2,314 research outputs found

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Human action recognition and mobility assessment in smart environments with RGB-D sensors

    Get PDF
    openQuesta attività di ricerca è focalizzata sullo sviluppo di algoritmi e soluzioni per ambienti intelligenti sfruttando sensori RGB e di profondità. In particolare, gli argomenti affrontati fanno riferimento alla valutazione della mobilità di un soggetto e al riconoscimento di azioni umane. Riguardo il primo tema, l'obiettivo è quello di implementare algoritmi per l'estrazione di parametri oggettivi che possano supportare la valutazione di test di mobilità svolta da personale sanitario. Il primo algoritmo proposto riguarda l'estrazione di sei joints sul piano sagittale utilizzando i dati di profondità forniti dal sensore Kinect. La precisione in termini di stima degli angoli di busto e ginocchio nella fase di sit-to-stand viene valutata considerando come riferimento un sistema stereofotogrammetrico basato su marker. Un secondo algoritmo viene proposto per facilitare la realizzazione del test in ambiente domestico e per consentire l'estrazione di un maggior numero di parametri dall'esecuzione del test Timed Up and Go. I dati di Kinect vengono combinati con quelli di un accelerometro attraverso un algoritmo di sincronizzazione, costituendo un setup che può essere utilizzato anche per altre applicazioni che possono beneficiare dell'utilizzo congiunto di dati RGB, profondità ed inerziali. Vengono quindi proposti algoritmi di rilevazione della caduta che sfruttano la stessa configurazione del Timed Up and Go test. Per quanto riguarda il secondo argomento affrontato, l'obiettivo è quello di effettuare la classificazione di azioni che possono essere compiute dalla persona all'interno di un ambiente domestico. Vengono quindi proposti due algoritmi di riconoscimento attività i quali utilizzano i joints dello scheletro di Kinect e sfruttano un SVM multiclasse per il riconoscimento di azioni appartenenti a dataset pubblicamente disponibili, raggiungendo risultati confrontabili con lo stato dell'arte rispetto ai dataset CAD-60, KARD, MSR Action3D.This research activity is focused on the development of algorithms and solutions for smart environments exploiting RGB and depth sensors. In particular, the addressed topics refer to mobility assessment of a subject and to human action recognition. Regarding the first topic, the goal is to implement algorithms for the extraction of objective parameters that can support the assessment of mobility tests performed by healthcare staff. The first proposed algorithm regards the extraction of six joints on the sagittal plane using depth data provided by Kinect sensor. The accuracy in terms of estimation of torso and knee angles in the sit-to-stand phase is evaluated considering a marker-based stereometric system as a reference. A second algorithm is proposed to simplify the test implementation in home environment and to allow the extraction of a greater number of parameters from the execution of the Timed Up and Go test. Kinect data are combined with those of an accelerometer through a synchronization algorithm constituting a setup that can be used also for other applications that benefit from the joint usage of RGB, depth and inertial data. Fall detection algorithms exploiting the same configuration of the Timed Up and Go test are therefore proposed. Regarding the second topic addressed, the goal is to perform the classification of human actions that can be carried out in home environment. Two algorithms for human action recognition are therefore proposed, which exploit skeleton joints of Kinect and a multi-class SVM for the recognition of actions belonging to publicly available datasets, achieving results comparable with the state of the art in the datasets CAD-60, KARD, MSR Action3D.INGEGNERIA DELL'INFORMAZIONECippitelli, EneaCippitelli, Ene

    Human action recognition and mobility assessment in smart environments with RGB-D sensors

    Get PDF
    Questa attività di ricerca è focalizzata sullo sviluppo di algoritmi e soluzioni per ambienti intelligenti sfruttando sensori RGB e di profondità. In particolare, gli argomenti affrontati fanno riferimento alla valutazione della mobilità di un soggetto e al riconoscimento di azioni umane. Riguardo il primo tema, l'obiettivo è quello di implementare algoritmi per l'estrazione di parametri oggettivi che possano supportare la valutazione di test di mobilità svolta da personale sanitario. Il primo algoritmo proposto riguarda l'estrazione di sei joints sul piano sagittale utilizzando i dati di profondità forniti dal sensore Kinect. La precisione in termini di stima degli angoli di busto e ginocchio nella fase di sit-to-stand viene valutata considerando come riferimento un sistema stereofotogrammetrico basato su marker. Un secondo algoritmo viene proposto per facilitare la realizzazione del test in ambiente domestico e per consentire l'estrazione di un maggior numero di parametri dall'esecuzione del test Timed Up and Go. I dati di Kinect vengono combinati con quelli di un accelerometro attraverso un algoritmo di sincronizzazione, costituendo un setup che può essere utilizzato anche per altre applicazioni che possono beneficiare dell'utilizzo congiunto di dati RGB, profondità ed inerziali. Vengono quindi proposti algoritmi di rilevazione della caduta che sfruttano la stessa configurazione del Timed Up and Go test. Per quanto riguarda il secondo argomento affrontato, l'obiettivo è quello di effettuare la classificazione di azioni che possono essere compiute dalla persona all'interno di un ambiente domestico. Vengono quindi proposti due algoritmi di riconoscimento attività i quali utilizzano i joints dello scheletro di Kinect e sfruttano un SVM multiclasse per il riconoscimento di azioni appartenenti a dataset pubblicamente disponibili, raggiungendo risultati confrontabili con lo stato dell'arte rispetto ai dataset CAD-60, KARD, MSR Action3D.This research activity is focused on the development of algorithms and solutions for smart environments exploiting RGB and depth sensors. In particular, the addressed topics refer to mobility assessment of a subject and to human action recognition. Regarding the first topic, the goal is to implement algorithms for the extraction of objective parameters that can support the assessment of mobility tests performed by healthcare staff. The first proposed algorithm regards the extraction of six joints on the sagittal plane using depth data provided by Kinect sensor. The accuracy in terms of estimation of torso and knee angles in the sit-to-stand phase is evaluated considering a marker-based stereometric system as a reference. A second algorithm is proposed to simplify the test implementation in home environment and to allow the extraction of a greater number of parameters from the execution of the Timed Up and Go test. Kinect data are combined with those of an accelerometer through a synchronization algorithm constituting a setup that can be used also for other applications that benefit from the joint usage of RGB, depth and inertial data. Fall detection algorithms exploiting the same configuration of the Timed Up and Go test are therefore proposed. Regarding the second topic addressed, the goal is to perform the classification of human actions that can be carried out in home environment. Two algorithms for human action recognition are therefore proposed, which exploit skeleton joints of Kinect and a multi-class SVM for the recognition of actions belonging to publicly available datasets, achieving results comparable with the state of the art in the datasets CAD-60, KARD, MSR Action3D

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    A protected discharge facility for the elderly: design and validation of a working proof-of-concept

    Get PDF
    With the increasing share of elderly population worldwide, the need for assistive technologies to support clinicians in monitoring their health conditions is becoming more and more relevant. As a quantitative tool, geriatricians recently proposed the notion of frail elderly, which rapidly became a key element of clinical practices for the estimation of well-being in aging population. The evaluation of frailty is commonly based on self-reported outcomes and occasional physicians evaluations, and may therefore contain biased results. Another important aspect in the elderly population is hospitalization as a risk factor for patient\u2019s well being and public costs. Hospitalization is the main cause of functional decline, especially in older adults. The reduction of hospitalization time may allow an improvement of elderly health conditions and a reduction of hospital costs. Furthermore, a gradual transition from a hospital environment to a home-like one, can contribute to the weaning of the patient from a condition of hospitalization to a condition of discharge to his home. The advent of new technologies allows for the design and implementation of smart environments to monitor elderly health status and activities, fulfilling all the requirements of health and safety of the patients. From these starting points, in this thesis I present data-driven methodologies to automatically evaluate one of the main aspects contributing to the frailty estimation, i.e., the motility of the subject. First I will describe a model of protected discharge facility, realized in collaboration and within the E.O. Ospedali Galliera (Genoa, Italy), where patients can be monitored by a system of sensors while physicians and nurses have the opportunity to monitor them remotely. This sensorised facility is being developed to assist elderly users after they have been dismissed from the hospital and before they are ready to go back home, with the perspective of coaching them towards a healthy lifestyle. The facility is equipped with a variety of sensors (vision, depth, ambient and wearable sensors and medical devices), but in my thesis I primarily focus on RGB-D sensors and present visual computing tools to automatically estimate motility features. I provide an extensive system assessment I carried out onthree different experimental sessions with help of young as well as healthy aging volunteers. The results I present are in agreement with the assessment manually performed by physicians, showing the potential capability of my approach to complement current protocols of evaluation

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082
    corecore