (0), i.e., only the prediction phase of VS without any

improvement operator, outperformed the real solution, i.e., the configuration

of headways according to the public transportation timetable, by up to 11.5%.

Additionally, VS (0) outperformed the random solution by up to 12.6% and

the minimum headway solution by up to 3.0%. In the best case, the solution

computed using only the prediction phase of VS was 99.8% as good as the solu-

tion computed by the reference EA. In median, the prediction phase computed

solutions that were 99.5% as good as the reference solution and, in the worst

case, the computed solution was 98.7% as good as the EA solution. These are

highly competitive results, that demonstrate the capability of the prediction

phase of VS to compute accurate solutions for the studied instances.
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Figure 6.9: Results comparison of VS vs. EA on realistic BSP instances.
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Including the LS improvement operator of VS allowed further refining the

computed solutions. In median, adding a 1000-step LS allowed reaching solu-

tions 0.37% closer to the reference computed by the EA compared to only using

the prediction phase. When performing a LS of 5000 steps, the improvement

increased up to 1.56% in the best case. With this configuration, VS outper-

formed the reference EA in eleven out of fifteen problem instances. Boxplots

in Figure 6.9 show that the LS operator was also useful to reduce the variance

of the computed results.

The contribution of each phase of VS is demonstrated when comparing

the results of VS and the randomly generated solution with and without the

LS operator. VS (0) outperformed the random solution by 8.80% in median.

Similarly, VS (1000) outperformed LS (1000) on all studied problem instances.

These results show that both phases of VS contributed to the overall result.

VS was trained with instances with up to 70 synchronization nodes and

evaluated on instances with up to 110 nodes. The experimental results show

that VS was able to effectively scale in the problem dimension, solving in-

stances larger than those seen in the training phase.

6.4 Conclusions

This chapter presented the application of VS to solve the BSP, a complex,

real-world, combinatorial optimization problem.

A new problem formulation was defined, extending previous models in the

literature by considering transfers at any pair of bus stops in the public trans-

portation system and accounting for the walking time between bus stops. The

problem was solved with VS using RF as machine learning classifiers. VS was

trained using an EA as a reference and several feature configurations were

compared to improve the prediction accuracy of the proposed approach.

The experimental analysis was performed using two sets of problem in-

stances: one comprised of 130 synthetic instances and the other of 45 realistic

instances modeling the public transportation network in Montevideo, Uruguay.

An EA was used as a reference algorithm to train VS and to evaluate its efficacy

along with other baseline solutions. VS was able to compute accurate solu-

tions in both sets of problem instances. In the synthetic dataset, VS computed

solutions within 1.2% of the reference EA in median when only considering the

prediction phase and within 0.2% in median when including a 5000-step LS im-
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provement operator. In the realistic instances from Montevideo, VS computed

solutions 99.5% as good as the reference EA in median when considering only

the prediction phase and outperformed the EA in eleven out of fifteen problem

instances when adding a 5000-step LS improvement operator.

The BSP allowed studying the applicability of the VS paradigm to a real-

world optimization problem and evaluating its effectiveness with respect to

baseline solutions. A more complex problem decomposition than those applied

for the NRP and HCSP was needed to solve the BSP. The applied problem

decomposition involved training two separate machine learning classifiers. Ad-

ditionally, the implementation was done using RF—in contrast with the two

previous applications of VS which used SVMs—showing the versatility and

adaptability of VS. The experimental evaluation was performed over larger in-

stances (in terms of the number of bus lines and synchronization nodes) than

those considered in the training phase. The experimental results highlight the

scalability properties of VS in terms of the problem dimension, which were

also noted in the other problems addressed in this thesis.
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Chapter 7

Conclusions and Future Work

This closing chapter outlines the main findings and conclusions from the re-

search reported in this thesis, along with the main lines of future work.

7.1 Conclusions

This thesis explored VS, a paradigm inspired by the Savant Syndrome that

combines machine learning and parallel computing to solve complex optimiza-

tion problems. Firstly, a thorough review of the related works in the literature

was performed, focusing on the automatic generation of parallel programs and

on the application of machine learning to optimization. Then, implementations

of VS were developed and evaluated for solving three optimization problems:

i) the NRP, a well-known problem from software engineering that was mod-

eled as a 0/1-KP; ii) the HCSP, a classic task scheduling problem relevant in

modern computing infrastructures; and iii) the BSP, an optimization problem

related to public transportation networks.

The VS implementation for the NRP used the Nemhauser-Ullmann al-

gorithm as a reference, which computes exact solutions for the problem. A

thorough analysis was done considering different feature configurations, train-

ing set sizes, and parameters for the SVMs used as classifiers. Five different

improvement operators were evaluated over a large dataset of instances with

varying size and difficulty. When considering only the prediction phase, VS

reached median prediction accuracies over 90% when grouping instances by

their size and larger than 80% when grouping instances by their difficulty.

Out of the five improvement operators that were evaluated, the simplest one—
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a greedy strategy—achieved the best results. With this improvement operator,

VS computed solutions within 1% from the optima for all studied instances.

The first parallel implementation of VS was evaluated when solving the

HCSP. In this case, VS used MinMin as a reference, which is a well-known

greedy heuristic for the problem. Experimental results showed that VS was

able to outperform MinMin in most of the 180 problem instances studied,

with improvements of up to 15%. The performance of VS was evaluated

on four different computing platforms. Results showed that, thanks to its

massively-parallel design, VS was able to take advantage of available com-

puting resources to find accurate solutions for the HCSP in both shared- and

distributed-memory architectures. Finally, experiments on very large problem

instances were performed, which showed the excellent scalability properties

of VS when solving instances up to 128 times larger than those seen during

training.

Lastly, VS was applied to the BSP, a complex combinatorial optimization

problem arising in public transportation. In this case, VS used RF trained

with the results from an EA. Experimental evaluation was performed over

a set of 130 synthetic instances and a set of 45 realistic instances from the

public transportation network in Montevideo, Uruguay. VS computed accurate

solutions in both datasets, achieving results within 0.2% of the reference EA

in median on the synthetic instances and outperforming the EA in eleven out

of fifteen realistic instances.

Some general remarks can be made regarding VS, which were observed in

the different applications studied.

• Due to its flexible design, VS can use different machine learning algo-

rithms for the training and prediction phases. In the studied problems

two different classifiers were used: SVMs for the NRP and HCSP; and

RFs for the BSP. These examples showed the versatility and adaptability

of VS in terms of the learning strategy.

• Similarly, the design of VS is flexible in terms of the algorithm(s) used

as a reference. On the studied problems, both exact and approximate

algorithms were used as a reference. For the NRP, the Nemhauser-

Ullmann algorithm was used, which computes exact solutions. In turn,

the VS implementation for the HCSP used MinMin as a reference, an

approximate greedy heuristic. Finally, when solving the BSP, VS used
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an EA that computed approximate solutions for the problem. The use

of different algorithms as a reference showed the flexibility of VS, which

can take advantage of any available solver for the problem at hand.

The scalability of VS was evaluated both in terms of the problem dimension

and in the use of computational resources.

• Regarding the problem dimension, VS was evaluated over problem in-

stances much larger than those seen during training. When solving the

HCSP, VS was trained with instances up to 512×16 (tasks×machines)

and evaluated on much larger instances in terms of tasks (up to

65536×16). For the synthetic BSP instances, VS was trained using in-

stances generated over grids of up to 400×400 and evaluated on instances

corresponding to grids of size 450×450. In the realistic BSP instances,

VS was trained with instances with up to 70 synchronization nodes and

evaluated on instances with up to 110 nodes. In all cases, VS was able

to accurately scale in the problem dimension, computing high-quality

solutions in instances much larger than those seen during training. This

is a very interesting feature of the design of VS, since it allows solving

problem instances that may not be tractable for the algorithm used as a

reference.

• The scalability in the use of computational resources was evaluated on the

HCSP. For this problem, four different computing platforms were con-

sidered, including shared- and distributed-memory architectures. Results

showed that the massively-parallel design of VS allows efficiently using

available computing resources. When increasing the number of comput-

ing units, VS was able to significantly reduce the times of the prediction

phase. Moreover, the overall computation time did not increase despite

the computational demand of VS increases with the number of available

resources.

Summarizing, the main contributions of the research reported in this thesis

are:

• A review of the related works on the automatic generation of parallel

programs and the synergy between machine learning and optimization.

• The definition of the workflow of VS and its implementation details.
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• The implementation and experimental evaluation of VS when solving the

NRP, modeled as a 0/1-KP.

• The application of VS to solve the HCSP and its evaluation over four

different parallel computing platforms.

• The implementation of VS for solving the BSP and its evaluation over

synthetic and realistic instances.

The work reported in this thesis resulted in several publications including

three journal articles (Massobrio et al., 2019; Massobrio and Nesmachnow,

2020; de la Torre et al., 2020) and six conference articles (Massobrio et al., 2016,

2018a,b,c; Nesmachnow et al., 2020; Massobrio et al., 2020). Additionally, two

more articles were submitted and are currently under consideration for possible

publication in the Applied Soft Computing journal.

7.2 Future Work

As noted in the literature review, the integration of machine learning into

optimization algorithms is still at an early stage of development (Bengio et al.,

2021). The work presented in this thesis was intended to be a step forward

towards bringing closer the machine learning and optimization research fields,

but many lines of work remain to be addressed.

Regarding the training and prediction phase of VS, other machine learn-

ing algorithms need to be considered. Despite two different classifiers were

used in this thesis (SVMs and RFs), more algorithms should be integrated

into VS. One promising line of work is to incorporate ensemble learning to

VS. In this approach, different machine learning classifiers could be trained

to form an ensemble. These classifiers could even be trained using different

optimization algorithms as a reference or over different sets of solved instances.

The final prediction can be made using a voting mechanism that considers the

predictions of all the classifiers in the ensemble. An ensemble comprised of

SVMs, RFs, and ANNs achieved promising preliminary results when solving

the HCSP, but further experimental evaluation is needed.

Regarding the improvement phase of VS, other operators should be con-

sidered and evaluated. Throughout the studied problems many improvement

operators were evaluated, including different greedy heuristics and LS algo-

rithms. The design of VS allows including different improvement operators
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seamlessly. The rationale in the implementations presented in this thesis was

to use general optimization strategies during the improvement phase. How-

ever, tailored improvement operators that incorporate problem-specific tech-

niques could be easily included in VS. This could be necessary for particularly

complex problems, where general optimization strategies may not be able to

provide quality solutions. Additionally, another interesting line of work would

be to use the pool of candidate solutions generated in the prediction phase of

VS to initialize a population-based metaheuristic, e.g., an EA.

Other optimization problems, potentially with harder constraints or depen-

dencies between the problem variables, should also be considered. Throughout

the process that led to this thesis, preliminary experiments were performed for

other problems, including the Prize-collecting Steiner Tree Problem (John-

son et al., 2000) and the VRP (Ralphs et al., 2003). These problems could

be further addressed, along with many other related optimization problems.

In particular, problems including interactions or epistasis as hard constraints

should be studied. In this regard, an interesting line of work related to the

NRP, would be to consider other variants of the problem, which model depen-

dencies among requirements. Several algorithms exist in the literature that

deal with these dependencies by iteratively eliminating them and solving sub-

problems with no dependencies (Bagnall et al., 2001). Thus, an interesting

line of work would be to incorporate VS into these iterative algorithms to

solve NRP problem instances with dependencies.

Additionally, all the problems studied in this thesis correspond to combi-

natorial optimization problems (i.e., finding solutions within finite sets). Con-

tinuous optimization problems could also be addressed with VS. In this case,

regression algorithms should be used instead of machine learning classifiers,

since the prediction phase of VS should render real values for problem vari-

ables instead of classification labels.

Furthermore, addressing multiobjective optimization problems is an inter-

esting line of future work. For this purpose, a domain decomposition approach

could be implemented, using a linear combination of the objective functions

and training a set of classifiers with different weights. In this way, each classi-

fier would aim to predict a solution with a given trade-off between the problem

objectives. In other words, each classifier will be focused on making predic-

tions for a specific region of the Pareto front corresponding to the problem

instance.
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Finally, another line of future work corresponds to evaluating VS in other

computational platforms. While many different platforms were considered

within this thesis, the massively-parallel design of VS makes it suitable to

many other architectures. For instance, VS could be evaluated in low-power

clusters (e.g., comprised of Raspberry Pi or ARM processors) as well as in

cloud infrastructures.
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Figure A.1: Number of valid predictions per line for synthetic BSP instances 0-29.
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Figure A.2: Number of valid predictions per line for synthetic BSP instances 30-59.
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Table A.1: Normalized results comparison of VS with baseline solutions for syn-
thetic BSP instances.

instance hi random LS (1000) EA VS (0) VS (1000) VS (5000)

0 0.9622 0.7662 0.9266 1.0 0.9862 0.9919 0.9980
1 0.9645 0.7569 0.9297 1.0 0.9876 0.9926 0.9989
2 0.9637 0.7667 0.9258 1.0 0.9891 0.9930 0.9992
3 0.9636 0.7681 0.9264 1.0 0.9851 0.9914 0.9980
4 0.9603 0.7599 0.9324 1.0 0.9847 0.9910 0.9977
5 0.9621 0.7612 0.9225 1.0 0.9844 0.9897 0.9978
6 0.9602 0.7536 0.9195 1.0 0.9861 0.9924 0.9977
7 0.9608 0.7592 0.9193 1.0 0.9858 0.9920 0.9999
8 0.9583 0.7570 0.9231 1.0 0.9883 0.9932 0.9996
9 0.9652 0.7586 0.9153 1.0 0.9877 0.9925 0.9976
10 0.9693 0.7353 0.9254 1.0 0.9856 0.9917 0.9988
11 0.9681 0.7599 0.9263 1.0 0.9875 0.9926 0.9987
12 0.9722 0.7459 0.9227 1.0 0.9879 0.9929 0.9985
13 0.9652 0.7356 0.9172 1.0 0.9843 0.9898 0.9975
14 0.9703 0.7475 0.9262 1.0 0.9849 0.9914 0.9979
15 0.9701 0.7548 0.9274 1.0 0.9854 0.9925 0.9978
16 0.9707 0.7516 0.9142 1.0 0.9848 0.9893 0.9972
17 0.9702 0.7230 0.9053 1.0 0.9874 0.9934 0.9978
18 0.9704 0.7585 0.9242 1.0 0.9847 0.9908 0.9986
19 0.9732 0.7507 0.9055 1.0 0.9887 0.9920 0.9970
20 0.9703 0.7644 0.9273 1.0 0.9883 0.9936 0.9985
21 0.9689 0.7800 0.9396 1.0 0.9886 0.9922 0.9975
22 0.9685 0.7686 0.9261 1.0 0.9886 0.9931 0.9986
23 0.9668 0.7872 0.9281 1.0 0.9883 0.9930 0.9997
24 0.9667 0.7534 0.9170 1.0 0.9882 0.9928 0.9975
25 0.9695 0.7656 0.9309 1.0 0.9889 0.9929 0.9993
26 0.9659 0.7435 0.9142 1.0 0.9887 0.9936 0.9999
27 0.9677 0.7918 0.9324 1.0 0.9884 0.9930 0.9991
28 0.9672 0.7478 0.9213 1.0 0.9876 0.9924 0.9977
29 0.9701 0.7519 0.9045 1.0 0.9896 0.9926 0.9983
30 0.9648 0.7474 0.9089 1.0 0.9899 0.9933 0.9981
31 0.9683 0.7533 0.9139 1.0 0.9898 0.9938 0.9991
32 0.9684 0.7428 0.9104 1.0 0.9881 0.9927 0.9979
33 0.9642 0.7604 0.9064 1.0 0.9895 0.9928 0.9979
34 0.9680 0.7584 0.9058 1.0 0.9901 0.9931 0.9977
35 0.9687 0.7371 0.9063 1.0 0.9890 0.9936 0.9986
36 0.9667 0.7447 0.9095 1.0 0.9875 0.9915 0.9979
37 0.9630 0.7501 0.9060 1.0 0.9885 0.9927 0.9988
38 0.9688 0.7497 0.9077 1.0 0.9896 0.9926 0.9977
39 0.9695 0.7371 0.8955 1.0 0.9913 0.9941 0.9979
40 0.9731 0.7782 0.9153 1.0 0.9898 0.9937 0.9992
41 0.9729 0.7485 0.9172 1.0 0.9880 0.9927 0.9985
42 0.9713 0.7529 0.9152 1.0 0.9896 0.9931 0.9978
43 0.9720 0.7342 0.9123 1.0 0.9881 0.9916 0.9976
44 0.9731 0.7367 0.9132 1.0 0.9889 0.9927 0.9990
45 0.9726 0.7532 0.9144 1.0 0.9890 0.9932 0.9989
46 0.9708 0.7533 0.9066 1.0 0.9872 0.9915 0.9975
47 0.9733 0.7582 0.9070 1.0 0.9870 0.9912 0.9980
48 0.9723 0.7634 0.9130 1.0 0.9884 0.9930 0.9986
49 0.9753 0.7366 0.8904 1.0 0.9912 0.9937 0.9980
50 0.9692 0.7811 0.9206 1.0 0.9871 0.9924 0.9979
51 0.9707 0.7749 0.9244 1.0 0.9894 0.9918 0.9982
52 0.9683 0.7548 0.9192 1.0 0.9864 0.9925 0.9977
53 0.9704 0.7770 0.9282 1.0 0.9886 0.9937 0.9989
54 0.9674 0.7768 0.9246 1.0 0.9862 0.9916 0.9974
55 0.9652 0.7655 0.9145 1.0 0.9891 0.9927 0.9978
56 0.9738 0.7707 0.9182 1.0 0.9883 0.9923 0.9977
57 0.9705 0.7721 0.9285 1.0 0.9897 0.9939 0.9989
58 0.9661 0.7592 0.9243 1.0 0.9878 0.9923 0.9987
59 0.9722 0.7634 0.9008 1.0 0.9894 0.9935 0.9984
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Table A.2: Results comparison of VS with baseline solutions for synthetic BSP
instances.

instance hi random LS (1000) EA VS (0) VS (1000) VS (5000)

0 623085 496133 599991 647532 638609 642318 646228
1 591907 464547 570557 613722 606098 609166 613061
2 622024 494860 597517 645436 638427 640892 644934
3 614297 489664 590570 637515 628021 632045 636232
4 605774 479364 588121 630793 621120 625118 629362
5 602492 476689 577661 626200 616425 619769 624800
6 605176 475014 579584 630293 621538 625504 628834
7 595368 470404 569614 619640 610840 614659 619585
8 606072 478727 583815 632442 625067 628127 632211
9 1207527 949017 1145098 1251046 1235634 1241699 1248012
10 622940 472583 594736 642674 633390 637318 641902
11 640029 502400 612407 661115 652869 656208 660256
12 624506 479144 592690 642355 634573 637819 641384
13 598008 455747 568284 619590 609884 613281 618036
14 583853 449824 557317 601749 592685 596545 600512
15 610285 474840 583454 629107 619891 624370 627726
16 628341 486523 591811 647319 637468 640411 645508
17 613276 456995 572232 632111 624177 627969 630705
18 614587 480386 585317 633344 623636 627495 632435
19 1228219 947433 1142780 1262057 1247776 1252017 1258313
20 654587 515714 625599 674631 666738 670328 673640
21 668724 538354 648524 690202 682355 684810 688498
22 634243 503354 606486 654889 647450 650348 653949
23 625251 509084 600184 646714 639153 642207 646548
24 652202 508248 618652 674641 666684 669808 672949
25 643006 507778 617405 663240 655850 658555 662770
26 640473 492973 606208 663077 655609 658862 663036
27 639894 523538 616532 661233 653545 656636 660614
28 644504 498311 613875 666349 658087 661255 664840
29 1269704 984032 1183745 1308782 1295174 1299162 1306592
30 702182 543992 661515 727829 720454 722920 726466
31 717652 558338 677373 741154 733602 736535 740469
32 655071 502515 615850 676472 668407 671516 675065
33 709386 559450 666847 735717 727983 730407 734152
34 695859 545166 651140 718837 711688 713872 717207
35 704003 535672 658636 726763 718797 722102 725725
36 697515 537328 656205 721527 712519 715417 720029
37 664395 517523 625121 689950 682013 684888 689130
38 707718 547654 663067 730482 722854 725083 728830
39 1388780 1055887 1282788 1432528 1420003 1424038 1429525
40 676712 541117 636506 695387 688273 691004 694809
41 669879 515391 631546 688565 680284 683512 687541
42 665742 516084 627323 685429 678313 680710 683953
43 659170 497894 618718 678164 670097 672490 676547
44 688268 521079 645945 707312 699493 702175 706623
45 680641 527118 639925 699801 692124 695055 699047
46 674399 523294 629827 694692 685766 688811 692925
47 667319 519819 621899 685635 676731 679630 684252
48 662234 519912 621810 681090 673191 676332 680134
49 1346139 1016753 1229040 1380275 1368121 1371572 1377460
50 680834 548719 646702 702504 693458 697160 701009
51 701848 560242 668359 723000 715304 717063 721711
52 696982 543326 661643 719834 710048 714411 718214
53 659819 528350 631161 679954 672232 675675 679187
54 657969 528329 628838 680127 670740 674429 678378
55 685744 543899 649747 710498 702774 705335 708963
56 685289 542391 646144 703743 695509 698357 702143
57 673788 536062 644638 694286 687161 690061 693544
58 682718 536500 653170 706701 698055 701240 705764
59 1360419 1068345 1260600 1399378 1384531 1390261 1397183
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Figure A.3: Results comparison of VS vs. EA on synthetic BSP instances 0 to 14.

144



Figure A.4: Results comparison of VS vs. EA on synthetic BSP instances 15 to
29.
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Figure A.5: Results comparison of VS vs. EA on synthetic BSP instances 30 to
44.

146



Figure A.6: Results comparison of VS vs. EA on synthetic BSP instances 45 to
59.

147



Figure A.7: Results comparison of VS with baseline solutions for synthetic BSP
instances 0 to 14.
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Figure A.8: Results comparison of VS with baseline solutions for synthetic BSP
instances 15 to 29.
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Figure A.9: Results comparison of VS with baseline solutions for synthetic BSP
instances 30 to 44.
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Figure A.10: Results comparison of VS with baseline solutions for synthetic BSP
instances 45 to 59.

151



Figure A.11: Results comparison of VS with baseline solutions for realistic BSP
instances.
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Table A.3: Results comparison of VS with baseline solutions for realistic BSP
instances.

instance real hi random LS (1000) EA VS (0) VS (1000) VS (5000)

0 98467 103502 97260 105439 106085 105580 105949 105971
1 93248 102483 93451 104972 105772 105395 105764 105794
2 98467 103502 96381 105212 105989 105623 105885 105921
3 100442 107105 99662 108590 109642 108292 109483 109574
4 103520 108761 101057 110997 111558 111385 111593 111613
5 100601 106847 100726 108856 109703 109529 109729 109796
6 96848 105960 94423 108158 109293 108143 109220 109386
7 99988 107749 97917 110933 111429 110963 111379 111479
8 96403 105478 96672 108320 109332 108800 109481 109520
9 100442 107105 98928 108762 109592 108573 109459 109544
10 103520 108761 101814 111043 111547 111382 111587 111634
11 100601 106847 100288 108943 109703 109440 109684 109731
12 98507 103925 98816 105617 106620 105684 106612 106679
13 94543 103049 92664 105499 106427 105714 106455 106532
14 98507 103925 96759 105791 106633 106145 106592 106659
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