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Abstract The optimization of algorithm (hyper-)parameters is crucial for achiev-
ing peak performance across a wide range of domains, ranging from deep neural
networks to solvers for hard combinatorial problems. The resulting algorithm con-

figuration (AC) problem has attracted much attention from the machine learning
community. However, the proper evaluation of new AC procedures is hindered
by two key hurdles. First, AC benchmarks are hard to set up. Second and even
more significantly, they are computationally expensive: a single run of an AC
procedure involves many costly runs of the target algorithm whose performance is
to be optimized in a given AC benchmark scenario. One common workaround is to
optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead
of actual algorithms; however, these have different properties than realistic AC
problems. Here, we propose an alternative benchmarking approach that is sim-
ilarly cheap to evaluate but much closer to the original AC problem: replacing
expensive benchmarks by surrogate benchmarks constructed from AC benchmarks.
These surrogate benchmarks approximate the response surface corresponding to
true target algorithm performance using a regression model, and the original and
surrogate benchmark share the same (hyper-)parameter space. In our experiments,
we construct and evaluate surrogate benchmarks for hyperparameter optimization
as well as for AC problems that involve performance optimization of solvers for
hard combinatorial problems, drawing training data from the runs of existing AC
procedures. We show that our surrogate benchmarks capture overall important
characteristics of the AC scenarios, such as high- and low-performing regions, from
which they were derived, while being much easier to use and orders of magnitude
cheaper to evaluate.
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1 Introduction

The performance of many algorithms (notably, both machine learning procedures
and solvers for hard combinatorial problems) depends critically on (hyper-)pa-
rameter settings, which are often difficult or costly to optimize. This observation
has motivated a growing body of research into automatic methods for finding
good settings of such parameters. Recently, sequential model-based Bayesian op-
timization methods have been shown to outperform more traditional methods
for hyperparameter optimization (such as grid search and random search) and to
rival or surpass the results achieved by human domain experts (Snoek et al 2012;
Thornton et al 2013; Bergstra et al 2014; Lang et al 2015).

Hyperparameter optimization (HPO) aims to find a hyperparameter setting θ from
the space of all possible settings Θ of a given learning algorithm that minimizes
expected loss on completely new data (where the expectation is taken over the
data distribution). This is often approximated as the blackbox problem of finding
a setting that optimizes cross-validation error L(θ):

θ∗ ∈ arg min
θ∈Θ

L(θ). (1)

In the more general algorithm configuration (AC) problem, the goal is to optimize
a performance metric m : Θ×Π → R of any type of algorithm (the so-called target

algorithm) across a set of problem instances π ∈ Π, i.e., to find1

θ∗ ∈ arg min
θ∈Θ

1

|Π|
∑
π∈Π

m(θ, π). (2)

The concept of problem instances arises naturally when optimizing the performance
of parameterized solvers for combinatorial problems, such as the propositional
satisfiability problem (SAT), but we also use this concept to model individual
cross-validation folds in hyperparameter optimization (see, e.g., Thornton et al
2013). HPO is thus a special case of AC.

General-purpose AC procedures, such as ParamILS (Hutter et al 2009), GGA

(Ansótegui et al 2009, 2015), irace (López-Ibáñez et al 2016) and SMAC (Hutter et al
2011b) have been shown to substantially improve the performance of state-of-the-
art algorithms for a wide range of combinatorial problems including SAT (Hutter
et al 2007, 2017), answer set programming (Gebser et al 2011; Silverthorn et al
2012), AI planning (Vallati et al 2013) and mixed integer programming (Hutter
et al 2009), and have also been used to find good instantiations of machine learning
frameworks (Thornton et al 2013; Feurer et al 2015a) and good architectures and
hyperparameters for deep neural networks (Domhan et al 2015).

1.1 Obstacles for Research on Algorithm Configuration

One obstacle to further progress in AC is a paucity of reproducible experiments and
empirical studies. The hyperparameter optimization library HPOlib (Eggensperger
et al 2013) and the algorithm configuration library AClib (Hutter et al 2014a)

1 We assume, w.l.o.g., that the given performance metric m is to be minimized. Problems of
maximizing m′ can simply be treated as minimization problems of m = 1−m′.
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represent first steps towards alleviating this problem. Each benchmark in these
libraries consists of a parameterized algorithm and a set of input data to optimize
it on, and all benchmarks offer a unified interface, making it easier to systemati-
cally compare different approaches. However, even with such benchmark libraries
available, it is still challenging to assess the performance of AC procedures in a
principled and reproducible manner, for several reasons:

1. A mundane, but often significant, obstacle is to obtain someone else’s imple-

mentation of a target algorithm to work on one’s own system. This can involve
resolving dependencies, acquiring required software licenses, and obtaining the
appropriate input data (which may be subject to confidentiality issues or IP
restrictions).

2. Some target algorithms require specialized hardware; most notably, general-
purpose graphics processing units (GPGPUs) have become a standard require-
ment for the effective training of modern deep learning architectures (Krizhevsky
et al 2012).

3. Running even one configuration of a target algorithm can require minutes
or hours, and hence evaluating hundreds or even thousands of different algorithm

configurations is often quite expensive, requiring days of wall-clock time on a large
computer cluster. The computational expense of comprehensive experiments
can therefore be prohibitive for research groups lacking access to large-scale
computing infrastructure.

1.2 Contributions

In this work, we show that we can use surrogate models to construct cheap-to-
evaluate surrogate AC benchmarks that offer a practical alternative for AC bench-
marking experiments by replacing expensive evaluations of the true performance
m(θ, π) of a target algorithm configuration θ on a problem instance π with a much
cheaper model prediction m̂(θ, π). These surrogate AC benchmarks are syntac-
tically equivalent to the original AC benchmarks they replace, i.e., sharing the
same hyperparameter spaces, instances, etc. (c.f. the formal definition of AC in
Equation 1).

To construct such surrogate benchmarks, we leverage empirical performance

models (EPMs; Leyton-Brown et al 2009; Hutter et al 2014b)—regression models
that characterize a given algorithm’s performance across problem instances and/or
parameter settings. The construction of such surrogate models is an expensive
offline step,2 but once such a model has been obtained, it can be used repeatedly
as the basis for efficient experiments with new AC procedures. Figures 1 and 2
schematically illustrate the workflow for running an AC procedure on the original
benchmark and the corresponding surrogate benchmark, respectively.

Our surrogate benchmarks can be useful in several different ways, including:

1. They can be used to speed up debugging and unit testing of AC procedures,
since our surrogate benchmarks are syntactically the same as the original ones

2 By far the most expensive part of this offline step is gathering target algorithm performance
data by executing the algorithm with various parameter settings on multiple problem instances.
However, as we describe in more detail in Section 3 this data can be gathered as a by-product
of running algorithm configuration procedures on the algorithm.
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Algorithm Configuration Benchmark

Configuration
Space Θ

Algorithm
Configurator

Target
Algorithm A Instances Π

Call A(θ)

on π ∈ Π
Solves

Return Cost m(θ, π)

Fig. 1 Workflow of algorithm configuration with target algorithm runs

Surrogate Benchmark

Configuration
Space Θ

Algorithm
Configurator

Performance Data
〈θ, π,m(θ, π)〉

Empirical Per-
formance Model
m̂ : Θ ×Π → R

Call A(θ)

on π ∈ Π

Return Predicted Cost m̂(θ, π)

Fig. 2 Workflow of algorithm configuration with surrogate benchmark

(e.g., to test conditional parameters, categorical parameters, and continuous
ones, or to test reasoning across instances). Thus they facilitate the development
and effective use of such algorithms.

2. Since the large computational expense of running AC procedures is typically
dominated by the cost of evaluating target algorithm performance under various
(hyper-)parameter settings, our benchmarks can also substantially reduce the
time required for running an AC procedure, facilitating whitebox testing.

3. Surrogate benchmarks that closely resemble original benchmarks can also
facilitate the evaluation of new features inside an AC procedure, or even be
used for meta-optimization of the parameters of such a procedure. Of course,
such meta-optimization can also be performed without using surrogates, albeit
at great expense (see, e.g., Hutter et al 2009).

This article extends an initial study published at AAAI (Eggensperger et al
2015), which focused only on the special case of HPO. Here, we generalize that
work to the much more complex general AC problem, handling the problems of
optimization across many instances with high-dimensional feature vectors, censored
observations due to prematurely-terminated runs, and randomized algorithms.

1.3 Existing Work on Surrogates

Given the large overhead involved in studying complex benchmarks from real-world
applications, researchers studying HPO have often fallen back on simple synthetic
test functions, such as the Branin function (Dixon and Szegö 1978), to compare
HPO procedures (Snoek et al 2012). While such functions are cheap to evaluate,
they are not representative of realistic HPO problems because they are smooth and
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often have unrealistic shapes. Furthermore, they only involve real-valued parameters
and hence do not incorporate the categorical and conditional hyperparameters
typical of many hyperparameter optimization benchmarks.

In the special case of small, finite hyperparameter spaces, a much better alter-
native is simply to record the performance of every hyperparameter configuration,
thereby speeding up future evaluations via table lookup. Such a table-based surro-
gate can be trivially transported to any new system, without whatever complicating
factors were involved in running the original algorithm (setup, special hardware
requirements, licensing, computational cost, etc.). In fact, several researchers have
already applied this approach to simplify experiments (Birattari et al 2002; Snoek
et al 2012; Bardenet et al 2014; Feurer et al 2015b; Wistuba et al 2015).

Unfortunately, table lookup is limited to small, finite hyperparameter spaces.
Here, we generalize the idea of such surrogates to potentially high-dimensional
spaces that may include real-valued, categorical, and conditional hyperparameters.
As with table lookup, we first evaluate many hyperparameter configurations in an
expensive offline phase. However, we then use the resulting performance data to
train a regression model that approximates future evaluations via model predictions.
As before, we obtain a surrogate of algorithm performance that is cheap to evaluate
and trivially portable. Since these model-based surrogates offer only approximate

representations of performance, it is crucial to investigate the quality of their
predictions, as we do in this work.

We are not the first to propose the use of learned surrogate models that stand in
for computationally complex functions. In the field of meta-learning (Brazdil et al
2008), regression models have been used extensively to predict the performance
of algorithms across various datasets based on dataset features. Similarly, in the
field of algorithm selection (Rice 1976); c.f., Kotthoff (2014), regression models
have been used to predict the performance of algorithms on problem instances
(e.g., a satisfiability formula) to select the most promising one (e.g., Nudelman
et al 2003, Xu et al 2008, Gebser et al 2011). The statistics literature on the design
and analysis of computer experiments (DACE) (Sacks et al 1989; Santner et al
2003; Gorissen et al 2010) uses similar surrogate models to guide a sequential
experimental design strategy, aiming to achieve either an overall strong model
fit or to identify the minimum of a function. Surrogate models are also at the
core of the sequential model-based Bayesian optimization framework (Brochu et al
2010; Hutter et al 2011b; Shahriari et al 2016). While all of these lines of work
incrementally construct surrogate models of a function in order to inform an active
learning criterion that determines new inputs to evaluate, our work differs in its
goal: to obtain surrogate benchmarks rather than to identify good points in the space.
In that vein—as previously mentioned—it is more similar to work on empirical
performance models (Leyton-Brown et al 2009; Hutter et al 2014b).

1.4 Structure of the Article

The remainder of this article is structured as follows. First, we discuss background
on AC in Section 2, paying particular attention to how it generalizes HPO and on
the existing approaches for solving AC we used in our experiments. In Section 3,
we describe how to use EPMs as surrogates to efficiently benchmark new AC
procedures, introducing the use of quantile regression forests (Meinshausen 2006)
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for modelling the performance of randomized algorithms. In Section 4, we apply
our surrogates to application benchmarks from AClib, showing that they model
target algorithm performance well enough to yield surrogate AC benchmarks which
behave qualitatively similarly to the original benchmarks, while allowing up to
1641 times faster benchmarking experiments.

2 Background on Algorithm Configuration

In this section, we provide background information on how AC generalizes HPO
and hence, how this paper addresses challenges that were not addressed by previous
work (Eggensperger et al 2015). Furthermore, we briefly describe the existing
methods for solving AC that we used in our experiments.

2.1 AC as a Generalization of HPO

While we described the AC problem on a high level in Equation 2, more formally
it is defined as follows:

Definition 1 (Algorithm Configuration) An instance of the algorithm configura-

tion problem is a 6-tuple (A,Θ,DΠ , κ,F ,m) where:

– A is a parameterized target algorithm;
– Θ is the parameter configuration space of A;
– DΠ is a distribution over a set of instances Π;
– κ <∞ is a cutoff time at which each run of A will be terminated;
– F : Π → Rd maps each instance to a d-dimensional vector of characteristics

that describe the instance. This is an optional input; if no features are available,
this is modelled by setting d to 0;

– m : Θ×Π → R is a function (e.g., running time) that measures the observed
cost of running A(θ) on an instance π ∈ Π with cutoff time κ.

The goal is to find θ∗ ∈ arg minθ∈ΘEπ∼DΠ (m(θ, π)).

Notably, this definition includes a cutoff time since in practice we cannot run
algorithms for an infinite amount of time, and we need to attribute some (poor)
performance value to runs that time out unsuccessfully. In most AC scenarios (e.g.,
those in the algorithm configuration library, AClib), DΠ is chosen as the uniform
distribution over a representative set of instances from Π.

In practice, we use a set of training instances ΠTrain from DΠ to configure
our algorithm A and a disjoint set test instances ΠTest from DΠ to evaluate the
performance of the configuration finally returned by an AC procedure, also called
final incumbent configuration. Using this training–test split, we can identify over-
tuning effects (Hutter et al 2009), i.e., improvements in performance on ΠTrain

that do not generalize to ΠTest. We note that it is typically too expensive to use
cross-validation to average over multiple training–test splits, because even single
runs of an AC procedure often require multiple CPU days.

This general AC problem generalizes the HPO problem from Equation 1 in
various ways:
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1. Types of target algorithms. While HPO only deals with machine learning
algorithms, AC deals with arbitrary ones, such as SAT solvers (Hutter et al
2017) or configurable software systems (Sarkar et al 2015).

2. Performance metrics. While HPO typically minimizes one of various loss
functions concerning the predictions of a machine learning algorithm, AC
includes more general performance metrics, such as running time, approximation
error, memory requirements, plan length, or latency.

3. Randomized algorithms. While the definition of HPO in Equation 1 concerns
deterministic algorithms, the general AC problem includes randomized algo-
rithms. For example, randomized SAT solvers are known to have running time
distributions that resemble exponential distributions (Hoos and Stützle 2004),
and it is entirely normal that running times with two different pseudo-random
number seeds differ by an order of magnitude.

4. Multiple instances. Equation 2 already shows that the goal in the AC problem
is to minimize the given performance metric on average across instances π from
a distribution DΠ . HPO can also be cast as optimization across cross-validation
folds, in which case these are modelled as instances for AC procedures; these
AC procedures will then evaluate configurations on one fold at a time and only
evaluate additional folds for promising configurations.

5. Prevalence of many categorical & conditional parameters. While the pa-
rameter space in current HPO benchmarks is often fairly low-dimensional and
all-continuous, general AC benchmarks often feature many discrete choices
between algorithm components, as well as conditional parameters that only
apply to some algorithm components. We note, however, that high-dimensional
spaces with categorical parameters and high degrees of conditionality also exist
in HPO, e.g., in the optimization of machine learning frameworks (Thornton
et al 2013; Feurer et al 2015a) or architectural optimization of deep neural
networks (Bergstra et al 2014; Domhan et al 2015).

6. Features. In most AC scenarios, each instance is described by a vector of
features. Examples of such features range from simple problem size measure-
ments to “probing” or “landmarking” features derived from the behaviour of
an algorithm when run on the instance for a bounded amount of time (e.g.,
number of restarts or constraint propagations in the case of SAT). Instance
features are a crucial ingredient in EPMs (Leyton-Brown et al 2009; Hutter
et al 2014b), which, as mentioned earlier, predict the performance m(θ, π) of
a target algorithm configuration θ on a problem instance π. They have been
studied even more extensively in the context of the per-instance algorithm
selection problem (Nudelman et al 2003, 2004; Xu et al 2008; Malitsky et al
2013; Kotthoff 2014; Lindauer et al 2015; Bischl et al 2016), where, given a
portfolio of algorithms P, the goal is to find a mapping s : Π → P. Thus,
feature extractors are available for many problems, including mixed integer
programming (MIP; Leyton-Brown et al 2009; Kadioglu et al 2010; Xu et al
2011; Hutter et al 2014b), propositional satisfiability (SAT; Nudelman et al 2004;
Xu et al 2008; Hutter et al 2014b), answer set programming (ASP; Maratea
et al 2014; Hoos et al 2014), and meta-learning (Gama and Brazdil 1995; Köpf
et al 2000; Bensusan and Kalousis 2001; Guerra et al 2008; Leite et al 2013;
Reif et al 2014; Schilling et al 2015). Recently, Loreggia et al (2016) proposed
the use of deep neural networks to generate instance features automatically,
which can be useful when expert-crafted features are unavailable.
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7. Censored observations. For AC scenarios where the goal is to minimize
running time, it is common practice in AC procedures to terminate poorly-
performing runs early in order to save time. This adaptive capping process yields
performance measurements that only constitute a lower bound to the actual
running time and need to be modelled as such.

2.2 Algorithm Configuration Procedures

While the HPO community has focused quite heavily on the Bayesian optimization
framework (Brochu et al 2010; Shahriari et al 2016), widely studied approaches
for AC are more diverse and include ParamILS , which performs iterated local
search (Hutter et al 2009), GGA, which leverages genetic algorithms (Ansótegui
et al 2009, 2015), irace, a generalization of racing methods (López-Ibáñez et al
2011; Lang et al 2015), OpenTuner, an approach which appeals to bandit solvers on
top of a set of search heuristics (Ansel et al 2014), SMAC , an approach based on
Bayesian optimization (Hutter et al 2011b), and ROAR, the specialization of this
method to random sampling without a model. We experimented with all of these
methods except GGA and OpenTuner , the former because in its current version
it is not fully compatible with the algorithm configuration scenarios used in our
experiments, and the latter because it does not consider problem instances and is
therefore not efficiently applicable to our algorithm configuration scenarios, which
contain many instances.

We now give more complete descriptions of the state-of-the-art AC procedures
used in our experiments: ParamILS , irace, ROAR and SMAC .

ParamILS (Hutter et al 2009) combines iterated local search (i.e., hill climbing in
a discrete neighborhood with perturbation steps and restarts) with methods for
efficiently comparing pairs of configurations. Due to its local search approach,
ParamILS usually compares pairs of configurations that differ in only one param-
eter value, but occasionally jumps to completely different configurations. When
comparing a pair of configurations, assessing performance on all instances is often
far too expensive (e.g., requiring solving hundreds of SAT problems). Thus, the
FocusedILS variant of ParamILS we consider here uses two methods to quickly
decide which of two configurations is better. First, it employs an intensification

mechanism to decide how many instances to run for each configuration (starting
with a single run and adding runs only for high-performing configurations). Second,
it incorporates adaptive capping—a technique based on the idea that, when compar-
ing configurations θ1 and θ2 with respect to an instance set Πsub ⊂ Π, evaluation
of θ2 can be terminated prematurely when θ2’s aggregated performance on Πsub is
provably worse than that of θ1.

irace (López-Ibáñez et al 2016) is based on the F-race procedure (Birattari et al
2002), which aims to quickly decide which of a sampled set of configurations performs
significantly best. After an initial race among uniformly sampled configurations,
irace adapts its sampling distribution according to these results, aiming to focus
on promising areas of the configuration space.
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ROAR (Hutter et al 2011b) samples configurations at random and uses an intensi-
fication and adaptive capping scheme similar to that of ParamILS to determine
whether the sampled configuration should be preferred to the current incumbent.
As shown by Hutter et al (2011b), despite its simplicity, ROAR performs quite well
on some algorithm configuration scenarios.

SMAC (Hutter et al 2011b) extends Bayesian optimization to handle the more
general AC problem. More specifically, it uses previously observed 〈θ, π,m(θ, π)〉
pairs to learn an EPM to model pm̂(m | θ, π). This EPM is used in a sequential
optimization process as follows. After an initialization phase, SMAC iterates over
the following three steps: (1) use the performance measurements observed so far to
fit a marginal random forest model f̂(θ) = Eπ∼Πtrain [m̂(θ, π)]; (2) use f̂ to select
promising configurations Θnext ⊂ Θ to evaluate next, trading off exploration in
new parts of the configuration space and exploitation in parts of the space known
to perform well by blending optimization of expected improvement with uniform
random sampling; and (3) run the configurations in Θnext on one or more instances
and compare their performance to the best configuration observed so far. SMAC

also uses intensification and adaptive capping. However, since adaptive capping
leads to right-censored data (i.e., we stop a target algorithm run before reaching the
running time cutoff because we already know that it will perform worse than our
current incumbent), this data is imputed before being passed to the EPM (Schmee
and Hahn 1979; Hutter et al 2011a).

3 Surrogates of General AC Benchmarks

In this section, we show how to construct surrogates of general AC benchmarks.
In contrast to our earlier work on surrogate benchmarks of the special case of
HPO (Eggensperger et al 2015), here we need to take into account the many ways
in which AC is more complex than HPO (see Section 2.1). In particular, we describe
the choices we made to deal with multiple instances and high-dimensional feature
spaces; high-dimensional and partially categorical parameter spaces; censored
observations; different performance metrics (in particular running time); and
randomized algorithms.

3.1 General Setup

To construct the surrogate for an AC benchmark X, we train an EPM m̂ on
performance data previously gathered on benchmark X (see Section 3.2). The
surrogate benchmark X ′m̂ based on EPM m̂ is then structurally identical to the
benchmark X in all aspects except that it uses predictions instead of measurements
of the true performance; in particular, the surrogate’s configuration space (including
all parameter types and domains) and configuration budget are identical to X.
Importantly, the wall clock time to run an AC procedure on X ′m̂ can be much
lower than that required on X, since expensive evaluations in X can be replaced
by cheap model evaluations in X ′m̂.

Our ultimate aim is to ensure that AC procedures perform similarly on the sur-

rogate benchmark as on the original benchmark. Since effective AC procedures spend
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most of their time in high-performance regions of the configuration space, and
since relative differences between the performance of configurations in such high-
performance regions tend to impact which configuration will ultimately be returned,
accuracy in high-performance regions of the space is more important than in regions
where performance is poor. Training data should therefore be sampled primarily in
high-performance regions. Our preferred way for doing this is to collect performance
data primarily via runs of existing AC procedures. As an additional advantage
of this strategy, we can obtain this costly performance data as a by-product of
executing AC procedures on the original benchmark.

In addition to gathering data from high-performing regions of the space, it is
also important to cover the entire space, including potential low-performing regions.
To get samples that are neither biased towards good nor bad configurations, we
also included performance data gathered by random search. (Alternatively, one
could use grid search, which can also cover the entire space. We did not adopt this
approach, because it cannot deal effectively with large parameter spaces.)

1. Inactive parameters were replaced by their default value, or if no default value
was specified, by the midpoint of their range of values;3

2. Since our EPMs handle categorical variables natively (see Section 3.3), we do not
need to encode those. For EPMs that cannot handle categorical variables (e.g.,
a Gaussian process with a Matérn kernel), we would apply a one-hot-encoding4

to the categorical parameter values;
3. We observed that for most algorithms there were parameter combinations that

led to crashes (Hutter et al 2010; Manthey and Lindauer 2016). We removed
all algorithm runs that were neither successful runs (i.e., returning a correct
solution within the time budget) nor timeouts, since our models cannot classify
target algorithm runs into successful and failed runs.5

3.2 What Kind of Data to Collect Regarding Instances?

EPMs for general AC need to predict well in both the space of parameter con-
figurations and problem instances (in contrast to the special case of HPO that
focuses on the configuration space), opening up another design dimension for
gathering training data: which problem instances to run on in order to gather
data for our model? Algorithm configuration scenarios typically come with fixed
sets of training and test instances, ΠTrain and ΠTest. In typical applications of
EPMs, we only use data from ΠTrain to build our model and use ΠTest to study its
generalization performance in the instance space. If our objective, however, is only
to construct surrogate benchmarks that resemble the original benchmarks, then it
is never necessary to generalize beyond the instances in the fixed sets ΠTrain and

3 There exist other imputation strategies for missing values (e.g., mean, median, most
frequent). In preliminary experiments, we also tried to impute inactive parameters with values
outside of their value ranges, but this made no difference in the accuracy of our trained RF-based
EPMs.

4 One-hot-encoding encodes a categorical variable with k possible values by introducing k
binary variables and setting the one of them to 1 that corresponds to the original variable’s
value.

5 An alternative to removing the crashed runs would be to model them explicitly as unknown
constraints (Gelbart et al 2014).



Efficient Benchmarking via Model-Based Surrogates 11

ΠTest; to see this, recall that a table-based surrogate is the perfect solution for
small configuration spaces, despite the fact that it obviously would not generalize.
Restricting the data for our EPM to instances from ΠTrain is therefore an option,
but we can expect better performance if we build our model based on instances
from both ΠTrain and ΠTest. In order to assess how the choice of instances used by
the EPM affects our surrogate benchmark, we studied two different setups:

I AC and random runs on ΠTrain. This option only collects data for the EPM
on ΠTrain and relies on the EPM to generalize to ΠTest. Specifically, we ran n

independent AC procedures runs on ΠTrain (in our experiments, n was 10 for
each AC procedure) and also evaluated k runs of randomly sampled 〈θ, π〉 pairs
with configurations θ ∈ Θ and instances π ∈ ΠTrain (in our experiments, k was
10 000).

II Add incumbents on ΠTest. This option includes all the runs from Setting
I, but additionally uses some limited data from instances ΠTest. Namely, it
also evaluates the performance of the AC procedures’ incumbents (i.e., their
best parameter configurations over time) on ΠTest. This is regularly done for
evaluating the performance of AC procedures over time and thus comes at no
extra cost for obtaining data for the EPM.

We also tried more expensive setups, such as configuration on ΠTrain ∪ΠTest,
to achieve better coverage of evaluated configurations θ ∈ Θ on ΠTest and not
only incumbent configurations with good performance. Preliminary experiments
indicated that such more expensive setups did not improve the accuracy of our
surrogate benchmarks in comparison to the results for Setting II shown in Section 4.

3.3 Choice of Regression Models for Typical AC Parameter Spaces

In previous work, Hutter et al (2014b) and Eggensperger et al (2015) considered
several common regression algorithms for predicting algorithm performance: ran-
dom forests (RFs; Breimann 2001) and Gaussian processes (GPs; Rasmussen and
Williams 2006), gradient boosting, support vector regression, k-nearest-neighbours,
linear regression, and ridge regression. Overall, the conclusion of those experiments
was that RFs and GPs outperform the other methods for this task. In particu-
lar, GPs performed best for few continuous parameters (≤ 10) and few training
data points (≤ 20 000); and RFs performed best for many training samples or
for parameter spaces that are large and/or include categorical and continuous
parameters.

Since our focus here is on general AC problems that typically involve target
algorithms with more than 10 categorical and continuous parameters (see Section 4),
we limit ourself to RFs in the following. We used our own RF implementation since
it natively handles categorical variables. Somewhat surprisingly, in preliminary
experiments, we observed that, in our application, the generalization performance
of RFs was sensitive to their hyperparameter values. Therefore, we optimized
these RF hyperparameters by using SMAC across four representative datasets from
algorithm configuration (with 5000 subsampled data points and at most 400 function
evaluations); the resulting hyperparameter configuration is shown in Table 1. Our
RF implementation is publicly available as an open-source project in C++ with a
Python interface at https://bitbucket.org/aadfreiburg/random_forest_run.

https://bitbucket.org/aadfreiburg/random_forest_run
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Hyperparameter Ranges Optimized Setting

bootstrapping {True,False} False
frac points [0.001, 1] 0.8
max nodes [10, 100 000] 50 000
max depth [20, 100] 26
min samples in leaf [1, 20] 1
min samples to split [2, 20] 5
frac feats [0.001, 1] 0.28
num trees [10, 50] 48

Table 1 Overview of the hyperparameter ranges used to optimize the RMSE of the random
forest and the optimized hyperparameter configuration.

3.4 Handling Widely-Varying Running Times

In AC, a commonly used performance metric is algorithm running time (which is to
be minimized). The distribution of running times can strongly vary between different
classes of algorithms. In particular algorithms for hard combinatorial problems
(e.g, SAT, MIP, ASP) have widely-varying running times across instances. These
hardness distributions can often be well approximated by log-normal distributions
or Weibull distributions (Schneider and Hoos 2012). For this reason, we predict
log-running times log(t) instead of running times. In this log-space, the noise
is distributed roughly according to a Gaussian, which is the typical standard
assumption in most machine learning algorithms (including RFs minimizing the
sum of squared errors).

3.5 Imputation of Right-Censored Data

Many AC procedures use an adaptive capping mechanism for running time bench-
marks to limit algorithm runs with a running time cutoff κ comparable to the
running time of the best seen configuration (see Section 2.2). This results in so-
called right-censored data points for which we only know a lower bound m′ on the
true performance: m′(θ, π) ≤ m(θ, π). AC procedures tend to produce many such
right-censored data points (in our experiments, 11%− 38%), and simply discarding
those can introduce sizeable bias. We therefore prefer to impute the corresponding
running times; as shown by Hutter et al (2011a), doing so can improve the predictive
accuracy of SMAC ’s EPMs.

Following Schmee and Hahn (1979) and Hutter et al (2011a), we use Algorithm 1,
which is not specific to RFs, to impute right-censored running time data. We use
all uncensored data points, along with their true performance, and all censored
data as input. First, we train the EPM on all uncensored data (Line 1). We then
compute, for each censored data point, the mean µ and variance σ2 of the predictive

distribution. Since we know the lower bound y
(i)
c on the data point’s true running

time, we use a truncated normal distribution N (µ, σ2)≥y
(i)
c

to update our belief of

the true value of y(i) (Line 4 and 5). Next, we refit our EPM using the uncensored
data and the newly imputed censored data (Line 6). We then iterate this process
until the algorithm converges or until 10 iterations have been performed.
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Algorithm 1: Imputation of censored data

Input : Uncensored data Xu,yu, Censored data Xc,yc

Output : Imputed values yimp for Xc

1 EPM.fit(Xu,yu);
2 while not converged do
3 foreach censored sample i do

4 µ, σ2 := EPM.predict(X
(i)
c );

5 y
(i)
imp := mean of N (µ, σ2)

≥y
(i)
c

;

6 EPM.fit(Xu||Xc,yu||yimp);

7 return yimp

3.6 Handling Randomized Algorithms

Many algorithms are randomized (e.g., RFs or stochastic gradient descent in ma-
chine learning, or stochastic local search solvers in SAT solving). In order to properly
reflect this in our surrogate benchmarks, we should take this randomization into ac-
count in our predictions. Earlier work on surrogate benchmarks (Eggensperger et al
2015) only considered deterministic algorithms and only predicted means; when
these methods are applied to randomized algorithms, the result is a deterministic
surrogate that can differ qualitatively from the original benchmark.

Instead, we need to predict the entire distribution P (Y |X) and, when asked
to output the performance of a single algorithm run, draw a sample from it.
Unfortunately, we do not know in advance the closed form performance distribution
(running time distributions have only been studied in some special cases, such as
for certain stochastic local search solvers (Hoos and Stützle 2004)—if we knew
the running time distributions, we could exploit it in the construction of our
EPM (Arbelaez et al 2016)). Instead, to obtain a general solution, we propose to
use quantile regression (Koenker 2005; Takeuchi et al 2006). Following Meinshausen
(2006), the α-quantile Qα(x) is defined by

Qα(x) = inf{y : P (Y ≤ y|X = x) ≥ α}. (3)

Since we already know that random forests are well suited as EPMs (Hutter
et al 2014b; Eggensperger et al 2015), we use a quantile regression forest (QRF;
Meinshausen 2006) for the quantile regression. The QRF is very similar to a RF of
regression trees: instead of returning the mean over all labels in the selected leafs
of the trees, it returns a given quantile of these labels, Qα(x). In our surrogate
benchmarks, when asked to predict a randomized algorithm’s performance on
x = 〈θ, π〉 with seed s, we use s to randomly sample a quantile α ∈ [0, 1] and simply
return Qα(θ, π). For a deterministic algorithm, we return the median Q0.5(θ, π).

4 Experiments for Algorithm Configuration

Next, we report experimental results for surrogates based on QRFs in the general
AC setting. All experiments were performed on Xeon E5-2650 v2 CPUs with 20MB
Cache and 64GB RAM running Ubuntu 14.04 LTS.
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In the following, we first describe the benchmarks we used to evaluate our
approach. Then, we report results for the predictive quality of EPMs based on
QRFs. Finally, we show that these EPMs are useful as surrogate benchmarks, based
on an evaluation of the performance of ParamILS (Hutter et al 2009), ROAR and
SMAC (Hutter et al 2011b), and irace (López-Ibáñez et al 2016) on our surrogate
benchmarks and the established AC benchmarks from which our surrogates were
derived. For all experiments, we preprocessed the data as described in Section 3.1,
imputed right-censored data as described in Algorithm 1, and then trained a QRF
as described in Section 3.6, with the logarithm of the penalized average running
time (PAR10) serving as the response variable for running time optimization
benchmarks.6

4.1 Algorithm Configuration Benchmarks from AClib

For our experiments, we drew our benchmarks from the algorithm configuration
library, AClib (Hutter et al 2014a, see www.aclib.net). Our first set of bench-
marks involves running time minimization; these consist of different instance sets
taken from each of four widely studied combinatorial problems (mixed-integer
programming (MIP), propositional satisfiability (SAT), AI planning, and answer
set programming (ASP)) and one or more different solvers for each of these prob-
lems (CPLEX 7, Lingeling by Biere 2014, ProbSAT by Balint and Schöning 2012,
Minisat-HACK-999ED by Oh 2014, Clasp by Gebser et al 2012 and lpg by Gerevini
and Serina 2002). We used the training-test splits defined in AClib. Key characteris-
tics of these benchmarks are provided in Table 2, and the underlying AC scenarios
are described in detail in Appendix A.

Since AC is a generalization of HPO, we also generated two surrogate HPO
benchmarks, which allows us to situate our new results in the context of previous
work (Eggensperger et al 2015). In these benchmarks, we optimize for misclas-
sification rate (1 − accuracy) on 10-fold cross-validation on training data (90%
of the data) and then validate the model trained on all of the training data
with the final parameter configurations on held-out test data (10% of the data).
We consider each cross-validation split to be one instance. We use pseudo in-
stance features in these benchmarks by simply assigning the i-th split to feature
value i and the test data with feature value k + 1 (i.e., 11). Inspired by the au-
tomated machine learning tool auto-sklearn (Feurer et al 2015a) and available
at https://bitbucket.org/mlindauer/aclib2, we configured a SVM (Cortes and
Vapnik 1995) on MNIST8 and xgboost (Chen and Guestrin 2016) on covertype9 (Col-
lobert et al 2002).

We ran SMAC , ROAR, and ParamILS ten times for each running time optimiza-
tion scenario in order to collect performance data in regions that are likely to be
explored by one or more AC procedures. For the HPO benchmarks, we additionally

6 PAR10 averages all running times, counting each capped run as having taken 10 times the
running time cutoff κ (Hutter et al 2009).

7 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
8 http://www.openml.org/d/554
9 http://www.openml.org/d/293

www.aclib.net
https://bitbucket.org/mlindauer/aclib2
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.openml.org/d/554
http://www.openml.org/d/293
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#parameter #instance
total

#instances conf cutoff
ca./int./co.(cond.) features train/test budget κ

CPLEX-Regions 63/7/4 (4) 148 222 1 000/1 000 2 10000
CPLEX-RCW2 63/7/4 (4) 148 222 495/495 5 10000

Clasp-Rooks 38/30/7 (55) 119 194 484/351 2 300
Lingeling-CF 137/185/0 (0) 119 441 299/302 2 300
ProbSAT-7SAT 5/1/3 (5) 138 128 250/250 2 300
MiniSATHack-K3 10/0/0 (0) 119 129 300/250 2 300

LPG-Satellite 48/5/14 (22) 305 372 2 000/2 000 2 300
LPG-Zenotravel 48/5/14 (22) 305 372 2 000/2 000 2 300

Clasp-WS 61/30/7 (63) 38 136 240/240 4 900

svm-mnist 2/1/3 (2) 1 7 10/1 500 1000
xgboost-covertype 0/2/9 (0) 1 12 10/1 500 1000

Table 2 Properties of our AC benchmarks. We report the size of the configuration spaces Θ for
the different kinds of parameters (i.e., categorical, integer-valued, continuous and conditionals),
the number of instances features, the total number of input features for our EPMs (#parameters
+ #features), the number of training and test instances, the configuration budget for each AC
procedure run (in days for combinatorial problems and number of function evaluations for HPO
benchmarks) and the running time cutoff for each target algorithm run (in seconds).

I II
#data
1000

%cen %to #data
1000

%cen %to #conf
1000

CPLEX-Regions 656 27 0 825 22 <1 198
CPLEX-RCW2 166 38 2 217 29 1 80

Clasp-Rooks 245 14 3 310 11 5 63
Lingeling-CF 149 21 9 176 17 9 66
ProbSAT 199 17 3 245 14 3 28
MiniSATHack-K3 177 16 2 218 13 2 37

LPG-Satellite 565 27 <1 969 16 <1 252
LPG-Zenotravel 685 26 <1 >1K 17 1 204

Clasp-WS 172 17 4 207 14 4 56

svm-mnist 29 - 53 29 - 52 19
xgboost-covertype 30 - 4 30 - 2 22

Table 3 Properties of our datasets. We list the rounded number/1000 of collected 〈θ, π〉 pairs
of 10 runs of each AC procedure, the ratio of right-censored runs (#cen) and timeouts (#to)
for each of our settings: I, II. We also report the total number/1000 of different configurations
(#conf).

ran irace ten times.10 We report properties of the resulting datasets in Table 3.
As described in Section 3.2, we used two different setups to collect training data
for our EPMs. Due to memory limitations on our machines, we used at most 1
million data points to train our EPMs. If we collected more than 1 million points,
we subsampled them to 1 million.

10 Since irace does not implement an adaptive capping mechanism, its authors recommend
that it not be used for runtime minimization.
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4.2 Evaluation of Raw Model Performance

We now report the predictive performance of QRFs as EPMs. Hutter et al (2014b)
performed a similar analysis using random forests as EPMs. However, their training
data differed substantially from ours. In particular, they uniformly sampled sets
of target algorithm configurations and problem instances, and then gathered a
performance observation for every entry in the Cartesian product of these sets. In
contrast, we use AC procedures to bias training data towards high-performance
regions of the given configuration space; this results in a larger number of configura-
tions in our training data, many of which are evaluated only on few instances. The
question of whether effective EPMs can be trained using such sparse and biased
data has not previously been studied and is an essential requirement for inclusion
in our surrogate benchmarks.

In Table 4, we show the predictive accuracy of our trained EPMs based on root
mean squared error (RMSE; in log space for running time benchmarks) to estimate
how far our predictions are from true performance values, and Spearman’s rank
correlation coefficient (CC; Spearman 1904) to assess whether we can accurately
rank different configurations based on predicted performance values. The latter
metric is particularly useful in the context of surrogate benchmarks, because an
AC procedure can make correct decisions as long as the ranking of configurations
is correct, i.e., the EPM predicts poorly performing configurations to be bad and
strong configurations to be good. To obtain an unbiased estimate of generalization
performance, we used a leave-one-run-out validation splitting scheme: in each split,
we used all but one run of each AC procedure as training data and evaluated the
EPM trained on this data on the remaining runs. All AC procedures are randomized,
and each AC procedure run is independently initialized with a different random
seed. Therefore, all data points evaluated by a single AC run are independent of
the points of a different AC run, even though the two runs may contain identical
data points.

Table 4 shows our results on held out data, specifically all data collected
while configuring the target algorithm on ΠTrain as well as on all data collected
during the validation of the incumbent configurations on ΠTest. As expected, the
predictive performance of our EPM on ΠTrain is quite similar between Setting I
and II. However on ΠTest, Setting II performed significantly better than Setting I
across our benchmarks (p-values of 0.0021 on RMSE and 0.0067 on CC based on a
one-sided, non-parametric permutation test, cf. Hoos 2017). Overall, our EPMs
yielded rather accurate target algorithm performance predictions, and achieved
high overall correlation (CC ≥ 0.75) in 9 out of 11 benchmarks wrt ΠTrain and
in all benchmarks wrt ΠTest using Setting II. The RMSE on the running time
benchmarks was substantially smaller than 1.0, i.e., the predictions are less than
one order of magnitude off on average. Considering the HPO benchmarks, our
models were more accurate for svm-mnist than they were for xgboost-covertype.
This difference was driven by timeouts (counted using the maximal error value
of 1). For svm-mnist , these timeouts were easier to predict (mostly driven by a
small number of parameters); in contrast, a potential timeout can depend on more
complex interactions of parameters in the case of xgboost-covertype. The predictions
for non-timeout runs for xgboost-covertype were roughly as good as for svm-mnist.
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RMSE CC
Configuration Validation Configuration Validation

I II I II I II I II

CPLEX-Regions 0.2 0.19 0.33 0.2 0.92 0.92 0.67 0.9
CPLEX-RCW2 0.12 0.12 0.08 0.08 0.98 0.98 0.99 0.99

Clasp-Rooks 0.35 0.35 0.49 0.42 0.98 0.98 0.98 0.98
Lingeling-CF 0.35 0.35 0.72 0.31 0.86 0.86 0.7 0.93
ProbSAT-7SAT 0.6 0.6 0.82 0.54 0.69 0.69 0.36 0.78
MiniSATHack-K3 0.27 0.27 0.48 0.24 0.96 0.96 0.89 0.97

LPG-Satellite 0.1 0.1 0.14 0.13 0.8 0.8 0.92 0.92
LPG-Zenotravel 0.27 0.29 0.38 0.39 0.7 0.69 0.78 0.77

Clasp-WS 0.31 0.31 0.64 0.42 0.95 0.95 0.85 0.95

svm-mnist 0.06 0.06 0.06 0.02 0.99 0.99 0.7 0.75
xgboost-covertype 0.25 0.26 0.17 0.14 0.87 0.85 0.85 0.85

Table 4 Leave-one-run-out model performance. We report mean root mean squared error
(RMSE) and Spearman’s rank correlation coefficient (CC) of log PAR10 running times (for AC
scenarios) and loss (for HPO scenarios) across ten runs for which the EPM was trained using
data from setting I or II (see Section 4.1). For each run, we trained an EPM on all but one
configuration run for each considered AC procedure and report average results across left-out
runs. Using the QRF, we predicted the median. We report results on all data collected during
configuring the target algorithm on πTrain and the data collected during the validation of the
incumbent configurations on πTest.

Since Setting II performed consistently better than Setting I, in the following we
consider only Setting II. 11

4.3 Evaluation of Surrogates as Benchmarks for Algorithm Configuration

We now turn to the most important experimental question: how well our QRF-based
EPMs work as surrogate benchmarks for algorithm configuration procedures. For
these experiments, we trained and saved a QRF model on the imputed data from
our Setting II (described above). To evaluate these EPMs as AC benchmarks, we re-
ran our configuration experiments, now obtaining running time measurements from
an EPM (running as a background process) rather than the real target algorithm.
Doing so reduced the average CPU time required for evaluating a configuration on
a single instance from 27.29± 100.26 (µ± σ) seconds to 0.23± 0.13 seconds.

We also considered leave-one-configurator-out (LOCO) evaluations, training each
EPM on data gathered by all but one AC procedure, and then running the remaining

11 To study whether it is necessary for our model to distinguish different instances, we
also considered another baseline, inspired by a metric used by Soares and Brazdil 2004: We
computed the rank correlation between the true running times and the mean running times per
configuration across instances (aka mean regressor). A low correlation coefficient indicates that
the instances differ in hardness or that the rank of configurations changes between instances.
Indeed, for most of our benchmarks we obtained a low correlation coefficient CC ≤ 0.35,
indicating that it is necessary for the model to consider instances to obtain accurate predictions.
For svm-mnist , xgboost-covertype, LPG-Satellite, and LPG-Zenotravel , we obtained CC ≥ 0.79
for data points used during validation, showing that the instances in these benchmarks are
rather similar. (We note that these numbers are based on observed runs and not for predicting
performance on unseen instances or configurations.)
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AC procedures on this surrogate benchmark to simulate benchmarking a new AC
procedure.

When used in the context of AC benchmarks, the absolute quality of running
time predictions is less important than the ranking of the AC procedures. Therefore
we study performance as a function of time in Figure 3 to visually compare the be-
haviour of different AC procedures on the original and surrogate-base benchmarks.
We observe that the relative rankings between AC procedures were well preserved
for surrogates trained on all data: SMAC was correctly predicted to outperform
ROAR in all AC scenarios and at almost all time steps. ParamILS ’s performance
was predicted slightly less well, but ranks were still preserved well across scenarios
and time steps. Also, the surrogate-based benchmarks captured overtuning effects
as present in LPG-Zenotravel and CPLEX-RCW2 . For the machine learning bench-
marks, we obtained almost perfect surrogate benchmarks, with irace and ParamILS

performing similarly, although ParamILS having a slightly higher inter-quartile
ratio than on the original benchmark.

In the LOCO setting (Figure 3, right column), the relative performance of
SMAC and ROAR was still predicted correctly throughout except for the LPG-

Zenotravel benchmark, where SMAC and ROAR did not improve as much as on the
original benchmark. ParamILS , again, was predicted slightly worse, but its relative
ranks were still predicted correctly, with two exceptions: On the LOCO surrogate
of benchmark CPLEX-RCW2 , ParamILS performed worse than on the original
benchmark (and could not find a configuration better than the default), and on
the LOCO surrogate of benchmark Clasp-WS , ParamILS performed better than on
the original benchmark. We believe that this is due to the substantial differences
in search strategies between ParamILS and the other AC procedures, leading
to qualitatively different sets of performance data and hence EPMs; surrogate
benchmarks constructed based on data from global search algorithms intuitively
capture areas of weak/strong performance well, but do not necessarily capture fine
local variation and may thus (as discussed above) not work as well for gradient-
following AC procedures.

To also provide a quantitative evaluation of how closely our surrogate bench-
marks resemble the original benchmarks, we used an error metric based on the idea
that a surrogate benchmark should preserve the outcomes of pairwise comparisons
of AC procedures obtained on the underlying original benchmarks, across different
overall running time budgets. To deal with performance variability due to random-
ization in target algorithm and AC procedure runs, we applied statistical tests to
determine whether one AC procedure performed significantly better than another.
For each running time budget (number of target algorithm or surrogate evaluations,
resp.) starting from κ (or 2), we used a Kruskal-Wallis-Test and a pairwise post-hoc
Wilcoxon rank-sum test with Bonferroni’s multiple testing correction (α = 0.05).
Table 5 shows how our metric penalizes differences in the outcomes of this statistical
test between the original and the surrogate versions of a benchmark. This metric
was inspired by Leite and Brazdil (2010), but we additionally penalized the case in
which true performance values do not differ significantly while our surrogate-based
predictions do. To obtain our overall error values, we averaged across the values of
this metric for each pair of AC procedures in our comparison and then averaged
the error values thus obtained over the different time budgets considered. We note
that this metric provides a quantitative measure of the similarity of the qualitative
trajectory diagrams shown in Figure 3.
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Original Benchmark QRF Surrogate Benchmark QRF Surrogate Benchmark
All Data/Setting II LOCO/Setting II

CPLEX-RCW2

Clasp-Rooks

LPG-Zenotravel

Clasp-WS

svm-mnist

Fig. 3 Best performance found by different AC procedures over time. We plot median and
quartile of best performance across 10 runs of each AC procedure over time (for svm-mnist
we use number of function evaluations) on the original benchmark (left) and on QRF-based
surrogate benchmarks trained either on data from all AC procedures (middle) or leave-
one-configurator-out data (right).
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original \ surrogate better equal worse

better 0 0.5 1
equal 0.5 0 0.5
worse 1 0.5 0

Table 5 Overview of our error metric quantifying the degree to which using surrogates in
performance comparisons between two given configurators yields results statistically significant
from those obtained based on the underlying original benchmarks.

In Table 6, we report this metric for both surrogates based on all data and for
the LOCO setting. All our surrogate benchmarks achieved an error lower than
0.5, which indicates that, on average, using our surrogates produces behaviour
qualitatively similar to that observed for the underlying target algorithms. In
most LOCO experiments, we observed slightly higher error values (but still below
0.5), because our EPMs have never seen data from the AC procedure that was
run on the respective surrogate benchmark. On the ProbSAT scenario, the AC
procedures running on surrogates show qualitatively similar behaviour as on the
original benchmark and achieved an error of 0, although the EPMs were relatively
weak (comparatively high RMSE and low CC; see Table 4). This occurred because
ProbSAT only has a few important parameters, which all AC procedures identified
on the original and surrogate benchmarks. For CPLEX-Regions, Table 6 reports
the highest difference between the error on all data and the LOCO setting. In
our experiments we observed that for this benchmark, SMAC performed merely
en par with ROAR in the LOCO setting, whereas it performed substantially
better on the original benchmark. This resulted in a high value of our metric.
A similar phenomenon was observed on xgboost-covertype, where ParamILS found
a significantly better-performing configuration earlier and therefore constantly
added to the error. Overall, our results indicate that the relative performance of
AC procedures on surrogate-based benchmarks largely resembles that observed on
benchmarks involving much costlier target algorithm runs, but that the resemblance
is higher when our surrogates are trained based on all available data.

In Table 6, we also report average speedups gained per target algorithm run.
Our surrogate benchmarks allow dramatic speedups in experimentation, cutting
down the time required for algorithm configuration by a factor of over 1000 for
the most expensive AC benchmarks. This will substantially ease the development
of AC procedures by facilitating unit testing, debugging, and whitebox testing.
Furthermore, the behaviour of AC procedures on standard benchmarks involving
actual target algorithm runs is captured closely enough by our surrogate-based
benchmarks that it makes sense to use the latter in comparative performance
evaluations of AC procedures.

5 Conclusion

We presented a novel approach for constructing model-based surrogate benchmarks
for the general problem of AC—subsuming HPO. Our surrogate benchmarks replace
expensive evaluations of algorithm configurations by cheap performance predictions
based on EPMs with speedups in excess of up to four orders of magnitude. Our
efficient surrogate benchmarks can (i) substantially speed up debugging and unit
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Scenario All Data LOCO

CPLEX-Regions 0.17 0.47
CPLEX-RCW2 0.08 0.25

Clasp-Rooks 0.07 0.05
Lingeling-CF 0.1 0.12
ProbSAT-7SAT 0 0.17
MiniSATHack-K3 0.02 0

LPG-Satellite 0 0.05
LPG-Zenotravel 0.1 0.12

Clasp-WS 0.07 0.15

svm-mnist 0.01 0.05
xgboost-covertype 0.18 0.21

Mean Speed
Running Time Up

7.3 36
82.1 497

21.3 128
36 199
26.5 159
30.1 183

8.21 34
6.79 22

61.4 383

658 1641
566 1434

Table 6 Error of our surrogate-based benchmarks and speedups provided. We report the
weighted average difference between pairs of AC procedures averaged over time (left) and the
mean running time (in CPU seconds) across all evaluated real target algorithm runs with the
speedup gained when using surrogate benchmarks (right). One prediction took on average
0.23± 0.13 seconds.

testing of AC procedures, (ii) facilitate white-box testing, and (iii) provide a basis
for assessing and comparing AC procedure performance.

To construct EPMs for using them as surrogates in AC benchmarks, we proposed
to use AC procedures to generate training data for our EPM to focus on the more
relevant high-performance regions of the parameter configuration space. We further
addressed challenges of AC by studying different ways to collect data on training
and test instances, imputation of right-censored data and predicting performance
of randomized algorithms; latter by introducing EPMs based on quantile regression
forests.

In comprehensive experiments with benchmarks from AClib, we showed that
our surrogate benchmarks are well able to stand in for AC benchmarks. An issue
arises from large amounts of target algorithm performance data; for some of our AC
benchmarks, we had over 1 million data points available, which we subsequently had
to subsample to avoid memory issues in the construction of EPMs; however, better
solutions to this problem can likely be devised. Since deep neural networks have
recently shown impressive results for big data sets and natively support training in
batches, we plan to study scalable Bayesian neural networks (Neal 1995; Blundell
et al 2015; Snoek et al 2015; Springenberg et al 2016) to predict the performance
of randomized algorithms.
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A Benchmark Descriptions

CPLEX-Regions is a MIP benchmark based on the well-known IBM ILOG CPLEX solver,
applied to MIP-encoded instances of the combinatorial auction winner determination
problem (Leyton-Brown et al 2000). The MIP instance features used in this scenario include
static (Leyton-Brown et al 2009; Kadioglu et al 2010; Hutter et al 2014b) and probing
features (Xu et al 2011). Even though CPLEX has 74 parameters, its performance can be
predicted quite accurately (Hutter et al 2014b).

CPLEX-RCW2 also uses CPLEX , in this case to solve MIP-encoded problems from com-
putational sustainability that model habitat preservation for endangered red-cockaded
woodpeckers (Ahmadizadeh et al 2010; Xu et al 2011). The configuration space and the
instance features are the same as in CPLEX-Regions; however, CPLEX exhibits a much
larger range of performance values across RCW2 instances.

Clasp-Rooks is a benchmark from the 2014 Configurable SAT Solver Challenge (CSSC’14;
Hutter et al 2017) and is based on the SAT (and ASP) solver Clasp (Gebser et al 2012)
applied to so-called “rooks” instances—a variant of the n-queens problem with additional
constraints (Manthey and Steinke 2014). We use the instance features generated by the well-
known algorithm selector Satzilla (Nudelman et al 2003; Xu et al 2008; Hutter et al 2014b)
for this and all other SAT scenarios. This AC benchmark is distinguished by Clasp’s highly
structured configuration space, which contains a large number of conditional parameters.

Lingeling-CF is also a benchmark from CSSC’14; it is based on the state-of-the-art SAT solver
Lingeling (Biere 2013) applied to circuit-based fuzz testing instances (Brummayer et al
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2012). With 322 parameters, Lingeling has the largest configuration space of any target
algorithm considered in our experiments (and also one of the largest of any SAT solver we
are aware of). This gives rise to a particularly challenging AC benchmark, because many
parameters range from 0 to the maximal 32-bit integer and offer more scope for reductions
than improvements in performance.

ProbSAT-7SAT is another benchmark from CSSC’14; it is based on one of the state-of-the-art
local search SAT solvers, ProbSAT (Balint and Schöning 2012) applied to 7SAT random
instances. With only 9 parameters, the configuration space is quite small.

MiniSATHack-K3 is our last benchmark from the CSSC’14; it is based on a modification of the
well-known MiniSAT solver (Eén and Sörensson 2003), called Minisat-HACK-999ED (Oh
2014) on 3SAT random instances. The 10 categorical parameters give raise to a configuration
space of 800 000 parameter configurations, making it the smallest configuration space we
consider.

LPG-Satellite was introduced in the context of parameter importance analysis with abla-
tion (Fawcett and Hoos 2016). It is based on the AI planning system lpg (Gerevini and
Serina 2002), which exposes 67 parameters. In this case we study satellite instances: plan-
ning problems arising in the control and observation scheduling of orbital satellites (Long
and Fox 2003). The instance features are a combination of native planning features and
features derived by translating planning instances into SAT (Fawcett et al 2014).

LPG-Zenotravel uses the same target algorithm, lpg, as LPG-Satellite, in combination with
instances from the zenotravel planning domain (Penberthy and Weld 1994), which arise in
a version of route planning. The default configuration of lpg achieves worse performance
than on LPG-Satellite; nevertheless, after configuration, the instances from this benchmark
turn out to be easier for lpg.

Clasp-WS is based on the dual-purpose SAT/ASP solver Clasp applied to ASP (rather than
SAT) instances. Clasp has a richer configuration space in the ASP domain (35 additional
parameters, including 12 conditional ones); to compensate, we set the configuration budget
twice as high as for Clasp-Rooks. The ASP problem instances encode optimizing join
order in database systems (Lierler and Schüller 2012). To generate instance features, we
used the same feature extractor, claspre, as the state-of-the-art ASP algorithm selector
claspfolio (Hoos et al 2014).

svm-mnist is based on a support vector machine (Cortes and Vapnik 1995) (using the libsvm
implementation via scikit-learn) applied to the well-known MNIST data set. We optimized
6 hyperparameters of the SVM, including the kernel (rbf, polynomial or sigmoid) and its
dependent hyperparameters.

xgboost-covertype is based on xgboost (Chen and Guestrin 2016) applied to the covertype data
set. We optimized 11 mostly continuous hyperparameters.


	1 Introduction
	2 Background on Algorithm Configuration
	3 Surrogates of General AC Benchmarks
	4 Experiments for Algorithm Configuration
	5 Conclusion
	A Benchmark Descriptions

