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Abstract

Population aging is a growing phenomenon in modern society and Active and As-
sisted Living tools can be investigated to have smart environments supporting elderly
people to age at home. The adoption of enhanced living environments leads to a bet-
ter quality of life for elderlies, because they can live in their preferred environment,
and also for the society, increasing efficiency of used resources.

This work is focused on the development of algorithms and solutions for smart
environments exploiting RGB and depth sensors. In particular, the addressed topics
refer to mobility assessment of a subject and to human action recognition.

Regarding the first topic, the goal is to implement algorithms for the extraction
of objective parameters that can support the assessment of mobility tests performed
by healthcare staff. The first proposed algorithm regards the extraction of six joints
on the sagittal plane using depth data provided by Kinect. This solution is validated
with a marker-based stereometric system considering the accuracy in the estimation
of torso and knee angles during the sit-to-stand phase. A second algorithm is pro-
posed to simplify the test implementation in home environment and to allow the
extraction of a greater number of parameters from the execution of the Timed Up
and Go test. Such parameters are related to the time duration of the entire test ex-
ecution as well as some phases (sit-to-stand, turn, sit), in addition to the extraction
of indices related to the length of the steps and to the angular velocity of arm swing.
Kinect sensor is combined with an accelerometer placed on the chest of the subject,
which allows to accurately identify the time instants of the steps in the walking
phase and the inclination angle of the torso during the sit-to-stand phase. The use
of data coming from different sensors requires the development of a synchronization
algorithm based on the compensation of transmission and exposure times of frames
acquired by Kinect, which are estimated for both versions of the sensor and for the
three available data streams: RGB, infrared, depth. The developed synchronization
algorithm can be used also for other applications that benefit from the joint usage
of RGB-Depth and inertial data, for example in the detection of falls. Algorithms
for the identification of falls exploiting the same configuration of the Timed Up and
Go test are therefore proposed.
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Regarding the second topic addressed, the goal is to perform the classification of
human actions that can be carried out in home environment. Two algorithms for
human action recognition exploiting skeleton joints of Kinect are therefore proposed.
The first one is based on Activity Feature Vectors (AFV), which contain the most
important postures extracted from a sequence of frames. The second one is named
Temporal Pyramid of Key Poses (TPKP), it considers the bag of key poses model
and represents the structure of the action with a temporal pyramid. The algorithms
have been evaluated on publicly available datasets, achieving results comparable
with the state-of-the-art in the datasets CAD-60, KARD, MSR Action3D.



Sommario

L’invecchiamento della popolazione € un fenomeno in crescita nella societa mod-
erna e strumenti per I’ Active ed Assisted Living possono essere studiati per avere am-
bienti intelligenti che supportano le persone anziane nell’invecchiamento all’interno
dell’ambiente domestico. L’adozione di ambienti di vita avanzati porta ad una
migliore qualita della vita per gli anziani, in quanto possono vivere nel loro ambiente
prescelto, ed anche per la societa, aumentando ’efficienza delle risorse utilizzate.

Questo lavoro ¢ focalizzato sullo sviluppo di algoritmi e soluzioni per ambienti
intelligenti sfruttando sensori RGB e di profondita. In particolare, gli argomenti
affrontati fanno riferimento alla valutazione della mobilita di un soggetto e al ri-
conoscimento di azioni umane.

Riguardo il primo tema, ’obiettivo & quello di implementare algoritmi per I'estra-
zione di parametri oggettivi che possano supportare la valutazione di test di mobilita
svolta da personale sanitario. Il primo algoritmo proposto riguarda ’estrazione di sei
joints sul piano sagittale utilizzando i dati di profondita forniti da Kinect. Questa
soluzione viene validata con un sistema stereofotogrammetrico basato su marker
considerando la precisione nella stima degli angoli di torso e ginocchio durante la
fase di sit-to-stand. Un secondo algoritmo viene proposto per facilitare la realiz-
zazione del test in ambiente domestico e per consentire ’estrazione di un maggior
numero di parametri dall’esecuzione del test Timed Up and Go. Tali parametri
sono relativi alla durata temporale dell’intera esecuzione del test e di alcune sue
fasi (sit-to-stand, turn, sit), oltre all’estrazione di indici relativi alla lunghezza dei
passi e alla velocita angolare delle braccia. Il sensore Kinect viene combinato con un
accelerometro posto sul petto del soggetto, il quale permette di identificare con pre-
cisione gli istanti temporali dei passi nella fase di cammino e ’angolo di inclinazione
del busto durante la fase di sit-to-stand. L’uso di dati provenienti da sensori diversi
richiede lo sviluppo di un algoritmo di sincronizzazione basato sulla compensazione
dei tempi di trasmissione e tempi di esposizione dei frame acquisiti da Kinect, i quali
vengono stimati per entrambe le versioni del sensore e per le tre tipologie di segnale
disponibili: RGB, infrarosso, profondita. L’algoritmo di sincronizzazione sviluppato
puo essere utilizzato anche per altre applicazioni che possono beneficiare dell’utilizzo
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congiunto di dati RGB-Depth ed inerziali, ad esempio nella rilevazione delle cadute.
Vengono quindi proposti algoritmi di identificazione della caduta che sfruttano la
stessa configurazione del Timed Up and Go test.

Per quanto riguarda il secondo argomento affrontato, 1’obiettivo & quello di effet-
tuare la classificazione di azioni che possono essere compiute dalla persona all’interno
di un ambiente domestico. Vengono quindi proposti due algoritmi di riconoscimento
attivita che sfruttano i joints dello scheletro di Kinect. Il primo ¢ basato su Activity
Feature Vectors (AFV), i quali contengono le posture pitl importanti estratte da
una sequenza di frame. Il secondo ¢ denominato Temporal Pyramid of Key Poses
(TPKP), considera il modello bag of key poses e rappresenta la struttura dell’azione
con una piramide temporale. Gli algoritmi sono stati valutati su dataset pubblica-
mente disponibili, raggiungendo risultati confrontabili con lo stato dell’arte rispetto
ai dataset CAD-60, KARD, MSR Action3D.
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Chapter 1.

Introduction

1.1. Context

Population aging is defined as the increasing share of older people, aged 60 and
over, in the population, and it is a growing phenomenon in modern society [1].
Globally, life expectancy at birth will rise from 70 years in 2010 — 2015 to 77 years
in 2045 — 2050 and to 83 years in 2095 — 2100. The aging process is most advanced
in high-income countries. The country where most of the aged people live is Japan,
where 33% were aged 60 years or over in 2015. Italy and Germany are quite close
(28%) and Finland is the third one with a percentage of 27% [2]. This demographic
change has an impact also on the economic side, and to support an aging population
has therefore become a priority for many governments [3].

A new paradigm in information technology is named Ambient Intelligence (AmlI),
and it is “aimed at empowering people’s capabilities by means of digital environments
that are sensitive, adaptive, and responsive to human needs, habits, gestures, and
emotions” [4]. Aml tools can be adopted to improve quality of life in different
environments, for example sensors can acquire data in the house, maybe related to
the presence of people, adapt the environment according to the user preferences and
also predict their needs and behavior. In addition to home environment, Aml has
many other potential applications in office, transport and industry, and can be also
applied in safety systems and e-health domain [5].

The application of information technology and Aml to the aging population brings
to Active and Assisted Living (AAL), also known as Ambient Assisted Living, which
is aimed to develop solutions to help elderly people to age at home. The objectives
of AAL have been identified as [6]:

e extending the time people can live in their preferred environment by increasing

their autonomy, self-confidence and mobility;
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e supporting the preservation of health and functional capabilities of the elderly,
promoting also a better and healthier lifestyle for individuals at risk;

e enhancing security, preventing social isolation and supporting the preservation
of the multifunctional network around the individual;

e supporting families and caregivers;

e increasing the efficiency and productivity of used resources in the ageing soci-
eties.

European Union is fostering research on AAL through its main research and in-
novation programme: Horizon 2020 (H2020). During the first four years of H2020,
EU has invested 2€ billion in the challenge “Health, Demographic Change and Well-
being”, which is part of the third pillar of Horizon 2020 named Societal Challenges.
In addition to this, EU finances also projects through the AAL Joint Programme,
which is set to bring new ICT-based products, solutions and service concepts onto
the market within two to three years of the end of the funding period. Some projects
that received funding from this programme were able to develop products that are
close to be released on the market. Mylife project [7] is addressed to elderly people
with reduced cognitive function and aims to provide simple and intuitive services
that are adapted to their individual needs and wishes. HELP project [8] has been
funded by AAL programme to support people with Parkinson Disease. In particular,
the idea is to have wearable and home devices to monitor health parameters and
body activity, and to automatically release a controlled quantity of drugs. Other
projects are in the field of assistive robotics, like Domeo [9], or aim to support people
with mental disorders, such as Home4Dem [10].

Tools and algorithms that can be applied to AAL and smart environments are in-
teresting and challenging not only from the commercial point of view, but also from
the academic side. Researchers working on AAL domain are usually concentrated
on algorithms or applications. Rashidi and Mihailidis [11] reviewed algorithms for
Human Activity Recognition (HAR), also known as Human Action Recognition,
Context Modeling, since AAL systems represent different types of context informa-
tion, Anomaly Detection, which aims to find patterns in data that do not conform to
the expected behavior, Location and Identity Identification, which allows to track
and to monitor elderlies, and Planning, to schedule daily plans helping dementia
patients to carry out their daily activities. On the other hand, applications may
belong to different areas, such as Monitoring of health parameters or detection of



1.2. Structure of the thesis

dangerous situations, Wandering Prevention, providing alarms for unexpected ac-
tions or navigation assistance tools or Cognitive Orthotics tools, which can be used
for example in case of medication management.

In the aforementioned scenario, the objectives of this thesis include the adoption
of RGB-D (Depth) sensor, i.e. Microsoft Kinect, to address different tasks. The
choice of a vision-based sensor as the main source of data is first of all motivated by
the fact that, differently from wearable sensors, it is less obtrusive and does not rely
on the user that needs to wear the device and to charge the battery. Comparing
the Kinect device with other unobrusive sensors, such as environmental sensors, the
former one allows to have more information about the context, and also to extract
the human behaviour from his/her movements and not from the signal generated by
the interaction with the environment.

The first objective of this thesis is to develop an application which aims to extract
parameters for mobility assessment of a human subject. Kinect is adopted to extract
the coordinates of skeleton joints and to calculate some useful indices from a side-
view mobility test. In order to increase the reliability of the estimation, being aware
of an higher obtrusiveness level of the system, an Inertial Measurement Unit (IMU)
is considered jointly with the RGB-D sensor. Synchronization algorithms have been
developed to correctly associate samples from different sources and mobility assess-
ment and fall detection applications have been implemented. The second objective
of the thesis is to propose algorithms which can be generally applied to address the
HAR task. The input data are represented by skeleton coordinates captured by a
RGB-D sensor, and organized in publicly available datasets.

1.2. Structure of the thesis

The thesis is organized in six chapters, which describe and detail the proposed
approaches for human action recognition and mobility assessment using RGB-D
sensors. The thesis has the following structure.

Chapter 2 reviews the state-of-the-art about the two main topics addressed: mo-
bility assessment and human action recognition. Regarding the former one, the main
tool used to evaluate the mobility, and often to infer the risk of falling, is the Timed
Up and Go test. Different techniques proposed to instrument the test are presented,
with a focus on video-based approaches. Regarding the second main topic, different
technologies used for HAR are also reviewed, considering in more detail algorithms
based on RGB-D data. The publicly available datasets that can be used to evaluate
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the performance of HAR, algorithms and mobility assessment systems are listed.

Chapter 3 describes an algorithm to extract the coordinates of six skeleton joints
from depth frames captured by Kinect during the sit-to-stand movement followed
by some steps. The algorithm works in side view and the performance in the estima-
tion of joint coordinates is compared with other markerless algorithms considering
infrared markers as reference. A further validation process is performed for the
sit-to-stand phase using a ground-truth represented by a stereometric system.

Chapter 4 details the instrumented Timed Up and Go with Kinect and a wearable
IMU. The data fusion of multimodal data has allowed to extract different indices not
only related to timing, but also to gait and posture. A synchronization algorithm
based on the compensation of delay times affecting Kinect frames and acceleration
samples has been developed to correctly associate data from different sources. The
same setup can be used also for fall detection, and three different algorithms based on
wearable and RGB-D data fusion are described. Simple and effective fall detection
algorithms can discern among different types of falls and actions with an accuracy
higher than 90% on a dataset of 264 sequences collected from 11 young subjects.

Chapter 5 presents algorithms for human action recognition based on 3D joint
coordinates extracted from Kinect. Different features representation methods have
been investigated, providing also experimental results on several RGB-D datasets.
The first proposed algorithm is based on Activity Feature Vectors (AFV) containing
the most representative postures of a sequence of frames. The second algorithm,
based on Temporal Pyramid of Key Poses (TPKP), adopts a bag of key poses model
and introduces a temporal pyramid to represent the structure of the action. The
parameters required by the TPKP algorithm are optimized using evolutionary com-
putation. The performance evaluation of AFV algorithm has been carried out on
different RGB-D datasets, resulting in precision and recall higher than the state-of-
the-art of about 10% on KARD dataset and comparable to it on CAD-60 dataset,
where the figures are a precision of 93.9% and a recall of 93.5% considering the
leave-one-actor-out cross-validation test. The TPKP algorithm has achieved results
comparable to the state-of-the-art on MSR Action3D dataset, i.e. an accuracy of
95.14% on the cross-subject test.

Conclusions are drawn in Chapter 6 where, after clarifying the contribution of
this work, some future research directions are identified and a list of publications is
provided. Finally, Chapter A in appendix describes two software developed to collect
RGB-D datasets using Kinect v1 and Kinect v2, which are now publicly available.
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The aim of this chapter is to review and discuss the most relevant works in two
fields that can be applied to Active and Assisted Living scenario: mobility assess-
ment, especially the estimation of parameters to classify the risk of falling, and the
recognition of human actions. An overview of the techniques that can be used to
develop these solutions is provided, then the discussion is focused on solutions based

on vision and, more in details, RGB-D sensors.

2.1. Mobility assessment

Due to the global increasing of age, the problem of falls in elderly people has to
be considered in our society and many researchers started working on fall detection
developing wearable or not-wearable systems [12]. A fall event, especially if experi-
enced by an elderly, may lead to immediate physical injuries such as cuts, abrasions,
and fractures of bones, but also to psychological consequences. People are afraid of
falling again and they may reduce the level of their physical activity, leading also to
functional decline and depression [13]. Due to these consequences, the necessity to
estimate the mobility grade of the person, and thus the risk of falling, is as important
as the detection of the fall.

Since the fall risk assessment is performed only by observations of the test by
healthcare personnel, many research works in the last years have been developed to
extract some important parameters from clinical test, to the aim to help clinicians
in the assessment process. Tools for gait analysis may be based on wearable sensors
or on not-wearable devices, which can be vision sensors (marker-based or markerless
systems) or pressure sensors placed on the floor [14]. One of the most used test
to evaluate the fall risk is the Get Up and Go test [15]. This test requires to the
patient to stand up from a chair, walk for a short distance (about 3 meters), turn,
walk back to the chair and sit down. The measure of the time required by the
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subject to perform the whole test, introduced in the Timed Up and Go (TUG)
test [16], is already a measure of its movement ability and therefore of its risk of
falling. In fact, if the subject takes more than 30 seconds to perform the test, she
is classified as a subject with mobility problems. However, some parameters can
be measured considering sensors monitoring the test, such as angles of different
joints, step width, cadence, and many others [14]. Sprint et al. [17] reviewed the
works which proposed to instrument the TUG, distinguishing among the technologies
adopted by the different solutions.

2.1.1. Wearable sensing

A large number of studies proposed an instrumented version of the TUG using wear-
able sensors equipped with sensing and communication and/or storage capabilities.
They usually integrate an Inertial Measurement Unit (IMU) capturing acceleration
samples and a communication interface to send data to a server and/or a memory
card to store data. Greene et al. [18] proposed to use two IMUs attached on the an-
terior of each shank of the subject. In addition to acceleration data, they evaluated
also the time required to complete the test using a stopwatch. Temporal gait pa-
rameters are extracted from the identification of heel-strike and toe-off events, and
are considered in addition to other temporal indices (walk time, cadence, turn time,
...). Angular velocity parameters were computed during some phases of the test and
help in the definition of the statistical model to extract differences between subjects
who experienced a fall and those who did not. A mean test accuracy of 76.8% was
achieved for retrospectively estimating falls risk in a population of 349 elderly adults.
A waist-mounted accelerometer has been considered in [19]. The authors proposed a
model to evaluate the fall risk using three tests to extract useful parameters: TUG,
Alternate-Step Test (AST), where the subject is asked to alternatively place each
foot onto and off of a platform, and the sit-to-stand with 5 repetitions, consisting
in the movement of standing up and sitting down with arms folded. Regarding the
TUG, they extracted timings from different phases of the test and also some fea-
tures related to acceleration data calculated within specific intervals. The fall risk
evaluation has been carried out considering a linear least squares model built from
a selected subset of features extracted. SankarPandi et al. [20] proposed the use
of a wrist-mounted accelerometer during TUG execution to classify disability levels.
A number of 40 features were extracted from acceleration data and then processed
using a selection algorithm. With a population of 321 elderlies, the algorithm has
been able to estimate the disability level using the optimal subset of features with
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Figure 2.1.: Setup of the 7 wearable sensors adopted for the iTUG test (reprinted
from [21]).

an accuracy of 62.16%, outperforming the classification achievable using only the
time required to complete the test, which was 39.10%. Alternatives to the standard
TUG, such as iTUG [21], have been also proposed. The authors exploited seven
inertial sensors attached on the forearms, shanks, thighs and sternum, as shown in
Figure 2.1, for the early detection of Parkinson’s disease (PD). The walking path has
been extended from 3 to 7 meters, extracting several parameters from sit-to-stand,
gait, turning and turn-to-sit phases. For example, during the sit-to-stand phase,
its temporal duration, the range of motion of the trunk, together with the average
and peak angular velocity of trunk are considered. A 7 meters iTUG test has been
considered also in [22]. A smartphone which integrates a tri-axial accelerometer has
been placed on the lower back of the body and used to extract 28 parameters in the
three sections of the iTUG: (sit-to-stand, gait, stand-to-sit). Dimensionality reduc-
tion is implemented considering Principal Component Analysis (PCA). A number of
10 principal components, which can be used for classification, were selected consid-
ering a dataset with 49 healthy adult subjects of different ages (in the range 28-87).
Milosevic et al. [23] proposed a smartphone application (sTUG) for the evaluation
of the iTUG. The application exploits accelerometers and gyroscope signals coming
from the smartphone attached on the chest or belt. The extracted parameters are
mainly related to the durations of the different phases of the test, even if angular
velocities and maximum inclination of trunk angle during the sit-to-stand are also
calculated. The Android application provides an immediate feedback to the user
showing the calculated indices and allows to upload the results into the medical
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record. Silva and Sousa [24] presented a smartphone-based iTUG where the test has
been segmented in three phases (stand up, walk forward and turn around) and the
features extracted from each segment are statistical measures and frequency-based
metrics obtained from the accelerometer magnitude signal. Considering a popula-
tion of 18 older adults, the authors found that the walking and turning components
were the most significant ones to differentiate between a higher risk and a lower risk
person. Another wearable system, which is more flexible because it does not require
a fixed test distance, has been proposed in [25]. The test can be executed from an
iPhone or iPad and exploits data from 5 sensors placed on foot, shin and thigh of
the patient, and equipped with triaxial accelerometer, gyroscope and magnetome-
ter, and being able to provide quaternion representing orientation. The algorithms
can calculate angles of knee and ankle which are validated with a marker-based
VICON system. Gait parameters, such as stride length, the total distance traveled
and average velocity are also extracted, together with the total time of the test.

2.1.2. Unobtrusive sensing

Researchers proposed also to instrument the TUG using unobtrusive technologies.
Some research works considered the use of sensors placed on the floor monitoring the
parameters related to the gait. Demura et al. [26] proposed also to place obstacles
along the path and to evaluate different timing parameters in a modified TUG called
TUGO (TUG test with an obstacle), such as the total time, going time or turn time,
in addition to the single support time before and after the obstacle. In other cases,
the floor sensor is adopted to compare the performance of other systems, such as
video-based solutions. Baldewijns et al. [27] validated their method to extract gait
information using Kinect depth data with GAITRite walkway. Results on 19 tests
showed an average error of 2.48 cm for the step length and 0.24 seconds for the step
time.

Other researchers working on video processing proposed solutions to extract ob-
jective parameters from TUG. In [28], two webcams have been used to capture the
side and back view of the subject performing the test. Three categories of param-
eters are calculated, including: time of the walk phase, number of steps, stability
into and out of the turn. The subject’s silhouette has to be extracted from the video
using background subtraction techniques and filtering methods to remove some ar-
tifacts. Then, most of the walking indices are estimated from the tracking of the
centroid of head silhouette, while the steps are counted looking at the acceleration of
the leading foot. Two calibrated cameras were also used in [29], where a 3D human
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[Sit 1]] Stand up || Walk there || Turn |

T

[sit2]] Sit down || Walk back || Turn |

Figure 2.2.: Setup of the sTUG test, with different detected events during the test:
Mg-M., and actions evaluated during assessment: aj-aq2 (reprinted from
[30]).

model is reconstructed to evaluate the 180° turning movement. The turning time
and the number of turning steps are extracted from 7 people aged between 25 and
88. The authors found that their method is able to correctly estimate the turning
time, with a good match if compared to the expert rating.

With the availability of RGB-D devices, researchers started working also with
these sensors. Lohmann et al. [30] proposed an approach called Skeleton Timed
Up and Go (sTUG) using 2 kinect sensors: one records the front of the action area
(dashed area in Figure 2.2) and the other one records the dotted area in Figure 2.2.
A number of 9 events are extracted from the trajectories of skeleton joints given by
the two calibrated sensors and durations of different phases are computed. Good
results have been obtained from tests with 13 people comparing the time durations
with a stopwatch. Kitsunezaki et al. [31] proposed to measure the time required to
perform TUG with a Kinect placed at a distance of 4 meters from the chair where
the subject starts the test. Considering 6 people and 3 executions for each person
they found an average difference of 0.33 seconds from the value measured by the
examiner. The same authors developed also a timed 10-meter walk test with two
synchronized Kinect and a software to detect timing parameters where a person
crosses a line. In this test, the same number of executions gave a difference of 0.15
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seconds between the two sets of results (examiner and Kinect). Hassani et al. [32]
proposed to extract some parameters from skeleton joint positions. In particular,
the author were focused on two sub-parts of the TUG: the forward-upward (STS)
and the downward-backward (BTS) displacements of the shoulder in the sagittal
plane. Within these movements, they considered: movement duration, shoulder
path curvature, trunk angle and ratio between vertical phase duration and horizontal
phase duration. Then, the total duration of the TUG is computed as the time
interval between the start of the forward phase and the end of the backward phase.
Results on 10 healthy young subjects showed that, in 70% of the cases, the mean
value of ratio, trunk angle and duration are within their confidence intervals, which
means that the system provides reliable measurements and the variability is reduced
among different subjects. The same authors improved the method by estimating
sitting posture with a linear Support Vector Machine (SVM) [33]. Considering two
groups of people, young and elderly, the authors noticed that the trunk angle in
young group was more than twice angle in elderly group: 16.76° and 35.81° during
STS movement, and this parameter can show the effect of aging. Recently, Gianaria
et al. [34] used Microsoft Kinect v2 to extract some parameters form TUG test:
TUG test total time, walking time (7), covered distance, walking speed (), swing
time, double support time, torso inclination angle. Some tests performed on 30
elderly and 6 young people provided meaningful results. For example, walking-
related parameters were 8 = 0.75 m/s and 7 = 9.31 s for seniors, § = 0.92 m/s and
T =7.16 s for youth.

2.1.3. RGB-D Datasets for mobility assessment

In order to foster the research in this field, Leightley et al. [35] recorded a dataset
with health-related actions, called Kinect 3D Active (K3Da). The dataset includes
motion collected from young and elderly people, aged between 18 and 81. With
data captured from 54 people (32 men and 22 women) this is the largest RGB-D
dataset containing clinically supported motion sequences, ensuring also high inter-
individual variability in age and physical capabilities. The RGB-D device used is
the Kinect v2, skeleton data (25 joints at 30 fps) and depth frames (512 x 424 at 30
fps) are the provided data. Timed Up and Go is included in the tests provided in
the K3Da dataset, and samples are collected with the sensor fixed horizontally to a
tripod at a height of 0.7 m in a controlled environment, without room furniture and
standardised room lighting.

10
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2.2. Human action recognition

Human action recognition is a research topic which has been investigated a lot in
the last years. The main reason is that HAR may enable different applications, from
human computer interaction to video surveillance, including also assistive applica-
tions, such as the monitoring of people living alone. HAR in AAL scenario can be
implemented considering different technologies, which may involve wearable inertial
sensors, ambient /environmental sensors, acoustic sensors, radio-based techniques or

vision-based devices.

2.2.1. Wearable sensing

Wearable sensors can be placed at different positions and the generated signals,
which are related to the movements, can be used to distinguish among a set of
activities. Data from wearable devices for HAR can be handled with two main
approaches. Data can be captured by a smartphone, and the same device can be
also exploited for classification purpose [36]. A more general architecture involves
sensors integrated on small devices equipped with communication interfaces and
able to send data to an integration device, represented by a smartphone or a laptop,
that can store and process data or send them to a remote server [37]. Considering
only inertial data, many different features have been proposed, and the inclusion of
the features in the classification model has to be evaluated to reduce the complexity
of the model and to increase the classification accuracy due to a better separation
among the classes [38]. Wearable sensors are quite cheap and, if compared for
example to cameras, they produce a lower amount of data, enabling a processing
step with less computational resources. On the other hand, one of the main issues
about the use of wearable sensors is their placement [39]. The sensors are usually
placed on the sternum, lower back, and waist. Waist-placement is closer to the center
of mass of the human body and can better represent most human motions. However,
the placement should take into account also the movements involved in the set of
activities that has to be recognized. In fact, if the use of a waist-placed accelerometer
can efficiently classify activities and resting positions involving the whole body, such
as walking, sitting, lying and also falls [40], the inclusion in the dataset of activities
including upper body movements, such as brushing teeth and working at computer,
requires a different placement of the sensor, for example on the wrist [41]. Finally,
the classification performance of an activity recognition algorithm can be increased
considering more sensors placed on the human body [42], increasing also the level
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of obtrusiveness.

2.2.2. Unobtrusive sensing

Unobtrusive environmental sensors may be exploited to recognize human activities.
However, since these techniques are based on data acquired by sensors placed on
objects, the activities are not directly related to the human movement, but they are
mostly related to the interaction of the human with the object or the environment.
The human behaviour can be inferred from the object interaction [43]. State-changes
sensors may be installed on doors, windows, cabinets, and also on some objects such
as owens, fridges or washing machines, and can therefore reveal activities such as
preparing lunch, toileting or doing laundry [44]. In addition to state-changes sensors,
passive infrared sensors (PIRs) can be used to detect the presence of people within
an environment, and the fusion of the data can increase the level of confidence in the
activity estimation process. Ordénez et al. [45] proposed different machine learning
algorithms to classify datasets made of 10 activities using three categories of sensors:
PIR sensors to detect people presence, state-changes sensors to detect opening and
closing activities of doors and cupboards and float sensors to detect the flushing of
toilet. Break-beam sensors to detect motion and chair-mounted pressure mats to
detect static occupants can also be employed in home environment [46]. Despite
the big advantages of being completely unobtrusive and privacy preserving, HAR
systems based on environmental sensors require a not negligible time to be installed,
a limited amount of information can be inferred from the sensors, and do not detect
dangerous situations, such as falls.

Another unobtrusive technology adopted for human activity recognition in home
environment is based on microphones to detect sounds. The idea is similar to am-
bient sensors, and the events are detected considering the sound generated by the
interaction between people and objects or the environment. Some activities, such as
chatting or reading newspapers can be easily detected by their sounds, and different
activities at a dining table can be categorized using only a microphone, recognizing
also the type of food or drink [47]. Considering more microphones placed in different
positions of the apartment, some activities such as vacuuming, blender mixing or
events as oven alarm or door slam can be detected [48]. Multiple acoustic sensors
may be set up as a Wireless Sensor Network (WSN), considering that the main chal-
lenges can be the limited processing power and working memory for the end devices.
However, for indoor context, feature extraction schemes with low complexity may be
equally effective as the high-cost ones [49]. Clinically relevant activities may be also

12



2.2. Human action recognition

detected considering an acoustic WSN to efficiently monitor elderly people. Vuegen
et al. [50, 51] proposed a network of 7 nodes to be placed in 3 rooms to detect 10
different activities. Being particular ambient sensors, the use of acoustic sensors has
the advantage of being privacy preserving, and, even if they may be subject to noise,
they can be used to detect also falls [52]. Considering an array of microphones, it
is possible to consider only sounds located below a certain height from the floor,
reducing the false alarm rate and estimating also the 3D sound location [53].

An alternative activity recognition method is based on radio techniques, which
take advantage of body attenuation or characteristics of channel fading to recognize
human activities or gestures [54]. Even if no physical sensing module is required,
the user may be asked to wear a wireless transceiver implementing ZigBee, WiFi or
RFID standards. Some methods, on the other hand, can work without any device on
the human body, exploiting for example the WiFi links established between smart
appliances and the access point [55] or FM signal strength which is correlated with
the receiver’s position [56]. Micro-Doppler radar signatures represent another solu-
tion and, through the usage of commercial radar motes, a small set of activities, such
as walking, running, and crawling, can be discriminated with a high classification
rate [57].

Vision-based sensors have been extensively used for human activity recognition.
Vision sensors can be adopted in a outdoor environment, for surveillance applica-
tions, as well as in a indoor scenario, where they can provide more information about
the environment with respect to other sensors. Many different reviews on vision-
based HAR techniques have been published in the past, each of which proposing
its own taxonomy and focusing on different aspects. At the beginning of the recog-
nition of human motion, Aggarwal and Cai [58] provided a review covering three
areas: motion analysis based on human body parts, tracking human motion (with-
out using the body parts) from a single view or multiple perspectives, recognizing
human activities from image sequences. Wang et al. [59] identified three major issues
in the process of human motion analysis: human detection, mainly constituted by
motion segmentation and object classification, human tracking and human behav-
ior understanding. Turaga et al. [60] proposed to distinguish between actions and
activities. They labelled as actions the movements characterized by simple motion
patterns, usually performed by one person, such as bending, walking, swimming.
Activities are more complex and involve more people who could be interacting with
each other in a constrained manner, such as two persons shaking hands or a football
team scoring a goal. However, different definitions of actions and activities have
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been proposed by others. Chaaraoui et al. [61] discern between action and activity
considering the degree of semantics ad the amount of time required to perform the
analysis. Considering this approach, actions are movements with a duration of sec-
onds, such as sitting, standing or walking. Activities are made up a set of actions
in a time frame from tens of seconds to units of minutes. Example of activities can
be cooking, taking a shower or making the bed. Even if HAR in the context of
AAL is often related to Human Activity Recognition, in this thesis, considering the
discrimination between actions and activities proposed in [61], the work is mostly
concentrated on shortest movements and with a low level of semantics, thus the

acronym HAR can be expressed as Human Action Recognition.

The recent release of low cost depth sensors fostered the recognition of human
motion using 3D data. Depth information helps to overcome some issues in human
action recognition based on RGB images, such as the presence of shadows, light
reflections, similarity of colors between foreground and background which may affect
people silhouette segmentation [62]. Aggarwal and Xia [63] divided the methods to
obtain 3D data into three different categories: marker-based motion capture systems,
stereo images or range sensors. In addition to the technology adopted to obtain
depth data, they organized the reviewed methods into five categories considering
the features: features from 3D silhouettes, features from skeletal joint or body part
locations, local spatio-temporal features, local occupancy patterns, and 3D scene
flow features.

In this work, the review of previously published methods based on RGB-D sensors
is organized considering the data exploited by the HAR algorithm. Some methods
may exploit only depth or skeleton data, others can be based on the fusion of different
input data, combining for example depth frames or RGB images with skeleton joints.
Some methods were aimed to extract features from depth data, such as [64], where
the main idea is to evaluate spatio-temporal depth subvolume descriptors. A group
of hypersurface normals (polynormal), containing geometry and local motion infor-
mation, is extracted from depth sequences. The polynormals are then aggregated
to constitute the final representation of the depth map, called Super Normal Vector
(SNV). This representation can include also skeleton joint trajectories, improving
the recognition results when people move a lot in a sequence of depth frames. Depth
images can be seen as sequence features modeled temporally as subspaces lying on
the Grassmann manifold [65]. This representation, starting from the orientation of
the normal vector at every surface point, describes the geometric appearance and the
dynamic of human body without using joint position. Other works proposed holistic
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Figure 2.3.: Sampling of 3D points using the silhouette-based method for HAR
(reprinted from [68]).

descriptors: the HON4D descriptor [66], which is based on the orientations of normal
surfaces in 4D, and Histogram of Oriented Principal Components (HOPC) descrip-
tor [67], which is able to represent the geometric characteristics of a sequence of 3D
points. HOPC descriptor can be also used in a local setting, where local HOPC are
extracted at candidate spatio-temporal keypoints (STKP). A HOPC quality factor
is defined to rank the STKPs and to discard the low quality ones. Depth data make
easier the process of silhouette extraction and some algorithms for action recognition
exploiting 3D silhouettes have been proposed. Li et al. [68] developed a method
that represents postures considering a bag of 3D points extracted from depth data,
shown in Figure 2.3. Only a small set of 3D points is considered, and a projection
method has been developed to sample the representative 3D points by performing
planar projections of the 3D depth map and extracting the points that are on the
contours. The temporal relationship among the postures is modeled using an action
graph, where each node represents a salient posture. Chaaraoui et al. [69] proposed
to use the points belonging to the contour of the human silhouette, and to extract
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Figure 2.4.: Spatio-temporal cells representation of the action forward Fkick
(reprinted from [71]).

features from them. The learning procedure consists in the extraction of the key
poses and the action, represented as a set of feature frames, is then constituted
by known characteristic poses. Other interesting features are represented by local
Spatio Temporal Interest Points (STIPs) applied to depth data [70]. Depth-based
STIPs include a noise suppression scheme which can handle some characteristics of
the depth images, such as the noise in the borders of an object, where the depth
values show a big difference in the transition from foreground to background, or the
noise given by errors in the depth estimation algorithm, which can result in some
gaps in the depth map. In [70], the use of depth STIPs is combined with a descrip-
tor containing the spatio-temporally windowed pixels within a 3D cuboid centered
at the interest point. A codebook is built by clustering the identified cuboids and
an action can be represented as a sequence of elements from the codebook. Vieira
et al. [71] proposed to divide the spatio-temporal space into multiple segments. A
4D grid is obtained, where a saturation scheme is employed to enhance the role
of the cells corresponding to the moving parts of the body. Figure 2.4 shows the
spatio-temporal cells for the action forward kick, which is divided in three temporal
segments, and all the frames are placed together in the same space. Red points
are those in the cells with more than a fixed amount of points. The occupancy
patterns are then extracted and Principal Component Analysis (PCA) is used as a
dimensionality reduction method.

Other works exploit both depth and skeleton data, for example the 3.5D rep-
resentation combines the skeleton joint information with features extracted from
depth images, in the region surrounding each node of interest [72]. The features
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Figure 2.5.: Method for human action recognition using multiple features and MKL
technique (reprinted from [73]).

are extracted using an extended Independent Subspace Analysis (ISA) algorithm by
applying it only to local region of joints instead of the entire video, thus improving
the training efficiency. Depth and skeleton features can be combined at different lev-
els of the activity recognition algorithm. Althloothi et al. [73] proposed a method
where the data are fused at the kernel level, instead of the feature level, using the
Multiple Kernel Learning (MKL) technique which combines and utilizes multiple
kernels in the process of learning kernel based classifiers. As shown in Figure 2.5,
the 3D silhouette structure is described using shape features, extracted from the
depth map using spherical harmonics representation. The motion features are rep-
resented by distal limb segments extracted from the joint positions. The initial frame
is taken as a reference and each distal limb segment is described by the orientation
and translation distance with respect to it. On the other hand, fusion at the feature
level of spatiotemporal features from depth data and skeleton joints is performed in
[74]. The spatiotemporal features represent local motions at different 3D interest
points, and the skeleton joints features represent spatial locations of body parts. In
such a work, several spatiotemporal interest point detectors, such as Harris 3D [75],
ESURF [76], HOG3D [77] have been fused using regression forests with the skele-
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Figure 2.6.: Results of STIPs refinement using a bounding box extracted from skele-
ton joints (reprinted from [80]).

ton joint features consisting of posture, movement and offset information. Features
extracted from human silhouette can be concatenated with normalized skeleton fea-
tures, to improve the recognition rate performing a feature-level fusion [78]. The
simple feature concatenation as a fusion technique has been allowed by the very low-
dimensional features: the resulting increased size of the final feature is not critical.
The feature concatenation has been used to keep all the characteristic information
provided by both feature types.

Skeleton joints extracted from depth frames can be combined also with RGB
data. Luo et al. [79] proposed a human action recognition framework where the
pairwise relative positions of joints and Center-Symmetric Motion Local Ternary
Pattern (CS-Mltp) features from RGB are fused both at feature level and at classi-
fier level. STIPs are typically used in activity recognition where data are represented
by RGB frames. This approach can be also extended to depth and skeleton data,
combining the features with Random Forests [80]. Different combinations of detec-
tors and descriptors are considered, and the combination of depth STIP features
with RGB videos or skeleton joint positions may help to have a better understand-
ing of depth-based features, enhancing the recognition performance, as shown in
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Figure 2.6. Instead of using spatio-temporal features, another approach for human
activity recognition relies on graph-based methods for sequential modeling of RGB
data. This concept can be extended to depth information, and an approach based
on coupled Hidden Conditional Random Fields (cHCRF) model, where visual fea-
ture sequences are extracted from RGB and depth data, has been proposed [81].
The main advantage of this approach is the capability to preserve the dynamics of
individual sequences, even if the complementary information from RGB and depth
are shared.

Other works simply rely on Kinect skeleton data because they represent a com-
pact and effective description of the human body. In many cases they can achieve
performance very close to the algorithms exploiting multimodal data, and some-
times they also perform better than those solutions. Devanne et al. [82] proposed to
represent human actions by spatio-temporal motion trajectories in a 60-dimensional
space since they considered 20 joints, each of them with 3 coordinates. Then, an
elastic metric, which means a metric invariant to speed and time of the action,
within a Riemannian shape space, is employed to represent the distance between
two curves. Finally, the action recognition problem can be seen as a classification in
the Riemannian space, using a k-Nearest-Neighbor (k-NN) classifier. Other skeleton
representations have been proposed. The APJ3D representation [83] is constituted
starting by a subset of 15 skeleton joints, from which the relative positions and lo-
cal spherical angles are computed. After a selection of key-postures using k-means
clustering algorithm, the action is partitioned using a reviewed Fourier Temporal
Pyramid [84] and the classification is made by Random Forests. Another joint rep-
resentation is called HOJ3D [85], where the 3D space is partitioned into n bins and
the joints are associated to each bin using a Gaussian weight function. Thus, a pos-
ture is represented by an n-bin histogram and Linear Discriminant Analysis (LDA) is
performed to extract the dominant features, having a better discrimination between
different classes. Then, a discrete Hidden Markov Model (HMM) is employed to
model the temporal evolution of the postures, attained using a clustering algorithm.
In addition to k-means clustering, the use of sparse coding has been also proposed
for the creation of the codebook. In particular, Luo et al. [86] proposed the DL-
GSGC scheme, where the discriminative capacity of the dictionary is improved by
adding group sparsity and geometry constraints to the sparse coding representation.
A temporal pyramid is adopted to model the temporal information and a linear
SVM is chosen as the classification algorithm. Wang et al. [87] firstly considered
relations among body joints in the spatial domain, by grouping joints into different
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Figure 2.7.: Human activity recognition algorithm constituted by three steps: fea-
tures detection, posture analysis and activity recognition (reprinted
from [90]).

body parts. Then, the temporal relations of the body parts are obtained, and ac-
tions are represented by histograms of the detected part-sets. A human action can
be characterized also by a combination of static posture features, representing the
actual frame, consecutive motion features, computed using the actual and the previ-
ous frames, and overall dynamics features, which consider the actual and the initial
frames [88]. Principal Component Analysis (PCA) is adopted to obtain EigenJoints
from joint differences reducing redundancy and noise. A measurement of Accumu-
lated Motion Energy (AME) has been proposed to quantize the distinctiveness of
each frame and to remove the less significant frames. The Naive-Bayes-Nearest-
Neighbor (NBNN) classifier can recognize different actions. Taha et al. [89] also
exploit joints spherical coordinates to represent the skeleton and a framework com-
posed by a multi-class SVM and a discrete HMM to recognize activities constituted
by many actions. Other approaches exploit multiple machine learning algorithms to
detect postures and to classify actions. Gaglio et al. [90] divided the process of ac-
tion recognition in three steps, as shown in Figure 2.7. A set of features is extracted
from skeleton joints, then such a set is clustered by applying the k-means algorithm
in order to identify the postures involved in each activity. The validation of the pos-
tures has been obtained considering a multi-class SVM and a discrete HMM models
an activity as a sequence of postures. Also in [91], human actions are considered as a
sequence of body poses over time, and skeletal data are processed to obtain invariant
pose representations, given by 8 pairs of angles. Then, the recognition is realized us-
ing the representation in the dissimilarity space, where different feature trajectories

maintain discriminant information and have a fixed-length representation. Ding et
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al. [92] proposed a Spatio-Temporal Feature Chain (STFC) to represent the human
actions by trajectories of joint positions. Before using the STFC model, a graph,
called the Actionlets Graph, is used to erase periodic sequences, making the solu-
tion more robust to noise and periodic sequence misalignment. Slama et al. [93]
exploited the geometric structure of the Grassmann manifold for action analysis.
In fact, considering the problem as a sequence matching task, this manifold allows
considering an action sequence as a point on its space, and provides tools to make
statistical analysis. Considering that the relative geometry between body parts is
more meaningful than their absolute locations, a skeletal representation based on
3D relative geometry has been proposed [94]. The relative geometry between two
body parts can be described using the rotation and translation required to take
one body part to the position and orientation of the other. These rotations and
translations required to perform rigid body transformations can be represented as
points in a Special Euclidean group SE(3). Each skeleton can be represented as a
point in the Lie group SE(3) x SE(3) x --- x SE(3), and a human action can be
modeled as a curve in this Lie group. A nominal curve for each action category is
evaluated using Dynamic Time Warping (DTW) and all the curves are warped to
this nominal curve. The warped curves are represented using the Fourier Temporal
Pyramid (FTP) representation and a linear SVM is the chosen classifier. The same
skeleton feature is also used in [95], where Manifold Functional PCA (mfPCA) is

employed to reduce feature dimensionality.

Deep Learning methods, especially Convolutional Neural Networks (ConvNets)
and Long Short-Term Memory Networks (LSTMs), have been recently used in dif-
ferent tasks, among wich HAR. Wang et al. [96] proposed a new architecture to use
ConvNets, which can automatically learn discriminative features from data, with
relatively small datasets. Weighted Hierarchical Depth Motion Maps (WHDMM)
allows transforming the problem of action recognition to image classification by
converting the spatiotemporal motion patterns into spatial structures. Three WHD-
MMs are constructed from the projection on each cartesian plane. Three ConvNets
are trained on each WHDMM and the results are fused to produce the final classifi-
cation score. Shahroudy et al. [97] proposed to use the LSTM model which is aware
of the body structure. The memory cells of the LSTM are split into part-based sub-
cells and the long-term patterns are learned specifically for each body part. The
authors proposed also a new large-scale dataset, which can be efficiently used with
data-driven learning methods such as deep learning techniques.

Feature selection methods or optimization strategies may be adopted to improve
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Table 2.1.: State-of-the-art datasets for action recognition based on depth or skeletal
features, sorted from more quoted to less quoted according to Google
Scholar on January 3rd 2017.

Name Actions | Actors | Times | Samples | Citations | Year
MSR DailyActivity3D [84] 16 10 2 320 614 2012
MSR Action3D [68] 20 10 20r3 567 603 2010
UTKinect Action [85] 10 10 2 - 444 2012
MSR ActionPairs [66] 6 10 3 180 338 2013
CAD-60 [98] 12 242 - 60 281 2012
CAD-120 [99] 10 2+2 - 120 219 2013
RGBD-HuDaAct [100] 12 30 2or4 1189 211 2011
MSRC-12 KinectGesture [101] 12 30 - 594 197 2012
MSR Gesture3D [102] 12 10 2o0r3 336 159 2012
Berkeley MHAD [103] 11 7+5 ) ~ 660 110 2013
G3D [104] 20 10 3 - 61 2012
Florence 3D Action [105] 9 10 20r3 215 54 2012
ACT4 Dataset [106] 14 24 >1 6844 53 2012
LIRIS Human Activities [107] 10 21 - - 49 2012
3D Online Action [108] 7 24 - - 41 2014
UPCV Action [91] 10 20 - - 39 2014
WorkoutSu-10 Gesture [109] 10 15 10 1500 32 2013
KARD [90] 18 10 3 540 23 2014
UTD-MHAD [110] 27 8 4 861 22 2015
TAS-Lab Action [111] 15 12 3 540 21 2013
KSCGR [112] 5 7 - - 14 2013
NTU RGB+D [97] 60 40 - 56380 14 2016

the performance of HAR algorithms. These methods may increase the recognition
performance because they can select only the relevant features for an efficient dis-
crimination among the activities. Wang et al. [84] proposed a data mining solution
to discover discriminative actionlets, which are structures of base features built to
be highly representative of one action and highly discriminative compared to other
actions. Eweiwi et al. [113] proposed a HAR algorithm exploiting joints where the
pose feature is a weighted sum of all joint features. The weights are estimated by
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Table 2.2.: Three subsets of actions from MSR, Action3D dataset.
AS1 AS2 AS3
a06] High throw
al4] Forward kick
alb] Side kick

a0l] High arm wave

a04| Hand catch

[a02] Horizontal arm wave [a01] [206]
[203] Hammer [a04] [a14]
[a05] Forward punch [a07] Draw x [al5]
[a06] High throw [a08] Draw tick [a16] Jogging
[210] Hand clap [a09] Draw circle [217] Tennis swing
[a13] [al1] [a18]
[a18] [a12] [a19]
[a20] [a14] [a20]

al3] Bend all] Two hand wave [al&| Tennis serve

a18] Tennis serve al2] Side boxing al9] Golf swing

a20] Pickup & throw al4] Forward kick a20] Pickup & throw

Partial Least Squares (PLS). Jiang et al. [114] considered the contribution of all the
joints and construct informative joint set for each action class, in order to eliminate
the redundant joints. The analysis is based on the variation of moving distance of
each joint during an action instance and exploits differential entropy. Evolution-
ary computation has been successfully adopted in feature selection problems, and it
has also been considered for the optimization of HAR algorithms. Chaaraoui et al.
[115] proposed to use an evolutionary algorithm to find the optimal subset of joints,
considering also the topological structure of the skeleton, in order to improve the
classification rate. A particular model of evolutionary optimization is represented
by the coevolutionary algorithm, which considers several populations: individuals
in a population are awarded fitness values based on their interactions with individ-
uals from other populations. Interactions can be competitive, where individuals are
rewarded at the expense of those with which they interact, or cooperative, where
individual are rewarded if they work well with other individuals [116]. Cooperative
coevolutionary algorithms have been also applied to address feature and parameter
selection problems in HAR. Chaaraoui et al. [117] proposed an algorithm with three
different populations to find the best performing individuals for training instances,

skeleton joints and parameters related to the bag of key poses model.

2.2.3. RGB-D Datasets for human action recognition

The growing interest on HAR fostered some researchers to collect HAR datasets and
to provide them to the community. Having the same data can help to obtain a fair
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comparison among different algorithms. Vrigkas et al. [118] identified some issues
that should be addressed by a HAR dataset, such as the inclusion of still images
and/or video sequences. The data should be high quality and sufficient in terms
of amount, including a large number of subjects performing an action and a large
number of actions. The inclusion of complex backgrounds and variations in subjects’
poses may help to design a robust algorithm. Furthermore, datasets including video
data should include changes in illuminations.

A quite large number of datasets for human action (or gesture) recognition have
been recorded using RGB-D devices [119, 120], the most used ones are included
in Table 2.1. The datasets have been ordered considering the number of citations
stated by Google Scholar, that denotes the usage of each dataset by the researchers.
In this thesis, some datasets shown in Table 2.1 have been used to evaluate the
performance of the proposed HAR algorithms: MSR Action3D, KARD, CAD-60,
UTXKinect, Florence3D, NTU RGB+D.

The most used one is MSR Action3D [68], released in 2010, constituted by 20
activities performed by 10 actors, 2 or 3 times. In total, 567 sequences of depth
(320 x240) and skeleton frames are collected using a structured-light depth camera at
15 fps. Considering the skeleton frames, there are 557 sequences effectively available
because 10 instances are featured by missing skeletons or they are affected by too
many errors. The following actions and gestures are included in the dataset: high
arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw,
draw z, draw tick, draw circle, hand clap, two hand wave, side bozing, bend, forward
kick, side kick, jogging, tennis swing, tennis serve, golf swing, pickup and throw.
Due to its complexity, the dataset is usually evaluated considering three different
subsets, namely AS1, AS2, and AS3, shown in Table 2.2. Padilla-Lépez et al. [121]
reviewed the papers on action recognition considering MSR, Action3D dataset and
found that there are different evaluation schemes. Even if the most used one is
the cross-subject test defined by Li et al. [68], which considers actors 1-3-5-7-9
for training and actors 2-4-6-8-10 for testing, there are also other methods. Some
researchers used the cross-subject test with a different splitting: actors 1-2-3-4-5 for
training and 6-7-8-9-10 for testing while a more robust evaluation scheme considers
all the possible 5-5 splitting (252 combinations).

KARD dataset [90] includes 18 classes that can be divided into 10 gestures (hor-
izontal arm wave, high arm wave, two hand wave, high throw, draw z, draw tick,
forward kick, side kick, bend, hand clap), and 8 actions (catch cap, toss paper, take
umbrella, walk, phone call, drink, sit down, stand up). This dataset has been cap-
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Table 2.3.: Three activity sets considered from KARD dataset.

Activity Set 1 Activity Set 2 Activity Set 3

[a01] Horizontal arm wave [a02] High arm wave [a07] Draw Tick

[a03] Two hand wave [a10] Side Kick [a16] Drink

[a12] Bend [a04] Catch Cap [a17] Sit Down

[a15] Phone Call [a07] Draw tick [a15] Phone Call

[a18] Stand Up [a13] Hand Clap [all] Take Umbrella

[a09] Forward Kick [a09] Forward Kick  [a08] Toss Paper

[a06] Draw x [a12] Bend [a05] High throw

[al4] Walk [al7] Sit Down [a01] Horizontal arm wave

tured in a controlled environment, i.e. an office with a static background, and a
Kinect device placed at a distance of 2-3 m from the subject. Only some objects,
useful to perform some of the actions, were present in the area. The activities have
been performed by 10 young people (nine males and one female), aged from 20 to 30
years, with height between 150 and 185 cm. A total number of 540 sequences is pro-
vided because each person repeated each activity 3 times. The dataset is composed
by RGB and depth frames captured at a rate of 30 fps, with a 640 x 480 resolution.
In addition, 15 joints of the skeleton in world and screen coordinates are provided.
Gaglio et al. [90] proposed different evaluation experiments and two modalities of
dataset splitting on KARD dataset. In addition to the leave-one-actor-out cross-
validation setting, which consists in the adoption of nine actors for training and the
tenth for testing averaging the results obtained for each possible combination, the

proposed experiments are:

e Experiment A: one third of the data is considered for training and the rest for

testing.

e Experiment B: two third of the data is considered for training and the rest for

testing.

e Experiment C: half of the data is considered for training and the rest for

testing.

The activities constituting the dataset are split in the following groups:
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o Gestures (10 classes) and Actions (8 classes).

o Activity Set 1, Activity Set 2, Activity Set 3, as listed in Table 2.3. Similarly
to MSR Action3D, Activity Set 1 is the simplest one since it is composed by
quite different activities while the other two sets include more similar actions
and gestures.

The Cornell Activity Dataset (CAD-60) [98] contains 12 different activities, typi-
cal of indoor environments. The activities are rinsing mouth, brushing teeth, wearing
contact lens, talking on the phone, drinking water, opening pill container, cooking-
chopping, cooking-stirring, talking on couch, relaxing on couch, writing on white-
board, working on computer, and are performed in 5 different environments: bath-
room, bedroom, kitchen, living room and office. All the activities are performed by
4 different people: two males and two females, one of whom is left-handed. The
actors performed the activities without any specific constraint, the authors simply
ensured that the skeleton was correctly detected by Kinect. The dataset is composed
by RGB, depth and skeleton data, with 15 joints available. The most used evalu-
ation method is called new-person and, as the leave-one-actor-out cross-validation,
consists in the adoption of three actors for training and the fourth for testing.

The UTKinect dataset [85] is composed by 10 activities performed two times by
10 different subjects (9 males and 1 female). The following activities are part of the
dataset: walk, sit down, stand up, pick up, carry, throw, push, pull, wave and clap
hands. A number of 199 sequences is available because one sequence is not labeled,
and the length of sample actions ranges from 5 to 120 frames. The dataset provides
640 x 480 RGB frames, and 320 x 240 depth frames, together with 20 skeleton joints,
captured using Kinect for Windows SDK Beta Version, with a final frame rate of
about 15 fps. UTKinect dataset has been evaluated using the leave-one-sequence-
out cross-validation scheme, where all the sequences except one are used to train
the model, and the other is used for testing.

The Florence3D dataset [105] includes 9 different activities: wave, drink from a
bottle, answer phone, clap, tight lace, sit down, stand up, read watch, bow. These
activities were performed by 10 different subjects, for 2 or 3 times, resulting in a
total number of 215 sequences. The main difficult of this dataset is that the same
action is performed with both hands, and also the presence of very similar actions
such as drink from a bottle and answer phone. The activities were recorded in dif-
ferent environments, and only RGB videos and 15 skeleton joints are available. The

evaluation scheme for Florence3D dataset is the leave-one-actor-out cross-validation.
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The most recent dataset recorded using RGB-D sensors has been released in June
2016 and is called NTU RGB+D [97]. This is a large-scale dataset featuring a
high number of actors and a significant variation of their ages. Furthermore, the
dataset has been collected considering many actions (and interactions) and also
different views of the same action. NTU RGB+D dataset contains of 56880 RGB+D
sequences of 60 different actions performed by 40 different human subjects. The
set of 60 actions is constituted by 40 daily actions (such as drinking water, eating
meal/snack, reading, brushing teeth), 9 health-related actions (such as sneezing,
staggering, falling down), and 11 interactions (such as punching, kicking, hugging,
handshaking). The actors are aged between 10 and 35, ensuring a variety in age,
gender, and height. Three devices were used to capture at the same time three
different horizontal views from the same action (—45°, 0°, +45°). To further increase
the camera views, on each setup the height and distances of the cameras to the
subjects have been changed, with 17 setups and 80 different views. Microsoft Kinect
v2 has been used to collect RGB videos (1920 x 1080), depth maps and infrared
frames (512 x 424), together with skeleton data, represented by 25 joints for each
tracked person. Shahroudy et al. [97] defined two evaluation methods:

e cross-subject evaluation: the sequences performed by 20 actors are used as
training and the others as testing data. The subjects that have to be used as
training are: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35,
38. Training and testing sets are respectively constituted by 40320 and 16560
sequences but, considering skeleton data, the authors recommend to discard
302 sequences featuring missing or wrong skeletons. Therefore, there are 40091
training sequences and 16487 testing sequences using skeleton joints.

e cross-view evaluation: the sequences captured by different cameras are split
between training and testing. The sequences from cameras 2 and 3 are used
for training while data from camera 1 provide the testing set. After removing
the 302 noisy sequences, the training set has 37646 samples (instead of 37920)
and the testing set has 18932 samples (instead of 18960).
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Chapter 3.

Depth-based algorithm for side-view
mobility assessment

The analysis of the sagittal plane may be relevant for the evaluation of mobility
assessment tests, especially because the observation of some angles, in particular
the torso angle, can be useful to the fall risk assessment. Microsoft Kinect sensor,
using Microsoft SDK [122] or OpenNI libraries [123] with NiTE middleware, allows
the extraction of skeleton joints to estimate people’s movements. Since these algo-
rithms were designed for gaming purposes, they work quite well when the human
is in frontal view but they struggle in the skeleton estimation in side view. In this
chapter, an algorithm based on depth data provided by Kinect is proposed to ex-
tract 6 joints in the sagittal plane of the human, while is performing the sit-to-stand
movement followed by some steps. The performance of the algorithm is compared
with the available solutions for markerless joints estimation (Microsoft and OpenNI),
considering IR markers as ground-truth. Finally, a further validation process has
been carried out with a stereometric system as a reference.

Preliminary results of the method described in this chapter have been published in
[124], while a more detailed description of the algorithm and the validation process
is included in [125]. The validation of the proposed joint estimation algorithm with

a stereometric system has been published in [126].

3.1. Algorithm description

The algorithm exploits only depth data captured by Kinect and extracts z, y, z
coordinates of six skeleton joints extracted from the side view of the human: head,
shoulder, elbow, hip, knee, ankle. The tracking of the coordinates in subsequent
frames allows to describe the movements when the subject stands up from a chair
and makes some steps. The system is consituted by three phases, and the global
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scheme is sketched in Figure 3.1. Depth and RGB frames captured from the three
different steps of the global algorithm are shown in Figure 3.2. The three steps are
listed here and explained in details in the following sections:

1. construction of a background depth frame: as can be noticed from Figure 3.2(a),
it represents the test setup, where only the chair is present in the coverage area
of the sensor;

2. analysis of the front-plane pose: the subject is oriented towards the sensor
standing at a fixed distance from it, with outstretched arms and open hands
(see Figure 3.2(b)). In this configuration, considering anthropometric models
[127], it is possible to detect the joints of interest and to compute the distances

between them. The distances information is then used in the next step;

3. trajectory estimation phase: the algorithm identifies and tracks the joints while
the human subject is performing the test, which starts from sitting position
as shown in Figure 3.2(c). The trajectory of the movement performed by each
joint is obtained by interpolating the coordinates calculated at each frame.

The choice to split the algorithm in three separated phases may seem a non
conventional approach, and partially derives from the choice of not using a machine
learning algorithm. In particular, the background acquisition phase helps to extract
the human silhouette and, since the test is usually implemented in a controlled
environment, it does not limit too much the system applicability. The second phase,
where the human shape is analyzed in the front-plane pose, is required to calculate
distances between some joints, but it can be avoided once these parameters related
to the subject performing the test are known, for example if the same person has
been already considered by the system. The global algorithm could be also further
simplified removing this phase and introducing by hand the distances among some
joints. The third presented phase is required for the estimation of skeleton joints,
and it needs the background frame and the joint distances.

3.1.1. Construction of background depth frame

The first phase, which aims to the estimation of the background depth frame, consists
in the capture of the test setup. This setup is composed by a Microsoft Kinect
sensor placed at an height of 92 cm from the floor and at a distance of 330 cm
from a wall. These values are within the range allowed by the manufacturer and
represent a tradeoff between pixel density and sensor coverage area. In fact, the
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Analysis of the front-plane pose

Human shape in Joints and distances Anthropometric
front-plane pose (HF) estimation relations

Background
depth frame (BF)

Construction of
background depth frame

Current frame 4

Human shape Joints estimation
in current frame in current frame

Trajectories

Trajectory estimation phase *

Figure 3.1.: Main steps of the proposed joints estimation algorithm working in side
view.

pixel density would increase locating the sensor closer to the wall, probably leading
to an increasing of the accuracy in the estimation of the joints positions. On the
other hand, the coverage area would be reduced, restricting the height of people
admitted to the test. Kinect is sensitive to reflective surfaces, thus light reflections
from the floor, which can lead to wrong depth estimations, can be reduced with a
carpet. In order to create a background frame (BF') with a reduced variability of
depth data, 100 consecutive depth frames are captured at a rate of 30 fps. The
background frame, with a resolution of 320%240 pixels, is obtained by averaging
each pixel value in time. The background acquisition process should be performed
with only the chair present in the scene, as visible in Figure 3.2(a). The chair should
preferably remain in the same position during the following steps of the algorithm.
Movements of the chair can generate some artifacts from the background subtraction
step, which have to be removed by filtering.

3.1.2. Analysis of the front-plane pose

The estimation of joint distances is performed in front-plane pose, where the subject
is placed approximately at a distance of 3 m from the sensor. This configuration is
shown in the “Front-plane pose” depth frame in Figure 3.1 and also in Figure 3.2(b).
Let DF(z,y) be the depth information at the pixel identified by column x and row
y in the DF', and BF(x,y) the equivalent in the BF. The foreground frame (F'F')
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Figure 3.2.: Depth maps and RGB images of the three main steps of the algorithm.
(a) construction of background depth frame; (b) analysis of the front-
plane pose, for the estimation of the distances; (¢) trajectory estimation
tracking (start position).

value in (z,y) is obtained with the application of equation (3.1):

FF(z,y) = (3.1)

0, if |DF(xz,y) — BF(z,y)| <Th

1, otherwise

Foreground pixels are distinguished from background ones using a threshold (7'h)
set at a value of 150 mm. Such a threshold has been set to correctly recover the
most critical part of the human body that are the feet.

The foreground objects are processed considering the algorithm that finds con-
nected components, and the biggest shape represents the human silhouette, labelled
as “Human shape in front-plane pose” (HF') in Figure 3.1.

The algorithm processes the human silhouette exploiting anthropometric relations
to locate the joints. Then it computes the distances between some of them and,
thanks to the rigidity of the skeleton structure, the same distances are used also
in the last phase, during the execution of the test. At first, the software needs
to identify the head-joint coordinates (J}t,, J,Zl’d), and the algorithm implements the
steps described in Algorithm 3.1 and in the following on the HF frame:
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Figure 3.3.: Upper body section of human shape. The algorithm identifies
rowMaxzDim, which represents the top of the shoulders, searching
within the interval bounded by startRow and last Row.

1. the difference between indices of the bottom and top rows of pixels belonging
to the human silhouette represents the parameter humanH eight;

2. the head-joint search starts from a specific row of the frame, named startRow.
This row is located 100 mm below the first row of the silhouette in HF'. Real
world coordinates system [Xy Yy Zg]" (given as mm) and the depth frame
coordinates system [zq yq 1]7 (given as pixels) are related by the equation

(3.2):
Xg xq
Yd - Kd_l yd A (32)
Zq 1

where K is the matrix of intrinsic parameters of the depth camera. Equation
(3.2) can be applied knowing the calibration parameters of depth camera and it
allows the translation of anthropometric relations, which are calculated in real-
world, into distances valid in the depth frame domain, where the coordinate

system is represented by pixels;
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3. for each analyzed row, the number of columns belonging to the human shape
is computed. The row index is increased by 40 mm (incRow) every step and
the process stops when the index difference between startRow and the last
row considered (defined as last Row) equals one third of humanHeight. Since
the idea is to find the shoulders, the stop condition has been set making the
assumption that they are located in the upper part of human silhouette. This
step is shown in Figure 3.3;

4. the row featuring the maximum difference in the number of computed columns
with respect to the previous one is called rowMaxDim. This row identifies
the top of the shoulders, as can be noticed in Figure 3.3;

5. the quantity shiftRow is defined as the difference between row M axDim and
the first row that belongs to the human shape (firstRow), divided by 3;

6. the y-coordinate of the head-joint (.J/,) is identified by adding the quantity
shiftRow to the first row of the human shape;

7. the central pixel of the human shape in J},; gives the z-coordinate of the head
(Jha)-

The row of the frame at which shoulders are located is identified as a shift of 40
mm below rowMaxDim. Once the first and the last column occupied by the hu-
man silhouette are identified, another horizontal shift of 40 mm, starting from the
edges and going towards the inner part of the silhouette, is applied to locate the
z-coordinate of left and right shoulders.

The application of anthropometric relations is required to find the hip-joint y-
coordinate, knowing the height of the head. The difference between the first row
containing the human shape and rowMaxzDim, reduced by 100 mm which models
the neck height, gives the head height. The multiplication of head height and a
coefficient c is necessary to obtain the vertical distance between the y-coordinate of
the hip and the top of the head. This coefficient depends on the ratio (R) between
humanHeight and the head height, and it has been estimated using data in [127],
which have been used to construct Table 3.1. Each dataset has an identification
number, i.e. 7 for the “AIR FORCE WOMEN-1968” set, 51 for the “I'TALTIAN
MILITARY-1961” set, and so on, which is listed in the first column of Table 3.1.
The ratio R, in the fourth column of Table 3.1, is evaluated considering the ratio
between Stature (identified by the code 805 in [127]) and the height of the head (code
595). The hip joint distance from the floor can be assimilated as Buttock Height

34



3.1. Algorithm description

Algorithm 3.1 Extraction of head joint coordinates in analysis of the front-plane

pose.

Input: HF, firstRow, startRow, last Row, incRow

1:

_ = = =

dif fColMazx + 0
actNumCol < 0
actRow <+ startRow
while actRow < lastRow do
prevNumCol < act NumCol
actNumCol < number of columns of act Row in HF
if actNumCol — prevNumCol > dif fColMax then
dif fColMazx < act NumCol — prev NumCol
rowMaxDim < act Row
end if
actRow < act Row + incRow

: end while

: shiftRow < (rowMaxDim — firstRow)/3
14:
15:

J, + firstRow + shiftRow
Ji, < central coordinate of HF in J},

Output: (J&;, J})

(code 188), which is stated in fifth column. The subtraction of the Buttock Height
to the Stature value, whose results are contained in sixth column, gives the distance

between the top of the head and the hip joint. The ratio between the quantity in

the sixth column and the height of the head results in the coefficient ¢, which can
be used later to calculate the row of the hip knowing the height of the head. The
following conditions are obtained by relating the quantity R and the value of ¢ from
the data in Table 3.1:

32 R<64

34 64<R<T72
36 7T2<R<T75
3.8 7TH5<R<S8
4 8§ <R <838
42 R >8.8

Joints from the lower part of the body should also be estimated, and this process

starts from the identification of the row where the ankle joint is located. Such a row

is found by decreasing the index of the last row of the human shape by 40 mm.

Another anthropometric ratio is used in the computation of the knee. The height
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Table 3.1.: Estimation values for the ¢ coefficient that considers anthropometric
models.

Stature (S) Head Height R B. Height (BH) S — BH

Dataset c
(cm) (cm) (cm) (cm)
10 161.3 22.56 7.15 84.14 77.16  3.42
8 162.77 22.08 7.37 82.08 80.61 3.65
7 162.1 21.91 7.4 82.21 79.89  3.65
9 161.92 21.76 7.44 82.09 79.83  3.67
51 170.62 22.31 7.64 86.56 84.06  3.77
21 174.72 22.45 7.78 89.95 84.77  3.78
20 177.1 22.4 7.9 91.16 85.94  3.84

of the human is multiplied by a coefficient of 0.2 to obtain the distance between the
ankle and the knee. This coefficient is also obtained from [127] using the follow-
ing measurements: Knee Height Sitting (529), Medial Malleolus Height (579) and
Popliteal Height (678).

The area of the left arm of the person is processed to extract the remaining joints.
Once the left arm is found, by looking for a gap in the column indices in the left part
of the body, the left wrist is located considering a distance of the half of head height
to the ends of the hand. The distance between shoulder and wrist is computed, and
the elbow can be located in the middle of this range.

The next step of the algorithm exploits the following distances: head-shoulder
(HS _dist), shoulder-elbow (SFE _dist), elbow-wrist (EW _dist), ankle-knee (AK _dist)
and knee-hip (K H _dist).

3.1.3. Trajectory estimation phase

The third step starts with the identification of the human shape in the depth frame,
as described in the previous phase related to the analysis of the front-plane pose.

The distance quantity named shiftRow is exploited to find the the head joint,
starting from the first row belonging to the human. The joint is placed in the middle
of the shape in the row derived by averaging the pixel column indices that belong
to the human silhouette.

In order to locate the remaining joints, it is necessary to extract only the side of
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Algorithm 3.2 Extraction of shoulder joint coordinates in trajectory estimation
phase.
Input: HF _side, HS dist, (J§,;, J},)
1 JY «— J, + HS dist
7 <« central coordinate of HF _side in JY,

-1 |Jhd sh‘
| hd ™~ ‘

HS shift, HS dist - sin ()
HS _shift, < HS_dist - cos (c)
T Ty~ HS shift,

J +— Jyd + HS_shift,
Output (J%, J%)

o + tan

the human silhouette which is closest to the sensor. This allows to reduce the area
of the human, considering that the joints should be placed only on one side of the
person, thus avoiding the detection of the leg which is closer to the wall while the
person is walking. The side selection requires initially to find a depth value of the
human closest side, which can be obtained through multiple steps. One row of the
leg, exactly in between the ankle and knee joints, has been considered to extract the
lowest depth value. With the aim of mitigating fluctuations due to noise, a square
sub-matrix of the AK _dist side is selected around the pixel showing the minimum
value. In this region, the pixels for which the difference of their depth value from
the depth value of the central pixel overcomes the sideManThreshold (80 mm),
are filtered. By taking into account the remaining pixels, the average depth is
calculated and this value is set as the distance between the human and the sensor.
Based on this distance, the frame containing the side part of the human shape
(HF_side) is estimated removing the pixels for which the depth value overcomes
the sideManThreshold value.

The distance HS_dist is used to find the shoulder joint, identified by (J%,,J%,),
from the head, initially assuming a vertical alignment with the two joints. After the
identification of the vertical coordinate, the corresponding column is computed by
averaging the first and last columns belonging to the human shape. The estimation
is then improved to take into account a possible inclination of the torso, which can
be relevant especially during the sit-to-stand phase. In fact, the segment connecting
the joints needs to be equal to HS_dist considering the head-shoulder angle. This
process is described in Algorithm 3.2.

Only the pixels belonging to the arm are selected to extract the elbow joint. This
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0= 178° (Stop) 0= 2° (Start)

Figure 3.4.: Elbow and hip identification procedure. Two rotating vectors, anchored
in the shoulder and knee joints, are exploited to identify elbow and hip
coordinates respectively.

selection process follows the same approach used to extract the side of the human
shape. Considering only the arm area and starting from the shoulder joint, a vector
of length SFE _dist is rotated from 6 = 2° to § = 178°, as shown in Figure 3.4. The
number of overlapping pixels between the vector and the arm region is calculated
at each step. The orientation featuring the maximum number of matching pixels
is chosen as the final orientation of the vector, and the elbow position is therefore
extracted.

The joints belonging to the lower part of the body are estimated independently
from the upper part. The ankle joint is located similarly to the head joint, by apply-
ing a shift from the last row belonging to the human. The knee joint is positioned
with a first vertical identification of the kneeRow by AK _dist and a subsequent
adjustment, by considering the angle between knee and ankle, in a similar manner
to what has been done for the shoulder joint (see Algorithm 3.2). The hip joint es-
timation, similarly to the process required by the elbow, exploits a vector of length
K H _dist, anchored in the knee joint, which rotates from v = 4° to the best matching
angle by 2° steps, as shown in Figure 3.4.

At the end of the described process, the coordinates of the six skeleton joints are
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Figure 3.5.: Depth frame in side-view where the six estimated joints are positioned.

known, and they can be represented in the depth frame. Figure 3.5 shows the side
view of the human shape in the depth map, before the execution of the test. Each
joint is represented by a cross: starting from the top it is possible to identify head,
shoulder, elbow, hip, knee and ankle joints.

The execution time of the MATLAB implementation on a depth frame with a
resolution of 320 x 240 can give an idea of the computational requirements of the
algorithm. A desktop PC equipped with an Intel i7 Windows 8.1 and 8GB RAM
can process a depth frame in 51 ms, in average. Considering that the Kinect sensor
provide frames with a rate of 30 Hz, an optimized C++ implementation could run

at real time.

3.2. Performance analysis

The performance of the algorithm has been validated considering a marker-based
algorithm as a reference, and by comparing the accuracy in the identification of the
six joints with other markerless estimation algorithms, provided by Microsoft SDK
(Algorithm 1) and OpenNI libraries with NiTE middleware (Algorithm 2). Since the
Microsoft Kinect sensor allows capturing infrared data, IR reflective sticky markers
have been attached on the human body to identify the real joint positions. The
infrared frame with IR markers placed on the body of a subject ready to perform
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(a)

Figure 3.6.: (a) Infrared frame captured by the Kinect sensor showing a human
subject with IR active sticky markers identifying the joints. (b) Blobs
extracted from the IR frame, associated to joints coordinates.

the test is shown in Figure 3.6(a). The positions of the six considered joints are easily
identifiable by applying a blob detection algorithm, as shown in Figure 3.6(b), where
each blob is associated to a joint index.

The procedure to validate the algorithm has been performed in a laboratory en-
vironment, as shown in Figure 3.2. However, the same setup may be reproduced
in any other indoor environment where the aforementioned distance conditions are
respected. The validation experiment requires the execution of the two preliminary
steps of the joints estimation algorithm, which consist in the creation of the back-
ground depth frame and also the computation of distances among the parts of the
subject’s body. Then, to validate the test execution, the IR active sticky markers
that identify the joints are applied on the subject. When the subject is seated on
the chair and ready to perform the test, the data acquisition process starts. During
the test execution, the subject stands up and steps forward along a distance of a
few meters. The data acquisition stops when the subject has performed some steps
and she is standing. A sequence of frames extracted from one execution of the test

is shown in Figure 3.7.

A specific acquisition tool, which is called Skeletal viewer and detailed in Chapter
A, has been developed to capture multiple streams from Kinect simultaneously. This
software exploits Kinect for Windows SDK to capture and store the following data

streams:
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Figure 3.7.: Sequence of frames extracted from one execution of the test. The blue
circles are the joints estimated by the Proposed algorithm.

e depth frames, used by the Proposed algorithm and Algorithm 2 to compute
joint coordinates;

e IR frames, used to extract the joint positions identified by markers, which

represent the ground-truth;
e skeleton frames, computed by Algorithm 1 and used for comparison.

The trajectories of the joints estimated by the four tracking systems can be com-
pared by evaluating the euclidean distance among the joint coordinates in the frame
domain of dimensions 320 x 240 pixels. Being J{,, (k) and J/, (k) the z and y co-
ordinates of the i-th joint in the k-th frame for the marker-based method (m) and
being J7,(k) and JJ, (k) the same coordinates obtained by the Proposed algorithm
(p), the magnitude of the difference vector D;(k) is given by:

Di(k) = ¢ (2, () — Jgp(k)f + (T2 () — Jf{p(k))Q (3.4)

The computation can be repeated for the entire test, which is constituted by multiple
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Figure 3.8.: Head joint trajectories revealed by the analyzed algorithms. The tra-
jectories are constituted by the (x,y) joint coordinates at each frame.

depth frames (K), and it is possible to define a vector D; for the i-th joint:
D; = [D;i(1),D;(2),--- Di(K)],  i=1,2,...6 (3.5)

The same quantities can be computed for Algorithm 1 and Algorithm 2 and used
for comparison.

The Proposed approach shows a better trajectory estimation in most of the cases,
if compared to Algorithm 1 and Algorithm 2. Figure 3.8 shows the trajectories
of the head joint during a single execution of the test. The curve named Marker,
revealed by the IR marker trajectory, is better approximated by the Proposed one,
in comparison to Algorithm 1 and Algorithm 2.

The differences D; provided by the three analyzed markerless systems with respect
to the Marker system, for all of the joints estimated during the same test execution,
are shown in Figure 3.9. The head joint estimation given by the Proposed solution
is featured by a lower error, as can be noticed also in Figure 3.9(a), where smaller
values and reduced variability of the vector D; affect the Marker-Proposed curve.
The algorithm Proposed does not suffer from the fluctuations that affect Algorithm
1 and 2. In particular, considering the shoulder joints shown in Figure 3.9(b), large
errors for the Marker-Algorithm 2 curve are revealed when the subject is getting
up from the chair, and he is tilted forward (around frame index 35). The Marker-
Algorithm 1 curve is also featured by large errors during the sit-to-stand in the lower

42



Marker - Proposed
Marker — Algorithm 1 4
Marker — Algorithm 2

o
©
X
k=]
a
0 20 40 60 80 100 120
frame index
(a)
25 T T T T T
Marker - Proposed
Marker — Algorithm 1
Marker — Algorithm 2
20
— 15
)
]
X
k=]
o
a
10
5
0 . .
0 20 40 60 80 100 120
frame index
()
40 T T T T T
Marker - Proposed
L Marker - Algorithm 1 |
35 Marker - Algorithm 2
O Null Values
30
251
o
]
2
8 20t 1
©
a
15 al
10 1
5 1
0 . S
0 20 40 60 80 100 120
frame index

Figure 3.9.:

()

Magnitude values of the difference vectors

3.2. Performance analysis

Marker - Proposed
Marker — Algorithm 1 |
Marker — Algorithm 2

D2 [pixels]

W

0 L L L

I

0 20 40 60
frame index

(b)

60

80 100 120

Marker — Proposed
Marker - Algorithm 1
501 = Marker - Algorithm 2
O Null Values

a
S

1N
S

D4 [pixels]

A\

v

O__NA‘—A—'V\_J‘

0 20 40 60
frame index

(d)

30 T T T

80 100 ~ 120

Marker — Proposed

Marker — Algorithm 1
Marker — Algorithm 2| |
O Null Values

N
=]

o

De [pixels]

50
frame index

(f)

40

PR )

D; computed for different

joints: (a) head, (b) shoulder, (c) elbow, (d) ankle, (e) knee and (f) hip,

evaluated over a test execution.

43



Chapter 3. Depth-based algorithm for side-view mobility assessment

Table 3.2.: Statistical parameters associated with differences D;, expressed in pixels.

Joints Marker-Proposed Marker-Algorithm 1 Marker-Algorithm 2

,u o W o I o
head 2.33 1.14 5.89 3.02 5.52 2.83
shoulder 4.42 2.14 5.35 2.44 7.44 4.89
elbow 4.02 2.00 5.46 2.05 8.17 4.50
ankle 3.04 3.00 5.27 3.86 12.30 13.11
knee 3.51 1.80 7.94 5.71 9.95 8.10
hip 7.25 3.70 11.07 6.32 10.05 5.21

part of the body, shown in Figures 3.9(d-f). Ankle and knee joints are also subjects
to wrong estimation in the final part of the test, as shown in the Marker-Algorithm
2 curve of Figures 3.9(d,e).

One or more IR markers used for validation can get hidden to the sensor due
to some movements of the subject. If this condition happens, as in Figures 3.9(d—
f), the position error cannot be evaluated, and a null value is considered in the

corresponding frame of D; vector.

Considering each vector D, its average (u) and standard deviation (o) may be
assumed as global performance parameters of the algorithm. Table 3.2 shows the
statistics of the different algorithms evaluated against the marker-based one, for the
same test realization. The Proposed system allows to have lower values of pu and o
for all the estimated joints. It shows the best performance for the standard deviation
of the head joint, while the hip joint has the highest average value and variability

in the set of joints analyzed.

The different algorithms are finally tested on a dataset of 18 test executions per-
formed by different subjects, with a range of human heights from 1.6 to 1.85 meters
and various body sizes. Figure 3.10 shows the mean u and standard deviation o for
each joint, averaged over 18 test executions. The considerations for one test made
looking at Table 3.2 can be also derived looking at Figure 3.10 summarizing the
results. Head and shoulder joints are characterized by low error values while ankle,
knee and hip joints show larger errors. The Proposed algorithm is featured by lower
average and standard deviation values for all the joints, with a bigger error featuring
the hip joint. The most important noise is in the estimation of the ankle joint for
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Il Marker — Proposed
[ Marker — Algorithm 1
Il Marker — Algorithm 2

20—

o
T

Average (1) and standard deviation (o) of error [pixels]

HEAD SHOULDER ELBOW ANKLE KNEE HIP

Figure 3.10.: Performance comparison of the Proposed algorithm, Algorithm 1 and
Algorithm 2 versus the marker-based system over 18 test realizations.

Algorithm 2.

3.3. Validation with stereometric system

A validation procedure has been carried out considering the accuracy in the estimate
of knee and hip joint angular values during the sit-to-stand (STS) test. The reference
system is represented by the the gold-standard approach for 3D kinematic analysis:
an optoelectronic stereometric system constituted by six cameras (SMART-D, BTS).
The 3D positions of passive retroreflective markers placed on suitable anatomical
landmarks of the body surface can be obtained with this system.

The system setup for this validation process is similar to the one adopted in the
analysis of the performance with the IR sticky markers. The presence of a stereo-
metric system providing ground-truth coordinates of markers is the main difference.
The validation process is performed only for the sit-to-stand phase (STS) and the
evaluation metric is the error in the estimation of torso and knee angles calculated
from the joint coordinates. For each realization of the STS test, the following data
are recorded:

e coordinates of markers, provided by the stereometric system, consisting in a
set of x, y, z coordinates revealing the position of each IR marker;
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e depth frames, provided by Microsoft Kinect sensor, which are used by the
Proposed joint estimation algorithm and by the OpenNI one (Algorithm 2);

e coordinates of the skeleton joints, estimated by the Microsoft SDK algorithm
(Algorithm 1) exploiting Kinect sensor.

The Skeletal viewer tool has been used to capture data from Kinect vl and the
proprietary software provided by the manufacturer of the marker-based system has

been also used during the data acquisition process.

3.3.1. Data synchronization

The computation of a performance index needs the realization of a correspondence
between samples of different systems, which requires to solve some issues. Firstly,
it is not possible to synchronize the data when they are received by the machine
because the two systems involved (Kinect and stereometric system) are running on
different platforms. This implies that the starting capture time of marker-based
and Kinect-based algorithms are slightly different. The recorded data do not start
when the subject is seated on the chair and ready to perform the test, but when
she is standing in front of the Kinect sensor. This procedure is required to use the
OpenNI library to compare the performance because it works offline on captured
depth data and it needs to see the human in frontal view to start the skeleton
tracking. Therefore, there is the need to discard the initial portion of the captured
data before the evaluation process. Secondly, the acquisition systems have different
sampling rates: the stereometric system captures marker coordinates with a rate of
100 Hz, while the Kinect-based application provides depth frames at approximately
30 fps.

Solving the former issue requires finding the time indices in the sets of marker
coordinates, depth frames and SDK joints coordinates, that represent the starting
points of the STS test. The different data streams captured from Kinect are syn-
chronized to each other by using frame timestamps, so it is sufficient to associate the
frame index of the marker-based system to the corresponding index of a frame ob-
tained from Kinect. The idea consists in the correlation of the head joint trajectories
in both systems (Kinect and Marker). The choice of the joint/marker of the head
derives from the consideration that it represents the best identified skeleton point,
and also from the fact that it features a movement that can be easily detected. Due
to the setup configuration and adherence of marker and SDK skeleton coordinates
systems, the frames of interest for the STS test occur after the minimum of the
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Figure 3.11.: (a) Trajectory of head marker z-coordinate (J,,,,). (b) Trajectory of
head joint z-coordinate extracted by Algorithm 1 (Jy 41)-

x-coordinate of head marker/joint. Figure 3.11 shows the values of the z-coordinate
of head in the marker-based system (Jj, ,,) and in the Microsoft SDK one (Jjj; 41),
for all the recorded frames of one test execution. Figure 3.11(a) shows that the min-
imum of J, ,, is near to the sample 1000, while Figure 3.11(b) denotes a minimum
of Jj 41 around the frame 300.

The offset computation between the two trajectories requires additional steps:

e extraction of the remaining portions of the curves, starting from the found

indices, and in their interpolation, to reach the same sampling rate of 1 kHz.

e overlap of the interpolated curves and computation of the error, defined as the
euclidean distance, for different shift values;

e definition of the offset between the markerless and the marker-based systems
as the shift value that results in the minimum error.

Figure 3.12 shows the overlap of Jigfd,m and J,fdAl, both interpolated and starting
from their respective minimums. As the Figure 3.12(a) shows, there is an offset
between the two trajectories, that can be compensated after its evaluation, as in
Figure 3.12(b).

More in detail, the procedure for the evaluation of the time offset, is composed by

multiple steps:

1. Selection of the portion of interest of the marker-based curve. Considering the
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Figure 3.12.: Overlap of head marker/joint z-coordinate after interpolation and am-
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plitude scaling. The overlap is realized before (a) and after (b) offset
compensation.

J}fdm vector, with a length of N samples, the sample n,,4,_m is defined as:

Tt (omaz ) = max { Ty (n)}, n=1,2,... N (3.6)

The first sample (n;) that satisfies (3.7) is the starting point of the selected
curve, and it is given by:

ny = min{n} | J;fd’m(n) - J}fd,m(l) >Thy, n=2,3,...,%mazm (3.7)

where the threshold Th; = (Jﬁfd’m(nmaxfm) - J;"fdm(l)) /10 represents the
10% of the z-coordinate range [Jjj; (1), Jig m(mazm)]. The end sample of
the selected curve is represented by the last sample (ng) that satisfies the

following relationship:
ng =max{n} | Jpz(n) = Jham(N)>Tha, 7 =nmezm, -, N (3.8)

Where Th2 == (J}fd,m(nmaw,M) - J/fd,m(N)) /10

. Computation of the euclidean distance for different shifts. By defining as

Nmaz_A1 the sample showing the maximum value of Ji; 4, (equivalent of npmaz m
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32ms 32 ms 32 ms 24 ms

Figure 3.13.: Time axis in offset compensation.

defined in equation (3.6)), the quantity M can be defined as:

M = npmazm — Nmaz_A1 (39)

and it is used to set the amplitude of shifts, which goes from 0 to 2M. This
interval certainly allows to reach the overlap between the maximum of the
two curves. For each offset value (ngp), the euclidean distance between the

trajectories is evaluated as follows:

n2
= \J Z "]IfdAl(n) - Jlfd,m(n - nsh)|2v ngp = 0,1,...,2M (3'10)

n=ni
3. Evaluation of the shift that gives the minimum euclidean distance:
ne, =nsp, | di, = min{dg,} (3.11)

The offset between the two systems has been evaluated on the interpolated data,
which have a resolution of 1 ms, while the Kinect-originated data have a resolu-
tion variable between 32 and 37 ms. Assuming that the minimum value of Jy; 4;
corresponds to the frame index 240 and the found offset is 120 ms, the entire off-
set cannot be covered simply by changing the index of the frame from which the
processing starts. A sample situation is shown in Figure 3.13 where the considered
starting index is 243, which allows to compensate 96 ms. The remaining delay of 24
ms will be covered in the comparison phase, when the trajectories of angles between
joints will be interpolated, using the same approach.

3.3.2. Results and discussion

The passive IR markers used by the stereometric system have been positioned as
shown in Figure 3.14(a), plus an additional marker placed on the top of the head,
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Figure 3.14.: (a) Anatomical landmarks used by the stereometric marker-based sys-
tem. (b) Skeleton joints by markerless algorithms used for angles com-
putation.

used for synchronization. The markers correspond to Shoulder Acromion (AC),
Great Trochanter (GT), Lateral Epicondyle (LE), Head of Fibula (HF), Lateral
Malleolus (LM). Angles in the sagittal plane § and ~ are considered for compar-
ison purpose. The process of angles computation is slightly different because the
reference points in the marker-based system do not correspond exactly to the joints
estimated by Kinect algorithms, shown in Figure 3.14(b). The joints involved in
the computation of 0 and 7 angles are labeled as Shoulder (SH), Great Trochanter
(GT), Knee (KN), Lateral Malleolus (LM).

The angle § evaluated by the marker-based system at the k-th frame can be defined
as Op, 1. Considering a number of K frames that constitutes the entire test sequence,
the vector d,,, that considers all the angles of the test is given by:

Om = [0m,1,0m2, - Om K] (3.12)

By extending the same definition for the other Kinect-based algorithms, the vectors
0p, 041 and 42 can be defined for the Proposed algorithm, the Microsoft SDK-
based solution (Algorithm 1) and for the OpenNI one (Algorithm 2) respectively.
The error vector A,, , is defined as the absolute difference of the angles computed
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Table 3.3.: Statistical indices of angle errors (in degrees).
are not included.

3.3. Validation with stereometric system

Errors greater than 100°

A A
Test-ID  Angle P mAl A2
1 o 1 o 1 o
0 59 36 80 55 103 6.8
P1,
¥ 41 1.8 16.5 20.1 134 8.5
0 89 59 274 249 151 7.2
Pl,
~ 12.3 58 173 236 15.0 26.0
0 54 3.1 23.7 24.6 251 278
Pl;
¥ 6.2 6.3 204 350 220 288
) 48 21 276 349 131 102
Ply
y 57 74 259 282 120 6.2
0 40 3.2 36.0 430 - -
P2,
~ 36 25 535 367 — —
0 59 33 175 76 — —
P2,
¥ 1.9 1.5 200 259 — —
0 6.2 2.7 201 151 54 32
P25
¥ 1.6 1.1 195 192 6.7 44
0 54 35 153 81 608 533
P2,
y 26 1.7 115 7.6 155 125

by the reference system and the Proposed algorithm:

Am,p = |‘5m - 510‘

(3.13)

The same reasoning brings to the definition of A, 41 and A, 42 that can be com-

pared with classic statistical indexes, as average (u) and standard deviation (o).

The same indices are evaluated for angle v and the results have been obtained con-

sidering 4 runs of the STS test, performed by 2 healthy and young subjects. Results

are given in Table 3.3, where the Test-ID Pi; refers to the j-th repetition performed

by the i-th subject.
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Chapter 3. Depth-based algorithm for side-view mobility assessment

The following considerations, related to average and standard deviation values,
can be done on the results shown in Table 3.3:

e the Proposed algorithm is featured by lower average error values when com-
pared to Algorithm 1 and Algorithm 2 in almost all the test executions. The
only case when Algorithm 2 performs better is for § angle of P23. The average
error value is below ten degrees both for § and ~ angles in all the cases, except
for the v angle of Ply, which is 12.3°.

e The standard deviation (o) of the Proposed algorithm is lower than the other
markeless solutions in all the executions. The best o value is reached in the
estimation of v angle in the test P23 and it is 1.1°. The worst value (7.4°) is
also in the evaluation of the ~ angle, in test Ply.

The performance analysis of other Kinect-based algorithms from Table 3.3 demon-
strates that Algorithm 1 and Algorithm 2 are characterized by large values in terms
of average and standard deviation. Figures 3.15(a,c,e) show results relative to the
best performance test (P23) while Figures 3.15(b,d,f) are related to the worst one
(P1y). Trajectories of 0 and ~ angles have been smoothed considering a 150-points
moving average filter.

Looking at Figure 3.15(a) and 3.15(c), § and « angles computed using Algorithm 1
are affected by large errors, especially in the central part of the test, when the person
is tilted forward. The Proposed algorithm is not affected by large fluctuations and
is able to approximate the reference curve quite well, especially in v angle. An error
of about 10° is provided by Algorithm 2 when the person is tilted forward. Figure
3.15(e) shows that the § angle of the Proposed algorithm has an error of about 10°
in the first and in the last part of the test, while it is very low when the person is
tilted forward. The error related to v angle is lower than 5° during the entire test.

Considering the worst test, the J angle (shown in Figure 3.15(b)) is featured by
a larger error in the first part of the test while the error in the « angle increases in
the final part, as can be seen from Figure 3.15(d). Looking at Figure 3.15(f), even if
the average errors are about 9° for § and 12° for v angles, the Proposed algorithm
can still perform better than Algorithm 1 and 2.

By comparing the results for v and § angles, the Proposed algorithm is usually
able to better estimate «. The little displacement of the shoulder joint considered
by the marker-based and markerless models shown in Figure 3.14 can be the reason
of this fact. In average, for all the tests shown in Table 3.3, the Proposed algorithm
is characterized by an error of 5.8° for the § angle and 4.7° for the v angle.
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with stereometric system
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Figure 3.15.: Trajectories of § and v angles, and absolute error in § and + trajectories
between the Marker and the Proposed algorithms. (a,c,e) Data related
to the best performance test (P23). (b,d,f) Data related to the worst

performance test (Plg).
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Chapter 3. Depth-based algorithm for side-view mobility assessment

3.4. Conclusion

In this chapter, a depth-based method for joint estimation in side view has been
described. This approach can be used to extract parameters for the objective evalu-
ation of a mobility assessment test that requires to stand up from a chair and walk
for a short distance. The system is unobtrusive since it does not require to wear
any device or physical marker, and the main novelty is given by the operation on
the sagittal plane. The comparison with other markerless estimation algorithms,
provided in Microsoft and OpenNI SDKs, resulted in better performance in terms
of error in the absolute position and also in terms of the estimation of fundamental
angles during the sit-to-stand movement.

The performance in the estimation of torso and knee angles has been evaluated
considering a marker-based stereometric system as a reference. The computation of
the error has required a synchronization algorithm to associate the data captured
by different systems: the Kinect sensor and the stereometric system. In particular,
it has been necessary to compensate the different starting times and the different
sampling rates of the two capturing systems.

The proposed approach could be adopted in cases for which it is not possible to
place the sensor in front of the human, due to limitations of the environment, or

when it is required to perform the analysis on the sagittal plane.
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Chapter 4.

Depth and IMU based algorithm for
mobility assessment and fall detection

Mobility assessment tools, such as Timed Up and Go (TUG) test have been instru-
mented with different sensors and technologies, mainly vision-based devices or wear-
able sensors. However, the joint use of different technologies may help to overcome
the limitations of each one. The main problem arising from the use of acceleration
data from wearable sensors is the the lack of information about the context, which
may increase the number of false positives. On the other hand, vision-based sensors
provide a considerable amount of information but it is difficult to extract features
from raw data. A complication arising from the joint use of different devices is
the development of synchronization algorithms that have to be used to correctly
associate samples from different sensors.

The setup of the proposed system for TUG is shown in Figure 4.1, and it has been
chosen beacuse it can be easily implemented in a home environment, assuming to
have enough space. The wearable sensor is placed on the chest of the subject ready
to perform the test, while the RGB-D device is placed in front of the chair, at a
distance of about 3 meters from it, with an height of 1.5 meters from the floor. The
sensors are Kinect v2 and an IMU by SHIMMER Research [128]. The SHIMMER
sensor v1.3 is the one used in this work, and the main components of the IMU are:

e CPU: Texas Instruments MSP430F1611, 8 MHz clock, 8 channels A/D (12
bit);
e accelerometer: Freescale MMAT7260Q), 3 axis, range: £1.5/2/4/6 g;

e communication interface: Chipcon CC2420 IEEE 802.15.4 Transceiver, BT
class 2.

SHIMMER, firmware runs on TinyOS, which is an event-driven operating system
designed for sensor network nodes with limited resources. The firmware can be
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Chapter 4. Depth and IMU based algorithm for mobility assessment and fall detection

Figure 4.1.: Setup for Timed Up and Go test.

modified to define the structure of the packet where data are encapsulated or how
the data should be delivered to the PC.

Fall detection is another application that could benefit from the joint use of wear-
able and vision-based technologies. The same sensors and configurations presented
for TUG could be used for fall detection, allowing to design an integrated system
that could be installed in home environment. It can be set as working in fall de-
tection modality, and switched to the TUG modality when required. Fall detection
solutions using RGB-D sensors have been deeply investigated by other researchers
in literature. Considering RGB-D devices, many approaches are based on the pro-
cessing of raw depth data [129, 130, 131, 132, 133], whilst others exploit multiple
information, such as skeleton or RGB images [134, 135, 136, 137, 138]. Considering
the chosen setup, with the availability of skeleton data and the fusion with acceler-
ation samples, it is possible to design simple and effective fall detection algorithms,
able to discern between different types of falls and some Activities of Daily Living
(ADLs). It is worth clarifying that the use of the term ADL in this thesis does not
have to be intended in a clinical sense. The idea is to collect a dataset to be used to
test the fall detection algorithms and to label as an ADL any action/activity that is
very common in the selected scenario and for which the movements can be similar
to a fall.

The integrated system for fall detection and for the mobility assessment has been
described in [139]. The synchronization approach and the algorithms to extract pa-
rameters from the TUG test are detailed in [140] whilst the fall detection algorithms
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4.1. Synchronization algorithm

Figure 4.2.: System configuration with Kinect v2 and SHIMMER IMU connected to
the same PC through USB and Bluetooth connection.

have been presented in [141].

4.1. Synchronization algorithm

As briefly introduced, a synchronization procedure has to be implemented to cor-
rectly associate samples generated asynchronously from different sources, and to
be sure that events captured by different sensors refer to the same observed phe-
nomenon. The system configuration consists in a RGB-D sensor connected via USB
port to a PC and an IMU linked via Bluetooth to the same machine. As can be no-
ticed in Figure 4.2, the communication between Kinect and the PC is unidirectional
because the data retrieval can only be activated or deactivated using APIs while the

programmable firmware running on the IMU enables a bidirectional communication.

The synchronization issue between the Microsoft Kinect and a wearable sensor
is shown in Figure 4.3(a), where the time axes of the three devices involved in
the data acquisition process are shown: time axis of Kinect (tx), PC (tpc) and
Inertial Measurement Unit (tpu). Data are affected by a delay between the time
of their capture and the time of arrival at the PC and different delay contributions
are involved in the process of acquisition and transmission of data from the sensors
to PC. A synchronization process simply based on the time of arrival at the PC
may be not accurate. The transmission time of Bluetooth packets is influenced by
the channel conditions. The acceleration samples, which are captured with a fixed
sampling time (ts), are usually separated by different delay times when received at
the PC (tq1, taz,...). The problem of synchronizing devices that are connected via
Bluetooth (the PC and the IMU node in this case) has been addressed previously by
Waéhslén et al. [142] using linear regression, and the result is visible in Figure 4.3(b),
where the delay between consecutive samples from IMU is equal to the sampling
time (ts). The synchronization of Kinect and PC has to follow a different approach
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Figure 4.3.: (a) Delay times of Kinect and wearable device connected to a PC; (b)
same delay times after linear regression.

because it is not possible to have access to the sensor internal clock, and to obtain
a timestamp related to the acquisition of each frame. The total delay time of a
Kinect frame is made up two contributions: the exposure time (tgxp), which is the
time required to acquire data, and the transmission time (tx), which is needed to
encapsulate and to send data to the PC. Once these times are computed and known,
they can be exploited to synchronize data from the RGB-D sensor to the PC, and
consequently to the IMU.

Considering the situation shown in Figure 4.3, if a Kinect frame and an acceler-
ation sample would be associated considering only the time of arrival, without any
synchronization procedure, the frame F; would correspond to the sample Sg and the

frame Fy to Sg. The implementation of a synchronization algorithm should correctly
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Figure 4.4.: (a) Time of arrival at the PC for Kinect frames and IMU samples, cor-
related to the their indices; (b) same delay times after linear regression
performed on the timestamps of IMU samples.

associate the frame F; to the samples S3-S4, and the frame Fo to Sg-S7.

4.1.1. IMU packets synchronization

The synchronization of IMU samples with the PC is based on linear regression, since
the only problem with this type of data is related to the Bluetooth communication
that sometimes does not deliver packets with the same rate, but it may send bursts
of data with a very low delay and no data for another time. This phenomenon
can be noticed in Figure 4.4(a), where the z-axis of the plot is represented by the
timestamp taken when the packet from IMU or the frame from Kinect arrive at the
PC, and y-axis is the number of the sample. The amount of data received from the
IMU is much greater than the number of frames captured by Kinect, because the
sampling rate of the Shimmer is 10 ms while Kinect outputs data approximately
every 33 ms. Using a linear regression algorithm, the curve related to the wearable
device is linearized, obtaining the result shown in Figure 4.4(b). The zoomed area
shows that delays between subsequent samples have been corrected.

This is the only delay regarding the IMU device that should be compensated
because the amount of time needed by the Shimmer node to read data samples
from the accelerometer and to perform A/D conversion is four clock cycles. IMU is
equipped with a 32.768 kHz crystal, which means that an acceleration sample can
be acquired with less than 0.13 milliseconds. Considering a sampling frequency of
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100 Hz, the ratio between the sampling time and the acquisition time is more than
50. When sampling a frame from a camera, the acquisition time is quite different,
thus transmission and exposure times of Kinect have to be accurately estimated.

4.1.2. Kinect delay estimation

The delay times estimation for the frames captured by Kinect has been performed
by using an Arduino board, connected to the same PC as the Kinect camera, which
controls some LEDs (7 in this case). The round-trip time between the PC and
the Arduino serial interface has been estimated over 1500 transmissions. In the
implemented setup, an average value of 3.2 milliseconds has been obtained. Different
procedures have been developed to estimate the transmission and exposure times
for Kinect. Since it is not possible to have a timestamp from the internal clock, data
timestamping is performed when the frame arrive to the PC using C++ functions
QueryPerformanceCounter (QPC) [143] and QueryPerformanceFrequency (QPF)
[144]. The former one counts the number of ticks of the performance counter from
the system initialization with high resolution (less than 1 us) while the QPF retrieves
the frequency of the performance counter.

Considering the transmission time for the RGB frames, the implemented proce-
dure follows the steps detailed below, and represented in Figure 4.5(a):

1. When the PC receives the frame FO from Kinect, it sets a timestamp (to_pc)
and sends a predefined command to the Arduino board.

2. The Arduino board receives the command, set a delay of 20 milliseconds, and
switches on one LED at a time with a delay of 3 ms.

3. When frame F2 arrives at the PC, the timestamp (to_pc) is taken and the
number of LEDs that are ON in that frame gives an estimation of the time

to g with an error of 1.5 ms.

4. The transmission time for the frame F2 can be computed from the difference
between t9 pc and to k.

The same procedure, increasing only the delay to 35 ms, has been implemented to
evaluate the transmission time of the IR frame. For this stream, IR, LEDs operating
at 830 nm wavelength are used. Those LEDs cannot be detected in the depth
frame of Kinect v2. For the evaluation of this stream, a moving object in the Kinect
coverage area can be used to estimate additional delays between IR and depth frames
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Figure 4.5.: Evaluation scheme of the RGB transmission time (t7x) (a) and RGB
exposure time (tgxp) (b) for Kinect v2.

(depth is obtained from IR data). The time delay between frames showing the same
displacement is measured. This approach has been applied also to evaluate the
transmission times of RGB, IR and depth frames for Kinect v1. In this case the
technology used for depth estimation is different (structured light instead of Time
of Flight) and the IR LEDs can be detected from the depth frame.

A different procedure, which is composed by the steps detailed below and in Figure
4.5(b), is adopted for the exposure time of the RGB frame of Kinect v2.

1. When the PC receives the frame FO0, it sets a timestamp (to_pc) and sends a
predefined command to the Arduino board.

2. The Arduino board switches on all the 7 LEDs when it receives the command
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and sets a waiting time of 30 ms; then it starts switching OFF the LEDs (one
at a time) with a delay of 3 ms.

3. When frame F3 arrives at the PC, the timestamp t3 pc is taken and the number
of LEDs which are ON in F3 gives an estimation of t3 K start With an error of
1.5 ms.

4. Since the time t3 i is given by the difference between t3 pc and the transmis-
sion time (tTx), the exposure time is represented by the time delay between

t3.k and t3 K start-

The delays between the arrival of the command at the Arduino and the actions
on the LEDs (30 ms in this last case) have been experimentally chosen to center the
on/off leds sequence around to i Or t3 K _start time. The used delays could be removed
or at least reduced without increasing the uncertainty using a greater number of
LEDs. This approach has been used also for RGB, depth and IR frames of Kinect
v1, while a different procedure is implemented for the exposure time of IR frames
for Kinect v2, which is much lower than the RGB one. The Arduino board switches
ON and OFF 7 IR LEDs with a delay of 1 ms. The exposure time can be estimated
by counting the number of LEDs that appear ON in a single frame.

A laptop equipped with Intel core 2 Duo @ 2.53 GHz, 4 GB RAM, Windows 7
operating system has been used to capture data from Kinect v1. A number of 200
frames has been captured for each stream. For Kinect v2, 75 frames are captured
using a desktop PC equipped with Intel i7 @ 3.5 GHz, 16 GB RAM, Windows
8.1 operating system. The results in terms of exposure and transmission times,
for each available data stream, are shown in Table 4.1. Considering the results
for Kinect v1, the transmission time for the depth frame is higher than the other
two data streams. The main reason could be the time required to extract the
depth information from the IR frame, by using the structured light technique. The
exposure time is approximately the same for all the three streams and it is quite
high, since it is around 30 ms. Regarding Kinect v2, Table 4.1 shows that the
transmission time for the RGB frames is much greater than the transmission time
for IR and depth frames (almost two times). The reason may be the difference in
the amount of data that has to be delivered: the resolution is 1920x1080 for RGB
and 512x424 pixels for IR and depth. The RGB exposure time of Kinect v2 is
comparable to the previous version, while the IR and depth exposure time are much
lower.

The delay times for skeleton stream available with Kinect have not been included
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Table 4.1.: Kinect vl and v2 exposure and transmission times.

Data stream Exposure time [ms] Transmission time [ms]

Kinect v1

RGB 28.44+2.0 15.0£2.2
IR 31.3+£22 16.4£2.0
Depth 29.1+6.3 282+ 5.7
Kinect v2

RGB 28.5+1.2 31.5+£1.1
IR 3.0+£1.2 16.0£1.0
Depth 3.0+£1.2 18.5£1.0

in the results because, since the skeleton joints are extracted from a depth frame,
the Microsoft SDK provides the information necessary to associate a skeleton frame
to a depth frame.

4.1.3. Synchronization results

The synchronization procedure between Kinect and the IMU node consists of some
steps, detailed below.

1. The linear regression algorithm is applied to the packets received by the PC
from the IMU. This approach is able to compensate the channel effect of the
Bluetooth and to have the same delay between all the subsequent packets.

2. Computation of the Kinect offset, by adding the transmission time to a half

of exposure time for the frame of interest.
3. Subtraction of the offset to the timestamp taken at the time of arrival at PC.
4. The IMU packets closest to each frame are determined and associated to it.

The accuracy of the transmission and exposure times estimation, and the results
obtained from the proposed synchronization approach, has to be verified. The IMU
device (SHIMMER) has three programmable LEDs with three colors: red, orange,
yellow. The LEDs can be switched ON and OFF according to some events and those
events can be captured by the Kinect camera.
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Figure 4.6.: SHIMMER LED pattern implemented to verify the accuracy of the syn-
chronization algorithm.
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Figure 4.7.: (a) Orientation of IMU and Kinect v2 for TUG test, (b) torso’s angle
f; computed from inertial data.

The LEDs on the SHIMMER device are switched ON and OFF according to the
sequence shown in Figure 4.6. The node switches ON the orange LED and sends
a predefined packet to the PC. This packet is received and the synchronization
algorithm is implemented, to determine which is the closest RGB frame received by
the PC from Kinect. The proper RGB frame should display the Shimmer device
with its orange LED ON. In order to have the lowest uncertainty, the ON event is

kept only for a time window of 30 ms.

This evaluation procedure has been repeated for 48 frames captured by Kinect
v2 and the correct frame has been detected in 45 out of the 48 events (93.8%). In
the other cases, the maximum estimation error is one frame only. Considering the
Kinect v1 sensor, a percentage of correct estimation of 99.4% has been achieved over

180 trials. As for Kinect v2, the maximum error is one frame.
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Figure 4.8.: Scheme of TUG test, constituted by 5 phases. Different parameters are
computed during each phase.
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Figure 4.9.: Point cloud and skeleton of a subject performing the TUG test.

4.2. Parameters estimation from TUG

In the setup implemented for TUG test, the sensors have been positioned as previ-
ously introduced, with the IMU attached on the chest of the person and the Kinect
placed at a distance of 3 meters. The relative orientations are defined by Figure
4.7, where it can be noticed that the z-axis of the IMU is oriented according to
the gravity acceleration vector. Thus, the torso’s angle 8; can be computed as the
displacement with respect to the x-axis of the IMU. The TUG test can be divided
in 5 different phases: Sit-to-Stand (STS), Walk, Turn, Walk, Turn-to-Sit. Those
phases are summarized in a scheme in Figure 4.8, where the indices evaluated for
each phase are also detailed. Figure 4.9 shows the point clouds and the skeletons of
a person during the 5 phases.

STS is the first phase where the person, who is sitting on a chair at the beginning,
stands up to start walking (see Figure 4.9(a)). In this first phase, two indices are
evaluated: the maximum inclination of the torso angle (6;) and the time duration of
the movement (ts7g). The torso’s angle is computed from the raw acceleration data
(Traws Yraw, Zraw) Provided by the IMU. Raw data have to be converted into gravity
accelerations (X, Y, Z) taking into account possible biases (Zpias, Ubias, Zbias), Which
are identified by testing the 1g orientation for each axis. By defining as xo4 the raw
acceleration for x-axis in Og configuration, and equivalently o4, 204 for y and z axes,
and considering Viens = 300mV/g as the accelerometer sensitivity when it is set in
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Figure 4.10.: y-coordinate of head joint in a complete TUG test: J},.

the range +4g [145], the equations used to obtain the gravity accelerations starting

from raw data are defined in (4.1):

X — Traw — Tog + xbia87 y — Yraw — Yog + ybias’ 7 — Zraw — 20g T Zbias (41)
Visens Visens Visens

Considering the obtained X, Y and Z, the 6, angle (in degrees) is given by (4.2):

0; = max {90 —tan~! (@) } (4.2)

The extraction of timing parameters during Sit-to-Stand (tsps) is performed con-
sidering the y-coordinate of the head joint (J},), which is shown in Figure 4.10 for
one test sample. The idea is to evaluate the time interval between the frame (ksrgs1),
where the subject starts the movement, and the frame (ks7g2) where the person has
finished the STS phase and starts the walking phase. If a TUG execution is com-
posed by K skeleton frames, the kgrgo frame is the one where the J,Z’L’d assumes the
maximum value, in the first half of the test, satisfying the condition (4.3):

TV (ksrse) = max {JY (k)}, k=1,2,... K/2 (4.3)

With the same reasoning, the k,,; frame is the one showing the minimum coordinate
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Figure 4.11.: (a) Point cloud of the subject during the Walk phase of the test with
skeleton of lower body part. (b) xz-axis acceleration data with skeleton
steps and acceleration peaks.

for head joint in the STS phase:

TV (k1) = min {J2,(k)}, k=1,2,... ksrso (4.4)

and kgrg1 is defined as the first frame in the frame interval [2, k1] satisfying the
condition (4.5):

ksrs1 =min{k} | [Jp (k) = Jy(k=1)] > Thyy, k=2,... km (4.5)

where Thyy, = |J},(1) — J/;(km1)|/100. By defining as A; the time difference be-
tween two consecutive skeleton frames (33 ms), the equation (4.6) gives the time
required to complete the STS phase:

tsts = (ksTs2 — ksrs1) A (4.6)
During the first Walk phase, represented by the point cloud and skeleton in Figure

4.9(b), data from Kinect and from IMU are jointly considered to extract the cadence
tsp and the Stride length, while some skeleton joints are involved in the process of
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computation of the arm swing velocity wa. At the beginning, an approximate iden-
tification of the steps is carried out using skeleton information, as shown in Figure
4.11. In particular, Figure 4.11(a) shows the point cloud of the subject during the
Walk phase, where the steps are initially identified looking for the maximums in the
distance among the feet along the Kinect z-coordinate. Using the synchronization
algorithm, skeleton steps can be related to raw acceleration samples in z-axis, as in
Figure 4.11(b). The average time distance of the skeleton steps defines the width
of some search intervals, represented by vertical dashed lines. An algorithm for ac-
curate step identification is implemented within each interval and the time instants
of steps are associated to the most important acceleration peaks. The algorithm
can also consider some intervals where the skeleton step is not identified, such as
the fourth one in Figure 4.11(b). This is due to the fact that the lower limbs are
out of the coverage area of Kinect when the subject is approaching the Turn phase
and the skeleton estimation of lower joints is not reliable (see Figure 4.9(c)). The
acceleration peaks corresponding to steps not detected by the skeleton have to sat-
isfy amplitude and time properties similar to the previously identified ones, to avoid
the identification of false events. Each acceleration peak, corresponding to a step
event, is associated to the corresponding foot. The skeleton position is exploited
to detect which is the closest foot to the sensor. For example, the label R to the
first skeleton peak in Figure 4.11(b) means that the step is done with the right foot.
When skeleton data is not reliable, such as for the fourth step in Figure 4.11(b), the
algorithm associates the step to the opposite foot of the previous one. Information
about cadence is extracted also during the second Walk phase, i.e. when the person
walks towards the chair. In this phase, as visible in Figure 4.9(d), the skeleton data
are not reliable and the steps are detected by exploiting only the wearable sensor.
In this operation, time and amplitude properties learned during the first Walk phase
are exploited. For the same reason, the Stride length is computed only in the first
Walk phase.

The angular velocity of arm-swing is estimated within the time intervals defined
by the steps. The angle composed by the wrist and shoulder joints position at k-th
frame, and the position of the same wrist at frame k — 1 is considered. By dividing
the values of this angle by the sampling time of the Kinect and by averaging them,
it is possible to estimate the angular velocity (w4) for each gait cycle. Considering
the position of the shoulder joint in the k-th skeleton frame (Js,(k)), and Jy, (k) the
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4.2. Parameters estimation from TUG

same for the wrist joint, two difference vectors can be defined:

dsw(k) =Js (k) - Jw(k) (47)

Qo (k = 1) = Jon(k) — Ju(k — 1) (4.8)

The angular velocity of the arm w4 (k) at k-th frame is:

1 _1< dow(k)  dsw(k —1) ) (4.9)

@alk) = K\ d B Tk~ D]

The index of interest is wa, which is the average angular velocity over each gait
cycle.

The Turn phase refers to the turning movement performed when the subject is
approaching the sensor and separating the two walking phases. An important param-
eter in this phase is the time required to perform the 180° rotation. The shoulders
and head joints are used to define an orientation vector which gives the moving
direction of the person, and helps to identify the instant of start and stop of the
body rotation, giving the turning time (¢7). The events of turning are recognized
checking the angle between the orientation vector and a reference direction, which
is the Kinect z-axis, since it represents the main walking direction. In the final part
of the test, when the subject performs a turning movement to sit down, the frame
related to turning and the kg frame, calculated with the same approach of kgrg1 in
equation (4.5), are used to compute the time duration of the sit phase (ts). The kg
frame, as can be noticed in the J;‘jd curve in Figure 4.10, is the final frame of the
test and can be used also to extract the total time duration of the TUG test (tryq),
considering kgrg1 as the start frame.

Different tests have been performed in a laboratory environment. The only pa-
rameter related to the environment that should be controlled is represented by the
distance between Kinect and the chair, no constraints have been considered for the
background. A number of 20 healthy subjects, aged between 22 and 39, with differ-
ent build and height, have been recruited for the tests. Each person repeated three
times the TUG, thus a total number of 60 executions constitute the TST TUG
dataset [146] that has been released to encourage other researchers to work on this
topic. The dataset has been collected with a capture software for Kinect v2 named
Complete viewer and detailed in Chapter A, and it provides the following data:

e depth frames from Kinect v2;
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Table 4.2.: Average values and confidence intervals for TUG indices.

Index Average value Minimum Maximum
0, [deg]  45.3+£13.53  18.0 64.0
truc [s] 9.99 +£1.88 7.00 13.73
tsTs 5] 147+£041  0.96 2.41
tg 5] 2424054 142 3.23
tr [s] 1.54 +0.59 0.66 3.46
tsp 5] 1384021  1.12 2.37
Stride length [mm] 956 £+ 147 743 1295
WA [deg/s] 107 +21 67 158

e skeleton joints in depth and world coordinates;

e raw acceleration samples provided by the IMU attached to the chest;

e timing information for synchronization.

The results obtained over the entire test set are summarized in Table 4.2. All the
tests have been performed by healthy people, thus the obtained values, especially the
ones related to time, show limited standard deviations. The maximum inclination of
the torso angle during the STS (6;) is 45 degrees in average, with a standard deviation
of 14 degrees. However, the difference between the minimum value (18°) and the
maximum (64°) is quite high, denoting a different way to perform the movement.
The average time required to perform the entire test is about 10 s, where about 1.5
seconds are required by the STS phase (tgrs). The tg time is almost 2.5 s on average,
and it is larger than tgrg because the former includes also the turning movement.
The first turning movement, measured by tp, lasts 1.54 s on average. The indices
related to gait refer to the first gait cycle. In particular, the Stride length is about
956 mm, and an average time of 1.38 s is required to complete the cycle (tgp). The
angular velocity w4 is also related to the first gait cycle, considering the left arm

swing.
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4.3. Fall detection

Figure 4.12.: (a) Positions of IMUs on the subject’s body. The orientation of z-axis
with respect to the gravity acceleration vector is given by the angle 6,.
(b) Skeleton joints estimated by SDK 2.0 of Kinect v2.

4.3. Fall detection

Different parameters can be extracted from RGB-D and acceleration sensors, and
different algorithms for fall detection have been implemented and evaluated. The
configuration of the Kinect v2 sensor is the same as the TUG application, it is placed
at an height of about 150 cm from the floor, monitoring a room, or part of it. Two
positions have been investigated for the IMU, which can be attached on the belt and
on the wrist, as shown in Figure 4.12(a).

4.3.1. Algorithms for fall detection

A fall detection algorithm is based on acceleration data from the wrist IMU and
skeleton joints from Kinect. In particular, as sketched in Figure 4.13, the fall or
ADL classification procedure consists of three steps and considers the variation in the
skeleton joint position, a peak of acceleration and the orientation angle computed by
the wrist accelerometer. The first evaluated parameter is the variation in the vertical
coordinate of a skeleton joint, which is the SPINE_BASE joint (Jy), located at
the base of the spine, as represented in Figure 4.12(b). Its y-coordinate (J§) is
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Figure 4.13.: Scheme of Algorithms 1 and 2 for fall detection.

considered to calculate a reference value (jg) in the first captured frames, assuming
that the person is standing in front of the sensor. Every new skeleton frame, the
difference between the actual value and the reference one is computed and, if that
difference exceeds a threshold of 50 cm (thg), an irregular activity is detected and
a timestamp (¢;,) is set. If no irregular activity is identified, the algorithm does not
consider acceleration data and immediately classifies the movement as an ADL. If
an irregular activity is detected, acceleration data extracted from IMU are firstly
used to compute the magnitude of acceleration M,.. captured by the IMU, defined
as:

Mye =VX24+Y24 72 (4.10)

where X, Y and Z are the unbiased acceleration components along the z, y and z
axes of the accelerometer, as defined in (4.1). Kangas et al. [147] suggested that an
acceleration of 3g may be associated to a fall. An acceleration peak greater than
thgcee, which is set to 3g, has to be present within a time interval of 2 seconds centered
in t;-. Before taking a decision, the algorithm implements a last check, considering
the orientation of the sensor when the event is ended. From Figure 4.12(a) can be
derived that, if the person is lying, maybe after a fall, the IMU orientation angle
(0z) should be close to 90°. This condition should be verified for a not negligible
amount of time to reveal a fall. In order to correctly measure the device orientation,
the component of acceleration related to body motion has to be removed from raw
data. As stated in [148], the daily activities feature a frequency range between 0.3
and 3.5 Hz; thus, to extract only the gravity acceleration component, X, ¥ and Z
have been filtered by a third order Butterworth low pass filter with cut-off frequency
of 0.5 Hz. The filter cuts all the frequencies generated by the body motion, leading
to a correct estimation of the device orientation. The IMU orientation angle 6, is
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Figure 4.14.: Scheme of Algorithm 3 for fall detection.

therefore computed using the following equation [12]:
0. = atan2 (VZ2 + Y2, X (4.11)

A guard interval should be added to the orientation value representing a person on
the floor. Thus, the condition that should be verified is set as a threshold thgyg of
90° with a guard interval of 20° for a duration of at least 0.5 s within a time interval
of 4 s after t;.. If all the above conditions, summarized in Figure 4.13, are satisfied,
the action is classified as a fall; otherwise, if a single condition is not satisfied, the

sequence of frames is recognized as an ADL.

The second implemented algorithm works on data captured by the IMU attached
on the waist of the person, and it implements the same conditions as Algorithm 1,
with the same thresholds. Therefore, it can be summarized by Figure 4.13 as well.

Figure 4.14 represents the scheme implemented in Algorithm 3, where the first
condition is, again, a variation in the coordinate of the spine skeleton joint: Jy. The
main difference is constituted by the second condition, which requires the evaluation
of distance of that joint from the floor. The floor can be calculated from the first
available skeleton frame, when the person is standing in front pose, and it is modeled

as a plane, described by the following equation:
ar +by+cz+d=0 (4.12)
where the constant term d is computed using (4.13):
d = —(azop + byo + czp) (4.13)

considering v,, = [a, b, c] as the orthogonal vector to the plane, and Py = [xq, Yo, 20]
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as one point belonging to the plane. The vector representing the spine of the person
can be seen as the orthogonal vector to the plane, which is v,,. This quantity can
be obtained from joints Jy and Jy in Figure 4.12 with the following equation:
J1—Jo
U = =l (414)
and one of the ankle joints of the subject (number 14 or 18 in Figure 4.12(b)) can be
considered as a point of the floor plane. The equation (4.15) can be used to derive
distg, which is the distance of interest, between the joint Jy and the floor plane:
disty = 1Tt (4.15)
[|vnl]
A threshold of 20 cm (thy,.) is used to recognize if the person is on the floor. The
last condition that Algorithm 3 implements is about the acceleration revealed by
the waist accelerometer, as shown in Figure 4.14. A value of M. greater than 3g
(thaee) has to be found within a time interval of 2 seconds centered in t;.. Even for
Algorithm 3, all the conditions about joint variation, floor distance and acceleration
have to be satisfied to detect a fall.

The implementation of multiple conditions based on different data brings to a
low number of false alarms, which can make the system unreliable. Moreover, the
proposal of a step-based fall detection algorithm may allow to detect the starting of
a fall, for example considering only the condition about the variation in the skeleton
joint position. Then, the fall event should be confirmed by the other conditions to
avoid false positives.

4.3.2. Performance analysis

The performance analysis has been carried out following the experimental protocol
detailed in Table 4.3, constituted by different ADLs and falls. Regarding ADLs,
the most common actions are included in the dataset, i.e. sitting on a chair (sit),
picking up an object from the floor (grasp), walking or lying down. Different types
of fall are also considered, among which FEUpSit, represented by a backward fall
with the subject ending up sitting.

The activities have been simulated in a laboratory environment by 11 healthy
subjects, aged between 22 and 39, featuring different height (1.62-1.97 m) and build.
As for the TUG, each activity has been repeated three times by each subject involved.
The whole dataset [146], which has been collected with Complete viewer (see Chapter
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Table 4.3.: Experimental protocol for fall detection algorithms.

Category Activity Description

ADL sit The subject sits on a chair
grasp The subject walks and grasps an object from the floor
walk The subject walks back and forth

lay The subject lies down on the mattress

Fall front The subject falls from the front and ends up lying
back The subject falls backward and ends up lying
side The subject falls to the side and ends up lying
EUpSit The subject falls backward and ends up sitting

Table 4.4.: Average results of the fall detection algorithms, in terms of Sensitivity,
Specificity and Accuracy.

Algorithm  Sensitivity Specificity Accuracy

Algorithm 1 59% 98% 79%
Algorithm 2 79% 100% 90%
Algorithm 3 99% 100% 99%

A) and released to other researchers working in this field, is constituted by 264

sequences and the available data are:
e depth frames captured by Kinect v2;
e skeleton joints in depth and world coordinates;
e raw acceleration data provided by IMUs;
e timing information for synchronization.

Fall detection algorithms have been evaluated in terms of Sensitivity, Specificity
and Accuracy over the entire dataset, and the average results are shown in Table
4.4. Algorithm 1 is the most unobtrusive one because it exploits data from the IMU
mounted on the wrist, which can be assimilated to a smartwatch. Despite it shows
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Table 4.5.: Accuracy of the three fall detection algorithms for each activity of the
dataset.

Accuracy

Category Activity
Algorithm 1  Algorithm 2 Algorithm 3

ADL sit 97% 100% 100%
grasp 100% 100% 100%

walk 100% 100% 100%

lay 97% 100% 100%

Fall front 54% 100% 97%
back 82% 100% 100%

side 48% 100% 100%

EUpSit 52% 18% 100%

Average 79% 90% 99%

a Specificity of 98%), it has a Sensitivity of 59%, which means that a low percentage
of falls is correctly revealed. The main issue of Algorithm 1, which has an average
Accuracy of 79%, is given by the 6, angle giving the orientation of the accelerometer.
Even if the subject is on the floor, the arm can have different orientations, which
may be similar to the orientations calculated when the person is standing or sitting.
Considering the results in Table 4.5, where the accuracy obtained for each class is
shown, it can be noticed that Algorithm 1 struggles in particular in the detection of
side fall, featured by an accuracy of 48%. The highest accuracy among the falls is
achieved by the back one (82%).

The IMU attached on the waist, even if it is more invasive, provides a reliable
information about the orientation of the upper body of the subject. A Sensitivity
of 79% is achieved by Algorithm 2, which is featured by an Accuracy of 100% for
each activity, except the EUpSit fall test. In this particular case, the condition
on the orientation of the accelerometer is not verified because the torso remains
perpendicular to the floor in almost all the tests.

EUpSit falls are correctly detected with Algorithm 3, that is based on the distance
between the spine joint and the floor and does not rely on IMU orientation. This

algorithm achieves average Sensitivity and Accuracy of 99%, and a 100% Specificity.
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Figure 4.15.: Curves describing Jg;ff (a) and distg (b) during an EUpSit fall. Per-
son’s point cloud with detected floor plane (c).
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Figure 4.16.: (a) Acceleration and (b) orientation values computed by waist and
wrist mounted IMUs during an EUpSit fall.

Parameters computed during an FUpSit fall are shown in Figures 4.15 and 4.16.
The quantity Jg;irr = Jo — J§, which is the variation of the y-coordinate of Jy
axis during the event, is shown in Figure 4.15(a), where ¢;., i.e. the time instant
indicating an irregular activity, occurs about 1.8 s after the beginning of the action.
Considering Algorithm 3, the second condition is about the distance distg between
the floor and the Jy joint, which has to be lower than thy,., set at a value of 20 cm,
as shown in Figure 4.15(b). The point cloud of the subject after a EUpSit fall is
shown in Figure 4.15(c), where the joint Jy is highlighted by a red circle and the
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green area models the floor plane. The last condition implemented by Algorithm 3 is
about the acceleration peak (greater than th,..) revealed by the waist accelerometer
in a time window of 2 seconds centered in ¢;-. As can be noticed in Figure 4.16(a),
this condition is verified, and the fall is correctly detected. This dangerous event
is not detected by Algorithm 1 and 2 because the accelerometer orientations from
both the IMUs do not give an angle lower than the threshold of thy,g, even if the
guard interval is considered, as can be noticed from Figure 4.16(b).

4.4. Conclusion

In this chapter an integrated system for fall detection and for the mobility assessment
based on vision and wearable data fusion has been described. The characterization of
delay times of data from Microsoft Kinect has been carried out and a synchronization
procedure based on the compensation of delays has been developed. The evaluation
of synchronization errors resulted in a correct association of the Kinect frame to the
IMU sample with a percentage of 99.4% in Kinect v1 and 93.8% in Kinect v2. The
delay times of RGB-D data can be used also in other synchronization scenarios, when
it is needed to know exactly when a frame has been captured from the environment.

The implemented mobility assessment test is the Timed Up and Go and takes
advantage of the fusion between RGB-D and acceleration information especially in
the identification of gait related parameters. The proposed approach can provide
more detailed objective indices than other systems that usually provide only the time
needed to perform the test. The setup required to execute the test is more flexible
than the one described in Chapter 3, and it can be used also at home assuming to
comply with the condition on the distance, which is a requirement of the TUG test.

Fall detection algorithms also benefit from the joint usage of multimodal data
mainly because, considering the fusion of data from a wearable device on the waist
of the subject and the skeleton joint coordinates, it is possible to simplify the data
processing. The collection of a dataset including skeleton and depth data from
Kinect v2 and acceleration samples from an IMU has allowed the design of algorithms

to discern between 4 different types of falls and 4 of the most significant ADLs.
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Chapter 5.

Human action recognition

This chapter proposes different solutions for Human Action Recognition using skele-
ton joints extracted from Kinect. The algorithms are based on 3D joint coordi-
nates and perform classification process using a multi-class SVM. However, different
features representation methods have been investigated, providing also experimen-
tal results on several RGB-D datasets. As described in Subsection 2.2.3, different
datasets may require different evaluation schemes, among which leave-one-actor-out
or leave-one-out cross-validation, cross-subject or cross-view tests. For this reason,
the comparison of the performance obtained by the proposed algorithms to other
approaches in literature is realized under the same testing conditions.

The first proposed solution is based on Activity Feature Vectors (AFV) that are
constituted by the most important postures of a sequence of frames. This algorithm
has been evaluated on several datasets: KARD [90], CAD-60 [98], UTKinect [85],
Florence3D [105], MSR Action3D [68], considering also, for some of them, different
subsets with actions related to the AAL scenario.

The second algorithm, named Temporal Pyramid of Key Poses (TPKP), proposes
the adoption of the bag of key poses model and the introduction of a temporal
pyramid to represent the structure of the action. The TPKP HAR algorithm has
been optimized with an evolutionary algorithm obtaining the set of parameters which
maximize the performance on MSR Action3D dataset. Finally, this algorithm has
been evaluated also on a large-scale dataset recently released: NTU RGB+D [97].

The details of the algorithm named AFV and its performance on five RGB-D
datasets have been published in [149]. The TPKP algorithm and the results on
MSR Action3D dataset have been presented in [150] whilst its evaluation on NTU
RGB+D dataset has been described in [151].
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Figure 5.1.: Main scheme of the HAR algorithm based on Activity Features Vector
(AFV).

5.1. HAR algorithm based on activity feature vectors

The HAR algorithm based on activity feature vectors starts from the coordinates
of skeleton joints provided by Kinect and initially computes features related to the
posture. A clustering algorithm extracts the most informative postures, and a vector
with features related to the activity is built. A multi-class SVM is exploited to
recognize different activities of the dataset. The AFV algorithm has been tested on

five publicly available datasets with a discussion about its performance in activities
related to AAL.

5.1.1. Algorithm description

The algorithm based on activity feature vectors comprises four main steps, repre-
sented in Figure 5.1. It is organized as most of the machine learning approaches for
action recognition, where, first of all, it is necessary to extract features from input
data. In the case of RGB-D sensors, the input data can be the streams available
from the device but very often they are just skeleton coordinates. Following the
feature extraction process, there are usually one or more steps dedicated to the rep-
resentation of the action. They are aimed to organize features in order to enhance
the separation among different classes, i.e. actions. The final phase is always re-
lated to classification, and a machine learning algorithm is trained with samples of
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known actions and then tested with unknown sequences. The four steps of the AFV

algorithm are detailed in the following:

1. Posture features extraction: feature vectors representing human postures are

extracted from skeleton joints;

2. Postures selection: for each sequence constituting an activity, the most repre-

sentative postures are computed;

3. Activity features computation: an activity feature vector, which encloses the
information of the whole activity, is created and used for classification;

4. Classification: a multi-class SVM implemented with the “one-versus-one” ap-

proach is the selected classifier.

The computation of posture features from skeleton data does not include the time
information, to ensure the independence from the speed of movement. The aim of
this step is to obtain features related to posture which are independent from the
position of the skeleton within the coverage area of Kinect, and also from the build
of the subject. The compensation of the skeleton position is achieved by centering
the coordinate space in one skeleton joint while the processing related to build is
achieved by normalizing the features with respect to the length of human torso.
By defining as J; = [J¥, J!, J?] the vector representing the coordinates of the i-th
skeleton joint at a specific frame of an action and being Jg the coordinates of the
torso joint and Jg the coordinates of the neck joint, d; is the i-th joint feature and
it is the position difference between J; and Jg, normalized to the f5-norm between

J2 and J()2
Ji —Jo

~ 13— Jolle

assuming that a skeleton is made by P joints. These features may be seen as a set of

d; i=1,2,..,P—-1 (5.1)

vectors connecting each skeleton joint to Jg. A posture feature vector f, with P — 1
vectors of three dimensions each, represents a single skeleton frame:

f=[dy,ds,ds,...,dp_1] (5.2)

As shown in Figure 5.1, having a set of N skeleton frames [p1, p2, . . . pn]| requires the
computation of N feature vectors [f1, fa, ... fn]. A skeleton integrity check is included
in the feature extraction process and, if all the skeleton joints are unavailable for
the i-th frame, the posture feature vector f;_; is associated also to f;.
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The second phase aims to select the most important postures among the set of N
posture features vectors representing the action. This process allows to reduce the
complexity and to increase generality by representing the activity with a reduced
subset of poses, without using all the N frames. The N feature vectors constituting
the activity can be grouped into K clusters with the k-means clustering algorithm,
exploiting the squared euclidean distance as a metric. If an activity is represented
by the set [f1, fs,fs, ..., fy], the k-means algorithm partitions data into K clusters
S, S9, ..., Sk satisfying the condition expressed by (5.3):

K
argmsinz > - Cl? (5.3)

j=1 f7;€Sj

where [Cq, Cq,Cs,...,Ck] are the K centroids of the clusters which can be con-
sidered as the most important feature vectors constituting the sequence, i.e. the
selected postures. The clustering algorithm which selects the main postures is ex-
ecuted for each sequence of frames, both in training and testing phase, selecting a

number of postures which is N at maximum.

The activity features vector modelling the entire activity is computed in the third
phase of the algorithm. The centroid vectors [Cy, Cg, Cs, ..., Cgk], sorted consid-
ering the order in which the cluster’s elements occur during the activity, constitute
the activity features vector. For an activity with N = 8 and choosing K = 3,
the k-means algorithm could assign the vectors [fy, f2, f3, ..., fg] to the following se-
quence of cluster IDs: [2,2,2,3,3,3,1,1]. In this specific case, the activity features
vector would be A = [Cy, C3,C;]. Multiple repetitions of the same cluster ID are
discarded, thus A has a fixed dimension of 3K (P — 1).

The aim of the classification phase is to distinguish between activity features
vectors belonging to different classes. In the training phase the classifier takes the
output from the previous step (A) and a label (L) identifying the class of the dataset.
During testing, it should be able to associate each A to the corresponding L. Con-
sidering a binary SVM, trained with a number of [ vectors x; € R™ and a vector of
labels y € R!, where y; € {—1,1}, the following equations describe the classification
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problem [152]:

l

1 ¢
. 1 c '
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54
subject to Yi (WT¢ (x;) + b) >1-¢&, (54)
6>0i=1,...,1
where
wl (x)+b=0 (5.5)

is the hyperplane that ensures optimal separation between training vectors in the
feature space, C is the parameter to set the dimension of the separation margin, and
&; are slack variables which take into account training errors. The function ¢ allows
mapping inputs into high-dimensional space where the data are separable. Given

two training vectors x; and x;, the kernel function ¢ is given by:

K (xi,%j) = ¢ (xi)" ¢ (x;) (5.6)

Several kernel functions can be used, among which the Radial Basis Function (RBF),
defined as:
K (xi,x;) = e ixil® 0y 5 0 (5.7)

From the definition of SVM with RBF kernel, it derives that C' and v are the
parameters that have to be tuned to use the SVM.

Even if SVMs were originally proposed as binary classifiers, allowing to perform
separation between 2 classes, different methods have been proposed to apply these
algorithms with more classes. The chosen approach is known as “one-versus-one”,
which is based on the definition of M (M —1)/2 binary SVMs for an algorithm able
to recognize M classes. Each SVM is trained to distinguish between 2 classes and
the classification is done through a voting strategy, where all the classifiers select
one class and the one with more votes is the output class.

5.1.2. Experimental results

The performance of AFV algorithm is evaluated on five publicly available datasets:
KARD, CAD-60, UTKinect, Florence3D, MSR Action3D, described in Subsection
2.2.3. The algorithm requires the definition of the number and configuration of
joints that have to be considered by the algorithm. Different subsets, going from
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Figure 5.2.: Subsets of 7 (a), 11 (b), 15 (c) joints, and the whole set of 20 joints
(d), considered to evaluate the algorithm. Green circles are the selected
joints and red squares are the discarded ones.

a minimum of 7 up to the maximum of 20 joints have been evaluated. Figure 5.2
shows the 4 subsets, where the selected joints are depicted as green circles while the
discarded ones are red squares. The performance in AAL scenarios are also evaluated
by selecting only some subsets of activities which are related to AAL. The algorithm
has been implemented in MATLAB, using the multi-class SVM implementation
provided by LIBSVM library [153].

KARD dataset

Considering KARD dataset [90], tests are executed with the different splitting
modalities described in Subsection 2.2.3, which consider separately Gestures and
Actions or the three activity subsets in Table 2.3. Furthermore, the Experiments A,
B, C (also described in Subsection 2.2.3) which split data between training and
testing are also considered and each of them has been repeated 10 times, ran-
domly splitting training and testing data. Finally, the leave-one-actor-out cross-
validation scheme on the whole dataset is also executed. Clusters belonging to the
set K = [3,5,10,15, 20,25, 30, 35] have been considered for each test conducted on
KARD dataset. In addition to the number of postures per sequence, the different
subsets of skeleton joints represented in Figure 5.2 are considered, with the exception
of the whole skeleton (P = 20) because only 15 skeleton joints are available.

The accuracy obtained considering the three Activity Sets is shown in Table 5.1;
the implemented AFV algorithm outperforms the one designed by Gaglio et al. [90],
whom collected dataset, in almost all the tests. The maximum accuracy is achieved
with a number of postures (K') which is 30 or 35 in most of the cases. It means that,
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Table 5.1.: Accuracy (%) of AFV algorithm compared to other using KARD dataset
with different Activity Sets, and for Experiments A, B, C.

Activity Set 1 Activity Set 2 Activity Set 3

A B C A B C A B C
Gaglio et al. [90] 95.1 99.1 93.0 89.9 949 90.1 842 89.5 817
AFV (P=7) 98.2 984 981 99.7 100 99.7 90.2 95.0 91.3
AFV (P =11) 98.0 99.0 977 998 100 996 91.6 95.8 933
AFV (P =15) 975 988 976 995 100 99.6 91 951 93.2

for the KARD dataset where the number of frames constituting each activity goes
from a minimum of 42 in a sequence of Hand clap gesture, to a maximum of 310 for
a Walk sequence, it is better to have a considerable number of clusters to model an
activity.

Experiment A, which requires to consider one third of the data for training and
the remaining for testing, is influenced a lot by the number of clusters in Activity
Set 1. The maximum accuracy (98.2%) shown in Table 5.1 is achieved with P =7
and K = 35. By reducing the number of clusters to K = 5, the minimum accuracy
is 91.4% with a difference of 6.8%. By considering more data for training, the
dependence on the number of postures is reduced. Experiment B, which consists in
two third of the data for training and one third for testing, is featured by a gap of
0.5%, 1.1% and 2.6% respectively in Activity Set 1, Activity Set 2 and Activity Set
3.

Considering the performance with different sets selected joints, Table 5.1 shows
that Activity Set 1 and 2, which are the simplest ones, have good recognition results
using the smaller subset with P = 7 joints. The entire set of joints is not required
neither in Activity Set 3, composed by more similar activities, where slightly better
results are obtained with P = 11.

Table 5.2 lets to conclude that the AFV method outperforms Gaglio et al. [90]
also when the dataset is split in Gestures and Actions. Better results are obtained
considering the Actions subset and, even in this case, it is not necessary to consider
all the skeleton joints, the best recognition results are given by P =7 and P = 11
with K = 30 or K = 35.

Table 5.3 compares the results obtained with the leave-one-actor-out cross-validation
test in terms of precision and recall. In this setting, the entire dataset of 18 activ-
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Table 5.2.: Accuracy (%) of AFV algorithm compared to other using KARD dataset,
with dataset split in Gestures and Actions, and for experiments A, B, C.

Gestures Actions
A B C A B C
Gaglio et al. [90] 86.5 93.0 86.7 92,5 95.0 90.1
AFV (P=7) 899 935 925 99.1 99.6 994
AFV (P=11) 899 959 937 99.0 99.9 99.1
AFV (P =15) 874 93.6 928 987 99.5 99.3

Table 5.3.: Precision (%) and Recall (%) of AFV algorithm compared to other, us-
ing the whole KARD dataset and leave-one-actor-out cross-validation

setting.
Algorithm Precision Recall
Gaglio et al. [90] 84.8 84.5
AFV (P=T7) 94.0 93.7
AFV (P =11) 951  95.0
AFV (P =15) 95.0 94.8

ities is considered, and the best result is obtained with K = 30 and P = 11. The
AFV algorithm reaches about 95% of precision and recall outperforming the results
obtained by Gaglio et al. [90], which are about 85%. The confusion matrix obtained
from this test is shown in Figure 5.3. Most of the activities constituting the dataset
are recognized with an accuracy higher than 90%. Lower percentages are achieved
for the gestures Phone Call and Drink and also Draw X and Draw Tick which are
quite similar and can be mixed each others.

Considering the application of the AFV algorithm in the AAL domain with an
evaluation on KARD dataset, only the activities which are part of the Action subset
can be relevant, i.e. Catch Cap, Toss Paper, Take Umbrella, Walk, Phone Call,
Drink, Sit Down, Stand Up. This subset, as shown in Table 5.2, can be recognized
with an accuracy greater than 98%, even if only one third of data is used for training
(Experiment A) and considering that there are similar actions such as Sit down and
Stand up, or Phone Call and Drink.
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Figure 5.3.: Confusion matrix of the AFV algorithm obtained with leave-one-actor-
out cross-validation test on the whole KARD dataset.

CAD-60 dataset

The CAD-60 dataset [98], as described in Subsection 2.2.3, is a dataset constituted
by activities performed in 5 different environments by 4 people. The 12 activities are
considered separately as a function of the environment and the global performance of
the algorithm is given by the average precision and recall over all the environments.
The most used setting is the so-called “new-person”, which is a leave-one-actor-out
cross-validation.

This dataset is challenging because one of the four actor is left-handed, which can
be a problem for some activities involving one-hand gestures. In order to make the
algorithm independent to the main hand of the subject, mirrored copies of actions
performed by left-handed and right-handed actors are created, as suggested in [98].
For each action, a dummy version has been obtained by mirroring the skeleton with
respect to the virtual sagittal plane that cuts the person in a half. As in KARD
dataset, the number of available joints for CAD-60 is P = 15, thus only the first
three sets of joints in Figure 5.2 can be considered for experiments, with a number
of clusters belonging to the sequence K = [3,5,10, 15, 20, 25, 30, 35].

The combination of parameters P = 11 and K = 25 gives the best results, which

are shown in Table 5.4 in terms of precision and recall for each activity. Considering
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Table 5.4.: Precision (%) and Recall (%) of AFV algorithm for different environ-
ments of CAD-60 and leave-one-actor-out cross-validation setting, with
P =11 and K = 25.

Location Activity Precision Recall
bathroom brushing teeth 88.9 100
rinsing mouth 92.3 100
wearing contact lens 100 79.2
Average 93.7 93.1
bedroom talking on phone 91.7 91.7
drinking water 91.3 87.5
opening pill container 96.0 100
Average 93.0 93.1
kitchen cooking (chopping) 85.7 100
cooking (stirring) 100 79.1
drinking water 96.0 100
opening pill container 100 100
Average 95.4 94.8
living room talking on phone 87.5 87.5
drinking water 87.5 87.5
talking on couch 88.9 100
relaxing on couch 100 87.5
Average 91.0 90.6
office talking on phone 100 87.5
writing on whiteboard 100 95.8
drinking water 85.7 100
working on computer 100 100
Average 96.4 95.8
Global Average 93.9 93.5
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Table 5.5.: Global Precision (%) and Recall (%) of AFV algorithm for CAD-60
dataset and leave-one-actor-out cross-validation setting, with different
subsets of joints, compared to other works.

Algorithm Precision Recall
Sung et al. [98] 67.9 55.5
Gaglio et al. [90] 77.3 76.7
AFV (P = 15) 87.9  86.7
Faria et al. [154] 91.1 91.9
Parisi et al. [155] 91.9 90.2
AFV (P=17) 92.7 91.5
Shan and Akella [156] 93.8 94.5
AFV (P = 11) 93.9 935

separately the different environments, the best results have been obtained in office
environment, where the average precision and recall are 96.4% and 95.8% respec-
tively. The reason is that the activities of this environment are quite different, apart
from talking on phone and drinking water that are similar. On the contrary, the
living room environment is the most challenging one, since the average precision and
recall are 91% and 90.6%. It includes 2 couples of actions that involve quite sim-
ilar movements: talking on couch-relaxing on couch and talking on phone-drinking

water.

Table 5.5 shows the comparison between the AFV algorithm and other methods
validated with the leave-one-actor-out cross-validation setting. AFV algorithm with
P = 11 configuration outperforms the state of the art results in terms of precision
(93.9%), and it is only 1% lower in terms of recall (93.5% against 94.5%). Very good
results using a multi-class SVM scheme with a linear kernel have been achieved in
[156]. One main difference with the proposed approach is that they train and test
mirrored actions separately, and then merge the results when computing average
precision and recall. AFV algorithm considers two copies of the same action (the
original and the mirrored one) and it gives all the data to the multi-class SVM.

As can be noticed in Table 5.5, changing the parameters of the algorithm may
affect the performance in CAD-60 dataset. Using all the available jonts, i.e. P = 15,
brings to a quite important reduction of the performance, which is 87.9% and 86.7%
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for precision and recall. On the other hand, considering a reduced number of joints,
as the set shown in Figure 5.2(a) with P = 7, does not affect too much the average
performance of the algorithm, that achieves a precision of 92.7%, and a recall of
91.5%. Independently from the number of selected joints, better results have been
obtained with a high number of clusters (K = 25 or K = 30). The number of
clusters may also affect the results: for the P = 11 subset, the adoption of K =5
brings to a precision of 86.6% and a recall of 86.0%, with a gap of 7.3% and 7.5%
respectively.

This dataset does not include gestures, and all the actions can be considered of
interest from the AAL point of view. Thus, activities of CAD-60 dataset do not
have to be split to consider the application in AAL scenario.

UTKinect Dataset

The UTKinect dataset [85], composed by 10 activities executed twice by 10 subjects,
is evaluated considering the leave-one-out cross-validation (LOOCYV) setting, which
consists in training the algorithm with all the sequences except one, and testing it
with the the last one. The random effect of the clustering method is mitigated by
repeating each training/testing procedure 20 times, and considering the average val-
ues as performance indicators, as suggested in [85]. This dataset has been collected
using Microsoft SDK and provides 20 skeleton joints, thus all the subsets shown
in Figure 5.2 are included in the validation process. The considered sequence of
clusters is K = [3,4,5], because the sequences have a minimum length of 5 and a
maximum length of 120 frames.

The obtained results are shown in Table 5.6, where also previously published
works are included. AFV algorithm performs better with the simplest set of joints
(P =T7), reaching the accuracy of 95.1% when K = 4. This result is only 2% lower
than the state-of-the-art despite the system is limited by the low number of frames
constituting the shortest sequence. Since the considered number of clusters are quite
similar, the variation of accuracy changing the parameter K is very low, in particular
it is 0.6% with K = 5, that generates the worst result. Similar performance has
been achieved considering different sets of joints. The accuracy changes only by a
2% going from P =15 (93.1%) to P =7 (95.1%).

The evaluation of UTKinect dataset in AAL scenario requires the consideration
of a subset of activities, which is constituted only by actions, without gestures.
Only 5 activities out of 10 have been selected: walk, sit down, stand up, pick up,
carry. Considering again LOOCYV setting the performance are slightly better than

90



5.1. HAR algorithm based on activity feature vectors

Table 5.6.: Global Accuracy (%) of AFV algorithm for UTKinect dataset and
LOOCYV setting, with different subsets of joints, compared to other

works.
Algorithm Accuracy
Xia et al. [85] 90.9
Theodorakopoulos et al. [91] 90.95
Ding et al. [92] 91.5
Zhu et al. [74] 91.9
Jiang et al. [114] 91.9
Gan and Chen [83] 92.0
Liu et al. [81] 92.0
AFV (P = 15) 93.1
AFV (P = 11) 94.2
AFV (P = 19) 94.3
Anirudh et al. [95] 94.9
AFV (P =7) 95.1
Vemulapalli et al. [94] 97.1

considering the entire dataset. The best results can be achieved with P = 7 and
K = 3 (96.7% accuracy) while worst results are given by P = 15 and K = 3
(94.1%). Figure 5.4 shows the confusion matrices obtained from the best and the
worst configurations. The consideration of a lower number of joints, apparently,
brings to a better discrimination between the activities walk and carry. The inclusion
of more joints (P = 15) introduces noise leading to a higher misclassification between

the two similar classes.

Florence3D Dataset

The Florence3D dataset [105] provides data of 9 activities performed by 10 people
multiple times, resulting in a total number of 215 sequences. The results on this
dataset are compared with the leave-one-actor-out method considering three subsets
of skeleton joints, from P = 7 to P = 15. The sequence of clusters K = [3,4,5,6,7, §]
has been considered to build the activity feature vector, considering that the mini-
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Figure 5.4.: Confusion matrices of the UTKinect dataset with only AAL related
activities. (a) Best results (P = 7). (b) Worst results (P = 15).

mum sequence length is 8.

The results obtained with different subsets of joints are shown in Table 5.7, where
the best result for the AFV algorithm is 86.1% given by P = 11, with 6 clusters. As
in UTKinect, the number of clusters are quite similar and the choice of K affects
the performance only for a percentage of 2%. State-of-the-art accuracy is achieved
by Taha et al. [89] and it is 96.2%.

A gap of 4% is present considering different number of joints, with the worst result
of 82.1% represented by P = 7 and K = 3. The inclusion of all the available joints
(P = 15) allows to achieve an accuracy which varies between 84.0% and 84.7% by
changing the number of postures.

The main challenges raised by Florence3D dataset are high inter-class similarity
and intra-class variability. Some actions, for example drink from a bottle, answer
phone, read watch, are very similar to each other. Figure 5.5 shows some frames
constituting the whole sequences and all of them consist in an uprising arm move-
ment which goes to the mouth, hear or head. Intra-class variability is given by
different subjects performing the same action in different ways. Some actors use for
example left or right hand indifferently to perform drink from a bottle or answer
phone actions.

Performing the analysis on AAL scenario requires the selection of 6 activities out
of 9: drink, answer phone, tight lace, sit down, stand up. An improvement of the
accuracy (90.8%) is achieved with P = 11 and K = 3, giving the confusion matrix
shown in Figure 5.6(a). The worst result is represented by the confusion matrix in
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Table 5.7.: Global Accuracy (%) of AFV algorithm for Florence3D dataset and leave-
one-actor-out cross-validation setting, with different subsets of joints,
compared to other works.

Algorithm Accuracy
Seidenari et al. [105] 82.0
AFV (P =1) 82.1
AFV (P = 15) 84.7
AFV (P = 11) 86.1
Anirudh et al. [95] 89.7
Vemulapalli et al. [94] 90.9
Taha et al. [89] 96.2

Figure 5.6(b), where the average accuracy of 79.8% is given by P = 7 and K = 4.
The main challenge of this subset is given by the similarity of drink and answer

phone activities.

MSR Action3D Dataset

The MSR Action3D dataset [68] gives 20 actions but it is usually evaluated by con-
sidering the subsets AS1, AS2 and AS3 described in Subsection 2.2.3. The evaluation
method considered for AFV algorithm is leave-one-actor-out cross-validation. The
shortest sequence is constituted by 13 frames, thus the following set of clusters has
been considered: K = [3,5,8,10,13]. Since a complete skeleton is provided, all the
configurations shown in Figure 5.2, from P = 7 to P = 20, are considered in the
tests.

The proposed AFV algorithm has been tested separately on the three subsets of
MSR Action3D, reaching an average accuracy of 81.2% with P = 7 and K = 10.
Figure 5.7 shows the confusion matrices for the three subsets, highlighting that the
most difficult subset is AS2 (Figure 5.7(b)), mainly represented by drawing gestures,
such as Draw x (a07), Drax tick (a08) and Draw circle (a09). AS1 is also complex
because many gestures and actions are quite similar: Hammer (a03) and Forward
punch (a05) for example. Better results are obtained in AS3 (Figure 5.7(c)), where
the most difficult actions to recognize are: Golf swing (al9) and Pickup & throw
(a20). Including more joints in the algorithm evaluation process leads to slightly
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Figure 5.5.: Sequences of frames representing similar activities from Florence3D
dataset. (a) drink from a bottle, (b) answer phone and (c) read watch.

worse results, as shown in Table 5.8. Mid state-of-the-art results are achieved if the
AFYV algorithm is compared to other approaches available in literature, tested on
the leave-one-actor-out cross-validation setting, as shown in Table 5.9.

Since MSR, Action3D is mainly constituted by gestures, the evaluation on AAL
scenario is not considered for this dataset.

5.2. HAR algorithm based on temporal pyramid of key poses

The algorithm based on activity features vector presented in the previous section
has to be reviewed to improve the performance where the dataset is made by actions
with similar gestures, such as MSR Action3D.

The HAR algorithm based on temporal pyramid of key poses considers skeleton
joints and extracts features representing the person’s posture. The adoption of the
bag of key poses model [78] allows to learn the most informative postures by creat-
ing a codebook. A temporal pyramid is considered to model the temporal structure

94



5.2. HAR algorithm based on temporal pyramid of key poses

Drink Drink &G

Answer phone Answer phone

Tight lace Tight lace

Sit down Sit down

Stand up Stand up

& @ 2 & Q

N < O N O

Q\\ 6(\0 {\\'\‘b _\60 fbs\b
& ¥ 9 &
o

N

S

Figure 5.6.: Confusion matrices of the Florence3D dataset with only AAL related
activities. (a) Best results (P = 11). (b) Worst results (P = 7).

Table 5.8.: Accuracy (%) of AFV algorithm for MSR Action3D dataset and leave-
one-actor-out setting, with different subsets of joints and activities.

Algorithm AS1 AS2 AS3 Avg.
AFV (P=15) 785 688 928 80.0
AFV (P=20) 79.0 70.2 919 804
AFV (P=11) 77.6 73.7 914 809
AFV (P=7) 795 719 923 81.2

of the sequence of frames constituting an action, which is then represented as his-
tograms of key poses. A multi-class SVM is finally exploited to classify actions. The
parameters required to run the HAR algorithm are optimized using evolutionary
and cooperative coevolutionary algorithms proposed in [115] and [117]. Experimen-
tal results have been obtained for MSR Action3D and NTU RGB+D datasets.

5.2.1. Algorithm description

Similarly to the algorithm exploiting activity features vector, 4 main steps constitute
the method based on temporal pyramid of key poses. It also adopts the usual
approach for action recognition but, if compared to the AFV algorithm, the main
differences are in the steps 2 and 3, where the skeleton-based features are organized.
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Figure 5.7.: Confusion matrices obtained for AS1 (a), AS2 (b) and AS3 (c) of MSR
Action3D dataset, with P =7 and K = 10.
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Table 5.9.: Average accuracy (%) of AFV algorithm for MSR Action3D dataset and
leave-one-actor-out setting, compared to other works.

Algorithm Accuracy
Celiktutan et al. [157] 72.9
Azary and Savakis (2013) [158] 78.5
AFV (P =7) 81.2
Azary and Savakis (2012) [159]  83.9
Chaaraoui et al. (2013) [78] 90.6
Chaaraoui et al. (2014) [115] 93.5

As can be noticed from Figure 5.8, the main steps are:

1. Extraction of posture features: the 3D coordinates of the joints are the input

data from which features representing each posture are computed;

2. Bag of key poses: this phase is the bag of key poses model, which generates
the codebook from training data and associates the closest key pose to each
posture in the sequence;

3. Histograms of key poses and temporal pyramid: a set of histograms are calcu-
lated for each level of a temporal pyramid and they are used to represent a
sequence of key poses;

4. Classification: a multi-class SVM obtained with “one-versus-one” approach
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Figure 5.8.: Main scheme of the HAR algorithm based on temporal pyramid of key
poses (TPKP).

takes the histograms of key poses and performs classification.

The first step, as in AFV algorithm, is the extraction of features representing the
posture. However, in this version, the reference joint is not the joint of torso, but
the center-of-mass J., computed by averaging the 3D position of all the P joints:

1 Pl
Jom=—5>_Ji (5.8)
P =0

The normalization factor, previously represented by the distance between neck and
torso, is now computed considering the average fo-norm between each joint and the
center-of-mass:

| Pl
=P Z 15 = Jemll (5.9)
=0

and the position difference d;, related to the i-th joint within the skeleton of P
elements, is implemented by updating equation (5.1) with the introduction of J,:

Ji _Jcm .
d; =" i=0,1,2,...,P—1 (5.10)

S
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Codebook generation Key poses substitution
A A

F = [fy, £, 65,64, f5, ..., fy]
Class 1 E, = [fy,£5,f5,f4,f5, ..., fy]
F,, = [fy, £, f5, £, fs, o, ]

‘_‘ F, = [fy,f5, 13,4, 15, ..., fy] ‘
Fy = [fy, 5, f5,£4,f5, ..., £y ]
Class 2 F, = [fy,f5, f3,f4, f5, ..., ]
F, = [f1, 65,85, f4, f5, ., fy]

_" Sy = [ki, ko, k3, kg ks, .., ky] ‘
Fy = [fy,f5,f3,f4,f5, .. fy]
ClassM| 2~ (£1, 2,5, f4, f5, ... £
Fe, = [f1, 65,65, 4 f5, . fy]

Figure 5.9.: Description of bag of key poses model.

The computation of posture features for the n-th frame in a sequence of NV skeletons
constituting an action consists in a set of P differences:

£, = [do,dy,da, ...,dp_1] (5.11)

The same skeleton integrity check implemented for AFV algorithm, which associates
the feature vector f,,_1 to f,, if the n-th skeleton is not available, is considered also
here.

The second step implements the bag of key poses model [115]. It consists of the
codebook generation, with the definition of the key poses, and the substitution of
each posture features with the most informative feature vectors, i.e. the key poses.
This process is represented in Figure 5.9 and the codebook generation phase is
realized with a separated clustering process for each action of the dataset using k-
means algorithm. A separated clustering is performed because different actions may
be better represented by a different number of key poses. Considering a dataset with
M actions, i.e. M classes, a vector with M elements [K1, Ko, ..., K] can be defined
with the number of key poses. As visible in Figure 5.9, all the ¢; training instances
of the first class [F1,Fo,...,F; ] are grouped in K clusters, and the cluster centers
[C1,Ca,...,Ck,] are the key poses for action 1. By repeating this process for all
the classes and by merging all the key poses obtained for each class, the codebook is
obtained. The closest key pose in terms of euclidean distance has to be associated
to each feature vector in an action. Considering Figure 5.9, an action represented
by a sequence of feature vectors F1 = [f1, s, ..., fy] is translated into a sequence of
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key poses S1 = [k1, k2, ..., kn]. The codebook is generated considering only training
data while feature vectors extracted from testing samples have to be associated to
learned key poses.

The third step consists in the representation of the action with a temporal pyra-
mid, and the computation of the histograms of key poses at each level of the pyramid.
As visually represented in Figure 5.8, a sequence is divided into a number of segments
of 2171 at the I-th level of the pyramid. A histogram is built for each segment of the
pyramid considering the number of occurrences of each key pose within the segment,
normalized by the sequence length. The temporal pyramid is an efficient structure to
represent the distribution of the key poses within the sequence. In fact, moving from
the top to the bottom of the pyramid, different descriptions of the same sequence
can be obtained, from the most general to the most detailed one. Furthermore, the
temporal pyramid can be efficiently implemented because the computation of the
histograms at the [-th level of the pyramid can be efficiently obtained considering
the sum of the corresponding segments at the level [ + 1. The sequence is finally
represented as the histograms computed at each level of the pyramid. Considering
the example in Figure 5.8, where a temporal pyramid of 3 levels is shown, the vector
H, which is the input to the classifier, is represented by 7 histograms.

Finally, the last step realizes classification and is required to associate each set of
histograms H representing an action to the corresponding class label L. The classifier
is exactly the same as in the AFV algorithm, i.e. a multi-class SVM implemented
with “one-versus-one” method and RBF kernel.

5.2.2. Parameter optimization

In order to improve the performance in terms of classification accuracy, the pa-
rameters required by the algorithm based on temporal pyramid of key poses can
be optimized by using evolutionary and coevolutionary algorithms, by adopting the
approaches proposed by Chaaraoui et al. [115, 117] to optimize their HAR method.
The idea is to find the best values for three parameters of the HAR algorithm: the
set of joints to be included in the HAR algorithm (features), the number of key poses
for each class of the dataset (clusters), and the set of training sequences (instances).

Evolutionary optimization

Evolutionary algorithms are optimization approaches inspired by biological evolu-
tion where the population of individuals (i.e. the candidate solutions) evolve towards
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Figure 5.10.: Individual defined for evolutionary optimization.

better solution every iteration. An individual is usually defined as a binary array

and each gene can be 1 or 0, requiring or not its usage in the HAR algorithm. Since

three different parameters have to be optimized, the adopted method considers an

individual as a binary array constituted by three parts, each of them related to a dif-

ferent parameter [160]. The optimization algorithm is applied as a wrapper method,

by iteratively trying the candidate solutions on the HAR algorithm and evolving

the population according to their fitness, i.e. the accuracy of HAR algorithm. The

evolutionary computation is constituted by the following steps:

1. the population is initialized with a fixed number of individuals (V);

2. the accuracy of the HAR algorithm is associated to the fitness, and the popu-

100

lation is ranked considering the fitness value of each individual;

. a new individual is generated by applying the crossover operator, considering

two parents selected with ranking method.

This selection method considers the absolute fitness value of each element to
order the population, then it assigns a fitness value according to the position
of each element. If the population is constituted by N individuals, the best
one receives a fitness of IV, the second one takes a fitness value of N — 1, and
so on, until the worst individual which takes the value 1.

mutation operator is applied to the new individual;
the fitness for the new individual is evaluated and it is added to the population;

the next generation population is selected with elitism. All the individuals of
the population are selected with the exception of the individual featured by

the lowest fitness;

the algorithm creates a new individual, repeating the process from step 3 until
the stop condition, which is a number of generations without changes in the
highest fitness.
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Figure 5.11.: Crossover operator aware of skeleton structure, applied to the features
sub-individual (reprinted from [115]).

The individual’s structure is represented in Figure 5.10, where the features item
is represented by a binary vector of length P, the clusters item is constituted by
M integer values (one for each class), and the instances sub-individual is made up
of I elements, assuming the presence of I training sequences in the dataset. A 1-
point crossover operator is applied independently to each part and, while a standard
crossover is applied to instances and clusters vectors, a specific one, which takes into
account the skeleton structure, is considered for the features part. Given the joint
selected for crossover, the specific crossover operator applied to the features sub-
individual considers the upper joints from one parent and the bottom joints from
the other one. As visible in Figure 5.11, if a shoulder joint is selected for crossover,
the offspring is constituted by most of the joints from parent 1 with the arm from
parent 2. The colors of the joints are associated to the value of the corresponding
gene in the individual: black joints assume value 1 and they are selected in the HAR
algorithm while white joints assume value 0 and they are discarded.

The mutation operator, which is applied to alter the gene values in the indi-
vidual from its initial state, is also featured by three probabilities, one for each
sub-individual. Probabilities mutp, mut; and mut; are defined for features vector,
clusters vector and instances vector. If the sub-individual takes binary values, a
gene can change its value according to the corresponding mutation probability. If
the sub-individual assumes integer values, for example in the clusters vector, muta-
tion is performed by changing the actual value with a random value contained in a
specific interval.
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Figure 5.12.: The individual for coevolutionary optimization is obtained by consid-
ering three sub-individuals belonging to different populations: features,
clusters and instances (reprinted from [117]).

Coevolutionary optimization

In the cooperative coevolutionary algorithm, each sub-individual defined to optimize
the HAR algorithm is associated to a different population, bringing to the consid-
eration of the instances population, the clusters population and the features one
[117]. The individuals belonging to the three populations have the same structure
of the corresponding sub-individuals defined in the case of a unique population in
the evolutionary optimization process. Crossover and mutation operators can be ap-
plied with the same choices. One difference is represented by the selection of parents
required to create a new individual. In this case, the selection is implemented with
roulette method, which means that the possibility for each element to be selected is
proportional to its fitness.

As represented in Figure 5.12, the fitness value for a new individual of one pop-
ulation (1) requires the selection, which is implemented with ranking method, of
individuals from the two other populations (iz, i3). The obtained fitness value is
associated not only to the individual i1, but also to i2 and i3 if it improves the fitness
value associated to them. If two or more individuals have the same fitness values,
different priorities are given to each of them. Individuals with a lower number of
selected values are preferred in features and instances populations. In the clusters
population, the individual with less accumulated sum is favored. This mechanism
gives priority to solutions that limit the complexity of the system.
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Table 5.10.: Accuracy (%) and parameter values obtained considering Random se-
lection, Evolutionary and Coevolutionary optimizations by the TPKP
algorithm with MSR Action3D.

AS1 AS2 AS3

Random selection
Acc. 95.24 86.61 95.5
clust.  [17 17 15 25 8 22 12 22] [4 8102218 19 16 5] [71 66 48 56 66 61 76 52]

FEvolutionary optimization
Acc. 95.24 90.18 100
clust. [1026 12101722 1010] [7131059 16 2317]  [68 69 60 62 55 48 75 60]
feat.  [11100001011110001000] [11100111110110011111] [10100101110010100011]

Coevolutionary optimization

Acc. 95.24 91.96 98.2

clust. [1579 1212 13 5 10] [10 10 10 513 4 10 16]  [51 15 16 34 29 56 55 43]
feat. [10101001100010001100]  [00001001101110011110]  [11111001011110100011]
inst. 178/219 202/228 176,/222

5.2.3. Experimental results

Experimental tests on algorithm based on temporal pyramid of key poses have been
executed on the well known MSR Action3D dataset [68], and also on a recently
released large-scale dataset: NTU RGB+D [97]. Due to the complexity of the
latter dataset, the optimization algorithm based on evolutionary and coevolutionary
optimization has been applied only on MSR Action3D.

MSR Action3D

The evaluation scheme adopted for MSR Action3D is the most used one, i.e. the
cross-subject test defined by Li et al. [68], which considers samples from actors 1-
3-5-7-9 for training, and sequences performed by actors 2-4-6-8-10 for testing. The
evaluation is performed considering the accuracy obtained separately for the subsets
AS1, AS2, AS3 (Table 2.2) and the average as global performance indicator.

In order to evaluate the effect of evolutionary algorithms, the selection of parame-
ters has been performed using three different methods, all of them considering three
levels of the temporal pyramid, detailed in the following:

103



Chapter 5. Human action recognition

e Random selection: the entire set of training sequences (instances) and skeleton
joints (features) are considered, the only selected parameter is the the number
of key poses for each class of the dataset. The clusters are selected randomly
in the interval [4, 26] when the subsets AS1 and AS2 are evaluated and within
the interval [44, 76] for AS3;

e Fvolutionary optimization: the evolutionary algorithm is applied to select the
features and the clusters sub-individuals, considering the same selection inter-
vals applied in the random selection: [4,26] for AS1 and AS2 and [44, 76] for
AS3. The sub-individual regarding the training instances is not considered,
and all the sequences required by the evaluation scheme are included in the
training process. A number of 10 individuals constitute the population and the
mutation probabilities are not fixed, but they are randomly selected within the
intervals [0, 0.15] for mutp and [0,0.25] for mutc. The optimization process
is terminated with 100 generation without changing the best fitness value.

o (Coevolutionary optimization: the algorithm is adopted to optimize instances,
features and clusters sub-individuals. A random selection within the inter-
val [0,0.025] gives the mutation probability of instances vector (muty). The
clusters are randomly chosen within the interval [4, 16] for AS1 and AS2, and
[4,64] for AS3. The termination condition is represented by a fixed number of
generations, independently from the variations in the highest fitness. A value
of 500 has been used for AS2 and AS3 while AS1 required 800 generations.

Table 5.10 shows the results obtained with the random selection of parameters,
evolutionary and coevolutionary optimization. Considering the random selection of
clusters representing key poses, the algorithm can overcome 95% accuracy in AS1
and AS3, while it reaches 86.61% in AS2 which is the most complex subset, as
revealed also by other methods. However, probably due to the inclusion of more
complex actions, AS3 subset requires an higher number of key poses per class, if
compared to AS1 and AS2. The optimization with the evolutionary algorithm,
considering the number of clusters per class, and the set of skeleton joints, brings to
an improvement of the performance in AS2 and AS3. The latter can be recognized
with 100% score even if it requires a large number of key poses, which can be 75 at
maximum for the Golf swing action. On the other hand, AS3 requires a quite limited
number of joints: only 10 joints out of 20 are necessary in the best configuration. The
best recognition accuracy for AS2 is 90.18%, which can be achieved with a selection
of 15 joints and a quite low number of clusters per class, which is maximum 23. The
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(a) (c)

Figure 5.13.: Best subsets of joints selected with evolutionary optimization for AS1
(a), AS2 (b) and AS3 (c). Green circles represent the selected joints
while red squares are used for the discarded ones.

highest accuracy obtained for AS1 is the same as in the random selection process,
but now only 9 joints are required, limiting the complexity of the system. The
selected subsets of joints by the evolutionary optimization is shown in Figure 5.13.
They are consistent with the movements required by the actions included in the
subsets: differently from AS2 and AS3, foot and ankle joints are not considered in
AS1 because actions do not require movements of lower limbs.

The coevolutionary optimization leads to comparable average results to the evolu-
tionary one. Considering AS1, the recognition accuracy is exactly the same, but the
system has a lower complexity because it requires only a number of 178 training in-
stances instead of the entire set of 219, 8 skeleton joints and a total number of 83 key
poses for the 8 classes of the subset. With evolutionary optimization, 117 key poses
are required for the best configuration shown in Table 5.10. Better results have been
achieved in AS2, represented by a recognition accuracy of 91.96% obtained with a
small set of joints (10) and 202 training instances. Finally, AS3 reached the best
accuracy of 98.2%, even if the result could be higher by implementing a different
termination condition, for example considering more iterations.

The performance obtained by the TPKP algorithm are compared to other HAR
algorithms in Table 5.11. This table has been obtained considering only papers that
clearly state the use of the cross-subject test with samples from actors 1-3-5-7-9 for
training, and the rest for testing. The TPKP method achieves results comparable to
the state-of-the-art considering the average accuracy on AS1, AS2 and AS3 subsets.
Shahroudy et al. [170], and Xu et al. [169] perform better but they propose more
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Table 5.11.: Accuracy (%) obtained by the TPKP algorithm, compared with other
works evaluated on MSR Action3D with the cross-subject test.

Method AS1  AS2  AS3  avg
Li et al. [68] 72.9 71.9 79.2  74.67
Akkaladevi et al. [161] 84 62 80 75.3
Ghorbel et al. [162] 83.08 79.46 93.69 85.41
Evangelidis et al. [163] 88.39 86.61 94.59 89.86
Chen et al. [164] 96.2  83.2 92  90.47

Chaaraoui et al. [78] 92.38 86.61 964 91.8
Lo Presti et al. [165] 90.29 95.15 93.29 92091
Tao and Vidal [166] 89.81 93.57 97.03 935

Du et al. [167] 933 9464 955 94.49
Chen et al. [168] 98.1 92 94.6  94.9
TPKP 95.24 90.18 100 95.14
Xu et al. [169] 99.1 929 964  96.1
Shahroudy et al. [170] - - - 98.2

complex methods, including also depth data.

NTU RGB+D

In order to evaluate the proposed algorithm on temporal pyramid of key poses
(TPKP) on the large-scale NTU RGB+D dataset, some changes are required. Firstly,
NTU RGB+D includes both actions and interactions, so some activities performed
by two subjects can be part of the dataset. Secondly, being a quite big dataset, the
adoption of the “one-versus-one” multi-class SVM implemented in LIBSVM is not
efficient.
The first issue has been solved by modifying the posture features vector defined
in (5.11) as follows:
f, = [do,d1,dg,...,dpp_1] (5.12)

which consists in evaluating all the displacements for P skeleton joints and B bodies.

It may happen that the sequence contains only one skeleton; in this case, the entire
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Posture features extraction J; = i-th joint
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Figure 5.14.: Main scheme of the HAR algorithm based on temporal pyramid of key
poses (TPKP) modified for large-scale NTU RGB+D dataset.

features vector is kept to ensure the same dimensionality, but the second half of
it is set to zero. On the other hand, the center-of-mass J., has been evaluated
considering only the P skeleton joints belonging to the main skeleton.

Solving the second issue requires to consider a more efficient approach for large-
scale datasets which is the “one-versus-all” multi-class SVM implemented by LIB-
LINEAR [171] library. At the end, the scheme of TPKP algorithm shown in Figure
5.8 has been modified and the updated version is depicted in Figure 5.14.

NTU RGB+D dataset requires some further steps before running the action recog-
nition algorithm, and they consist in the rotation of the skeletons to compensate the
view point, the removal of noisy data, and the identification of the main skeleton if
more than one is present. The skeleton rotation is implemented following the ap-
proach described in [97], the z-axis is aligned to the vector connecting the shoulders
and the y-axis is aligned to the “spine vector”, going from spine base to spine joints.
The effect of the rotation on a skeleton is shown in Figure 5.15, where the original
and rotated skeletons related to the same body performing the brushing teeth action
are shown. Figures 5.15(a-b) show original and rotated skeletons captured from
camera 1, related to the 45° view, while Figures 5.15(c-d) show the same skeletons
captured from camera 3, which observes the front view. The detection and filtering
of noisy skeleton data is necessary because the dataset may include spurious skele-
tons, for example detected from objects. A skeleton is marked as noisy if their joints
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S

() (d)

Figure 5.15.: Original and rotated skeletons related to the action brushing teeth cap-
tured from camera 1 (a-b) and camera 3 (c-d).

show a spread over z-axis higher than 0.8 of the one over y-axis. The measure of the
spread is given by the standard deviation. This filtering process is applied with two
different strategies, depending if it is considered in training phase or testing phase.

During training phase, the activity label is known, thus it is possible to know
if the activity belongs to the group of actions (performed by one actor) or to the
group of interactions (with two actors). If a sequence belonging to the former group
contains more than one skeleton, the spread of skeleton joints over x and y axes is
computed, and all the noisy skeletons are removed. In addition, if all the skeletons
are noisy, the frame is removed and the sequence is shortened while if none of them
is noisy, only the first one is kept. If a sequence belonging to the second group
(interactions) contains more than two skeletons, the filtering technique based on the
x and y spread is implemented to find the noisy ones. If none of the skeleton verifies
the condition, only the first two skeletons are kept.

During testing phase the activity label is unknown, thus it is not possible to
establish if a sequence is an action or interaction, and how many skeletons have to
be present in the sequence. However, the coordinates of each skeleton are processed
to establish if it is a noisy one or not. All the skeletons marked as noisy are removed
and the assumption that the maximum number of skeletons in a sequence is two is
made. If a sequence contains more than two skeletons, only the first two are kept
even if none of them is noisy. If there are two skeletons in a sequence, the main one
has to be calculated to extract the center-of-mass. The main skeleton is defined as
the one featuring the highest amount of body motion. The body motion is given by
the sum of position displacements of each joint from one frame to the next one.

Experimental tests have been executed setting C' = 1 for the linear SVM, consid-
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Table 5.12.: Accuracy (%) obtained by the proposed method on temporal pyramid
of key poses (TPKP), with different clusters (K) and different levels of
the temporal pyramid (L).

cross-subject Cross-view
K L=2 L=3 L=4 L=2 L=3 L=14
4 41.8 45.2 43.8 44.3 49.1 50.1
8 44.5 48.1 45.0 49.3 53.0 52.5
16 464 48.7 45.1 52.3 56.3 54.9
32 48.1 489 468 55.1 57.2 56.2
64 477 48.3 — 55.3  BT.7 —

ering a number of levels (L) going from 2 to 4 for the temporal pyramid, and the
a number of key poses which is the same for each action, setting K = K1 = Ko =
-+« = K. The interval K = [4,8,16,32,64] has been considered for the number
of key poses and the accuracy has been evaluated for cross-subject and cross-view
tests described in Subsection 2.2.3. Results are shown in Table 5.12, where it can be
noticed that cross-subject evaluation is more challenging than the cross-view one,
and also that better results are achieved with a large number of clusters.

The best accuracy for the cross-subject test (48.9%) has been obtained with L = 3
and K = 32, which means a total number of key poses of 1920 for the entire dataset
constituted by 60 activities. With the cross-subject and L = 3 the accuracy does
not decrease too much using a lower number of key poses: considering K = 8 the
obtained performance is 48.1% and the minimum value is 45.2% with K = 4. The
inclusion of 2 levels in the temporal pyramid allows to achieve comparable results
if a large number of key poses are considered (K = 32 or K = 64), while a larger
difference in the accuracy values is obtained when the number of clusters is reduced
(K =4 or K = 8). Choosing 4 levels for the temporal pyramid leads to a more
complex system and does not improve the results with respect to L = 3. The
configuration L = 4 and K = 64 has not been evaluated due to lack of memory.

Considering cross-view test, the best performance (57.7%) is achieved with L = 3
and K = 64. In this evaluation scheme, decreasing the number of key poses affects
more the performance than in the cross-subject configuration, with a reduction of
8.6% using K = 4. The adoption of a temporal pyramid with 2 levels leads to
worse performance, especially with reduced number of key poses, and the minimum
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Table 5.13.: Comparison of different methods evaluated on NTU RGB-+D dataset
in terms of recognition accuracy (%). Results are ordered considering
the accuracy of the cross-subject test.

Method cross-subject  cross-view
Depth-based

Oreifej and Liu [66] 30.56 7.26
Yang and Tian [64] 31.82 13.61
Ohn-Bar and Trivedi [172] 32.24 22.27
Skeleton-based

Evangelidis et al. [163] 38.62 41.36
TPKP 48.9 57.7
Vemulapalli et al. [94] 50.08 52.76
Hu et al. [173] 60.23 65.22
Deep neural networks

Du et al. [167] 59.07 63.97
Shahroudy et al. [97] 62.93 70.27
Liu et al. [174] 69.2 T

accuracy (44.3%) is represented by the simplest configuration, with L = 2 and
K = 4. On the other hand, the consideration of L. = 4 gives better results with a
reduced number of key poses, while if K increases, the adoption of L = 3 achieves
better results. Also for the cross-view evaluation scheme, the configuration L = 4
and K = 64 has not been considered.

The performance obtained by the method based on temporal pyramid of key poses
is compared to other works proposed in literature in Table 5.13. The TPKP method
achieves mid state-of-the-art results outperforming the three considered depth-based
methods and only some of the skeleton-based approaches: Evangelidis et al. [163]
in cross-subject and cross-view evaluation schemes and Vemulapalli et al. [94] only
in cross-view. However, due to the complexity of the dataset, TPKP algorithm is
not able to reach results achieved by data-hungry methods based on deep neural
networks [97, 167, 174].
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5.3. Conclusion

The algorithm based on AFV has been able to overcome the state-of-the-art results
on KARD dataset. In particular, in the most challenging scenario which is the
leave-one-actor-out cross validation test with the entire dataset, the AFV method
achieved a precision of 95.1% and a recall of 95%. A gap of about 10% is obtained,
with respect to the algorithm proposed by Gaglio et al. [90] who released the dataset.
The same evaluation setting has been adopted for CAD-60 dataset, where the AFV
algorithm has achieved a precision of 93.9% and a recall of 93.5%, comparable to the
state-of-the-art. The results obtained on UTKinect are only 2% lower than the state-
of-the-art, which is 97.1%. A mid state-of-the-art accuracy has been achieved on
Florence3D, which is limited by high inter-class similarity and intra-class variability,
and MSR Action3D, where the main challenge is again the similarity of different
gestures.

The TPKP algorithm has been proposed to improve the results on the most
challenging dataset, i.e. MSR Action3D. The adoption of the bag of key poses model
with the temporal pyramid, and the parameters optimization through evolutionary
computation methods, allowed to reach results close to the state-of-the-art on the
cross-subject test. In particular, the accuracy of TPKP algorithm has achieved
95.14% against the best result claimed by Shahroudy et al. [170] which exploited
also depth data. The TPKP algorithm, with some minor changes, has been tested
also on the large-scale NTU RGB+D dataset, constituted by 60 actions performed
by 40 actors for a total number of 56880 sequences. In this case, even if the TPKP
method was not able to reach the state-of-the-art represented by data-hungry deep
learning methods, it can be seen as an alternative approach of limited complexity,

among the skeleton-based ones.
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Chapter 6.
Conclusion

In this thesis, different algorithms and applications based on RGB-D devices for
smart environments have been proposed. In particular, the implemented algorithms
can be used for mobility assessment and for human action recognition. This chapter
initially includes a discussion summarizing the main results achieved in this thesis.
Then, the contribution of the thesis is highlighted and the open issues and future
research directions are presented. Finally, a list of publications is provided.

6.1. Discussion

After the introduction, a review of the literature on the two main topics addressed in
this thesis, i.e. mobility assessment and human action recognition has been provided.
Chapter 2 included an overview of different sensors and technologies adopted for
mobility assessment, which is often considered for the evaluation of the fall risk, and
human action recognition. A more detailed review on methods based on RGB-D
sensors has been included for both topics, and the most used datasets have been
discussed.

A tool for mobility assessment has been proposed in Chapter 3. The algorithm
considers depth frames extracted from Kinect working in side view, i.e. on the sagit-
tal plane, and calculates the coordinates of six joints: head, shoulder, elbow, hip,
knee and ankle. The validation of the algorithm has been carried out with two differ-
ent procedures. The former one considered infrared sticky markers attached on the
body surface as reference and the error in the estimation of the joint positions was
the metric considered for evaluation. The proposed algorithm is characterized by
lower values in terms of average and standard deviation of the error over 18 repeti-
tions of the test, if compared with the markerless estimation algorithms provided by
Microsoft SDK and OpenNI library. A further validation step has been performed
considering a marker-based stereometric system as a reference. Two fundamental
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angles for the evaluation of the sit-to-stand movement have been computed from the
joint coordinates provided by the four systems. The absolute difference between the
angle trajectories given by each markerless algorithm and the stereometric system
is considered as the error metric. Four different repetitions of the test performed
by two people resulted in a lower average and standard deviation of the error given
by the proposed algorithm in almost all the cases for the estimation of fundamental
angles.

In order to increase the number of parameters to perform a mobility assessment
test, the RGB-D sensor can be used jointly with an IMU. A synchronization pro-
cedure to correctly associate samples from different sources has been proposed in
Chapter 4. The delay times present between the acquisition of the frame from Kinect
and its availability on the machine have been estimated for each stream of Kinect
vl and v2. The synchronization procedure is based on the compensation of delay
times regarding Kinect data and in the linear regression of timestamps associated
to acceleration samples transmitted through Bluetooth interface. The joint use of
Kinect and acceleration sensor allows to extract a set of objective indices, such as
timing, cadence and angle values, that can be useful for fall risk and mobility assess-
ment. The combination of RGB-D and acceleration devices has been also adopted
for fall detection. It allows to design simpler algorithms than the ones required
if data are used independently. In fact, the acceleration data simplify the process
of distinguishing a fall from lying on the ground action while the Kinect helps to
separate actions generating a similar acceleration peak, such as sitting on a chair or
falling.

The other main topic addressed in this thesis is represented by human action recog-
nition, described in Chapter 5. An algorithm based on skeleton joints and Activity
Feature Vectors (AFV) has been initially proposed as a solution that can achieve
state-of-the-art results on KARD and CAD-60 datasets. In particular, considering
the leave-one-actor-out cross-validation scenario, the algorithm achieves about 95%
of precision and recall on KARD dataset while it reaches 93.9% and 93.5% respec-
tively on CAD-60. The evaluation of this algorithm on Florence3D, UTKinect and
MSR Action3D datasets has provided average state-of-the-art results, since the AFV
algorithm has been overcome by other methods exploiting techniques for temporal
alignment of the sequences, or a combination of several machine learning methods.
The results on MSR Action3D dataset have been improved considering a different
approach, based on Temporal Pyramid of Key Poses (TPKP). This method adopts
the bag of key poses model and represents the sequence with the histograms of key
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poses calculated at each level of a temporal pyramid. The optimization of parame-
ters with evolutionary computation allows to improve the results on MSR Action3D
achieving an accuracy on the cross-subject test of 95.14%, which is close to the
state-of-the-art. The TPKP method has been applied with a few changes on NTU
RGB+D, a large-scale dataset recently released. It has achieved mid state-of-the-
art results since better performance is given by data-hungry methods based on deep
neural networks. However, TPKP algorithm can be considered as an alternative

approach among the skeleton-based solutions.

6.2. Contributions

The contributions of this work can be summarized as follows:

e design and implementation of an algorithm for the extraction of skeleton joints
from a depth frame. The algorithm works in side view and can be used to
calculate objective indices during the sit-to-stand test. The validation of the
proposed solutions with a stereometric system gave better results in terms
of estimation of fundamental angles, if compared with other markerless joint
estimation algorithms.

Differently from other instrumented mobility assessment tests, which are based
on skeleton coordinates provided by RGB-D sensors or on some information
provided by the human shape, the approach proposed in Chapter 3 estimates
the coordinates of six joints from the depth map. Since it works on the sagittal
plane, it can be adopted when there are some limitations given by the envi-

ronment or when the analysis from this point of view is of particular interest.

This work has been published in [124, 125, 126].

e Development of a synchronization strategy to associate samples from a vision-
based system (Kinect vl and v2) and an IMU equipped with Bluetooth com-
munication interface. The joint use of Kinect v2 and has been adopted to
obtain indices from the execution of the TUG test and to implement fall de-
tection algorithms.

The main contribution is represented by the characterization of delay times
affecting the different streams of data provided by Microsoft Kinect sensor.
Even if the described synchronization strategy has been developed to associate

a frame from a vision-based sensor to an acceleration sample, the approach
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can be adopted as it is to associate data coming from a Bluetooth channel,
assuming that the time required to acquire data at the node is negligible. The
delay times of data generated by Kinect can be also used to synchronize these
data to others sent to the same machine through different communication
protocols, if the delay introduced by the transmission process is known.

In order to demonstrate the feasibility of the data fusion method, two relevant
applications in AAL domain have been considered: TUG and fall detection.
Regarding the former one, to the best of the author’s knowledge, this work has
been the first one to propose the joint use of Kinect and IMU to instrument
this test. Regarding the fall detection application, even if there are previous
works considering the data fusion of vision-based and inertial data [175], this
is the first one that addressed the synchronization issue.

This work has been published in [139, 140, 141].

e Proposal and validation of different HAR algorithms. The algorithm based on
activity feature vectors (AFV) can achieve state-of-the-art results on KARD
and CAD-60 datasets. The adoption of the bag of key poses model and the
representation of a sequence as a temporal pyramid of key poses (TPKP) has
allowed to achieve state-of-the-art results on the well-known MSR Action3D
dataset.

The algorithm based on AFV, despite its simplicity if compared to other fancy
methods available in literature, is able to achieve far better results. A fur-
ther improvement has been obtained with the combination of the bag of key
poses method with a temporal pyramid. The TPKP algorithm has reached
better results than previous methods exploiting the bag of key poses on MSR
Action3D dataset.

This work has been published in [149, 150, 151].

e Implementation of two recording tools to capture and store data from Kinect
vl and v2, described in Chapter A. These software have been used to capture
five datasets that have been released to the research community.

6.3. Open issues and future works

This section analyzes the open issues in the proposed algorithms and applications
identifying some future research directions.

116



6.3. Open issues and future works

The algorithm for joint extraction working in side view has been developed specif-
ically for the sit-to-stand test followed by some steps. It requires a fixed background
and this limitation, that can be easily satisfied only in a controlled environment,
can be overcome considering the online update of the background, for example with
an approach based on mixture of Gaussians. The robustness of the joint estimation
algorithm could be improved with the adoption of a machine learning algorithm
similar to the one implemented by Microsoft for the estimation of skeleton joints on
the frontal plane, based on Random Forests.

The Timed Up and Go test instrumented with Kinect v2 and an IMU should
be validated with a system representing the ground truth. As it has been done
with the algorithm working in side view, a possible solution could be represented
by a marker-based stereometric system providing the real coordinates of skeleton
joints. Timing information and the length of the steps could be extracted from
markers’ trajectories and compared to the values calculated from kinect data. After
the validation and tuning of the algorithms to extract objective indices, elderly
people of different categories (healthy subjects and people at risk of falling) should
be recruited to know what are their performance. The final aim of this work should
be an automatic classification of the subject after the execution of the test, and the
output should be an indicator stating if the subject is at risk of falling or not. This

system could support the final decision of the clinicians.

The collection of a larger dataset, involving more actions and more actors, could
help the development of a more robust fall detection algorithm. A machine learning
method could be applied to distinguish a fall from an ADL using features extracted
from skeleton joints and acceleration samples. The information fusion could be
implemented for example at feature extraction level by using feature samples from
all sensors at a centralized classifier, or at decision level by combining the decisions
of independent classifiers based on data from each sensor.

The algorithm for human action recognition based on temporal pyramid of key
poses generates the codebook using the well known clustering algorithm k-means.
The adoption of a clustering algorithm which is aware of the class to which a sequence
belongs may improve the separation of key poses associated to different classes in the
codebook. A greater distance among key poses of different classes would probably
increase the classification accuracy. Furthermore, even if it may be not usual in
this field, the implementation of a statistical significance test could be performed
to compare the different techniques evaluated. In order to improve the performance
on large-scale datasets, such as NTU RGB+D, the development of a deep learning
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algorithm, capable to handle many different actions performed by different actors,
could increase the recognition accuracy. Another aspect that can be addressed in the
future is the application of an action recognition algorithm on real world scenario. In
this case, two different things should be considered. Firstly, the developed algorithms
work on sequences of frames previously captured. A segmentation algorithm has to
be implemented to extract a sequence of frames representing an action from the
stream of data acquired by the sensor. Secondly, working with real world data could
bring to the evaluation of sequences that do not represent any action of the dataset.
An unknown class should be included to label sequences that cannot be associated
to classes used to train the system.

6.4. Publications
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have been also presented in conferences or workshops.

Journal papers

e E. Cippitelli, S. Gasparrini, E. Gambi, S. Spinsante, “A Human Activity
Recognition System Using Skeleton Data from RGBD Sensors,” Computa-
tional Intelligence and Neuroscience, vol. 2016, Article ID 4351435, 14 pages,
2016. doi:10.1155/2016/4351435.

e E. Cippitelli, S. Gasparrini, S. Spinsante, E. Gambi, “Kinect as a Tool for Gait
Analysis: Validation of a Real Time Joints Extraction Algorithm Working in
Side View,” Sensors 2015, 15(1), 1417-1434. doi:10.3390/s150101417.

e L. Montanini, E. Cippitelli, E. Gambi, S. Spinsante, “Low Complexity Head
Tracking on Portable Android Devices for Real Time Message Composition,”
WILEY Journal on Multimodal User Interfaces, 2015. doi: 10.1007/s12193-
015-0174-7.

e S. Gasparrini, E. Cippitelli, S. Spinsante, E. Gambi, “A Depth-Based Fall

Detection System Using a Kinect Sensor,” Sensors 2014, 14(2), 2756-2775.
doi:10.3390/s140202756.

118



6.4. Publications

Conference/workshop papers

e E. Cippitelli, S. Gasparrini, E. Gambi and S. Spinsante, “An Integrated Ap-
proach to Fall Detection and Fall Risk Estimation Based on RGB-Depth and
Inertial Sensors,” International conference on Software Development and Tech-
nologies for Enhancing Accessibility and Fighting Info-exclusion, special track
on Emergent Technologies for Ambient Assisted Living (ETAAL) 2016, Vila
Real (PT), December 1-3, 2016.

e E. Cippitelli, E. Gambi, S. Spinsante, and F. Florez-Revuelta, “Evaluation of
a skeleton-based method for human activity recognition on a large-scale RGB-
D dataset,” 2nd IET International Conference on Technologies for Active and
Assisted Living (TechAAL) 2016, London (UK), October 24-25, 2016.

e E. Cippitelli, S. Gasparrini, E. Gambi and S. Spinsante, “Unobtrusive Intake
Actions Monitoring Through RGB and Depth Information Fusion,” IEEE 12th
International Conference on Intelligent Computer Communication and Pro-
cessing (ICCP) 2016, Cluj-Napoca (RO), September 8-10, 2016.

e S. Gasparrini, E. Cippitelli, E. Gambi, S. Spinsante and F. Florez-Revuelta,
“Performance Analysis of Self-Organising Neural Networks Tracking Algo-
rithms for Intake Monitoring Using Kinect,” IET International Conference
on Technologies for Active and Assisted Living (TechAAL) 2015, Kingston
upon Thames (UK), November 5, 2015.

e E. Cippitelli, S. Gasparrini, S. Spinsante, E. Gambi, F. Verdini, L. Burattini, F.
Di Nardo and S. Fioretti, “Validation of an Optimized Algorithm to Use Kinect
in a Non-Structured Environment for Sit-to-Stand Analysis,” 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), Milan (IT), August 25-29, 2015.

e E. Cippitelli, S. Gasparrini, E. Gambi, S. Spinsante, J. Wahslén, I. Orhan,
and T. Lindh, “Time Synchronization and Data Fusion for RGB-Depth Cam-
eras and Wearable Inertial Sensors in AAL Applications,” IEEE ICC 2015 -
Workshop on ICT-Enabled Services and Technologies for eHealth and Ambient
Assisted Living, London (UK), June 8-12, 2015.

e E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “Depth Stream Com-
pression for Enhanced Real Time Fall Detection by Multiple Sensors,” IEEE

119



Chapter 6. Conclusion

International Conference on Consumer Electronics (ICCE-Berlin) 2014, Berlin
(DE), September 7-10, 2014.

e E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “A Depth-Based

Joints Estimation Algorithm for Get Up and Go Test Using Kinect,” ITEEE
International Conference on Consumer Electronics (ICCE) 2014, Las Vegas
(US), January 10-13, 2014.

e L. Montanini, E. Cippitelli, E. Gambi, S. Spinsante, “Real time message com-

position through head movements on portable Android devices,” IEEE Inter-
national Conference on Consumer Electronics (ICCE) 2014, Las Vegas (US),
January 10-13, 2014.

Book chapters

120

e E. Cippitelli, E. Gambi, S. Spinsante, and F. Florez-Revuelta, “Human Ac-

tion Recognition Based on Temporal Pyramid of Key Poses Using RGB-D
Sensors,” Advanced Concepts for Intelligent Vision Systems, Springer Interna-
tional Publishing, 2016. 510-521, do0i:10.1007/978-3-319-48680-2_45.

Paper presented at ACIVS 2016, Lecce (IT), October 24th-27th, 2016. Best
Student Paper Award.

S. Gasparrini, E. Cippitelli, E. Gambi, S. Spinsante, J. Wahslén, I. Orhan and
T. Lindh, “Proposal and Experimental Evaluation of Fall Detection Solution
Based on Wearable and Depth Data Fusion,” ICT Innovations 2015, Springer
International Publishing, 2016. 99-108, doi:10.1007/978-3-319-25733-4_11.
Paper presented at ICT Innovations 2015, Workshop ELEMENT 2015, Orhid
(FYROM), October 1-4, 2015.

S. Gasparrini, E. Cippitelli, S. Spinsante, E. Gambi, “Depth Cameras in AAL
Environments: Technology and Real-world Applications,” Chapter 2 in Theng,

Lau Bee. “Assistive Technologies for Physical and Cognitive Disabilities.” IGI
Global, 2015. 1-300. Web. 19 Dec. 2014. doi:10.4018/978-1-4666-7373-1.

S. Spinsante, E. Cippitelli, A. De Santis, E. Gambi, S. Gasparrini, L. Mon-
tanini, and L. Raffaeli, “Multimodal Interaction in a Elderly-Friendly Smart
Home: a Case Study,” Mobile Networks and Management. Springer Interna-
tional Publishing, 2015, 373-386, doi:10.1007/978-3-319-16292-8 27.

Paper presented at ELEMENT Workshop, 6th International Conference, MON-
AMI 2014, WAijrzburg (DE), 24 September, 2014. Best Paper Award.



6.4. Publications

e E. Cippitelli, S. Gasparrini, A. De Santis, L. Montanini, L. Raffaeli, E. Gambi,
and S. Spinsante, “Comparison of RGB-D Mapping Solutions for Applica-
tion to Food Intake Monitoring,” Ambient Assisted Living: Italian Forum
2014. Springer International Publishing, 2015, 295-305, doi:10.1007/978-3-
319-18374-9_28.

Paper presented at 5th Italian Forum on Ambient Assisted Living (foritAAL)
2014, Catania (IT), September 2-5, 2014.

e E. Cippitelli, S. Gasparrini, E. Gambi, S. Spinsante, “Quality of Kinect Depth
Information for Passive Posture Monitoring,” Ambient Assisted Living: Italian
Forum 2013. Springer International Publishing, 2014, 107-116, doi: 10.1007/978-
3-319-01119-6_11.

Paper presented at 4th Italian Forum on Ambient Assisted Living (foritAAL)
2013, Ancona (IT), October 23-25, 2013.

121






Appendices

123






Appendix A.

A.1. Kinect vl capture software

A software called Skeletal viewer has been developed to capture and store data
provided by Kinect v1 sensor. This tool has been used to capture data required for
offline processing, and also to provide some datasets to the community [146]. The
software has been developed in C++ and it exploits the Microsoft SDK to enable
the communication with the sensor. Since it is not possible to retrieve frames and to
write them on-the-fly on a Hard Disk Drive (HDD), the software acquires data from
Kinect and temporally stores data in a buffer in RAM memory. The data are then
written on the hard disk at the end of the capturing process. Since Skeletal viewer
exploits the RAM memory to memorize data when they are captured by the sensor,
it can store all the frames, without the risk of losing frames due to limitations in the
speed of writing buffer of the disk. On the other hand, the main drawback is that
the maximum amount of data that can be captured is related to the RAM memory
of the machine used.

The Graphical User Interface (GUI) is shown in Figure A.1, where it can be
noticed that three windows are shown. Starting from the left, the first one is related
to depth data, and each pixel is associated to a grayscale value except for the pixels
related to human body that take a specific color, the second one is for the human
skeleton while the last one is for RGB video. In particular, it is possible to export:

e RGB: each frame is stored as an image with resolution 640 x 480 in the bitmap
format. A file related to RGB stream is named as FrameRGB_ID.bmp, where
ID represents the identifier of the frame within a sequence.

o Skeleton: all the skeleton frames are stored in two files .txt and two files
.csv, where the coordinates of skeleton joints in depth frame and real world

are contained.

e Depth: each frame is stored as a binary vector with a resolution of 320 x 240 or

125



Appendix A.

Skeletal View: Color View:

Skeleton

s , b
Skeleton Frames Captured: Color Frames Captured:
[] Capture skeleton [ |capture RGE

Kinect: | Kinect 0 v Tracked skeletons: | pefauit System - Depth Resolution: | 320x240 v

3 1 Tracking Mode: | pefault v Range: | Defauit v Color view: RGB View v

Figure A.1.: GUI of Skeletal viewer, the software developed to capture data from
Kinect v1.

640 x 480. The files related to depth are named as Filedepth_ID.bin, where
ID has the same meaning of the RGB data.

e Timing information: a timestamp related to each frame captured is stored for
synchronization purposes. Three different files named RGBTime . csv, DepthTime.csv,
SkelTime.csv contain timestamps for RGB, depth and skeleton frames respec-

tively.

Since the infrared data is considered as a specific configuration of the color stream,
it is possible to capture alternatively IR or RGB frames. The selection is performed
using the combo box identified by the label Color View.

This procedure can be followed to use the tool:

1. select the streams that have to be captured using the check boxes below each

window.

2. Insert the amount of time (in seconds) that have to be captured and click the
button Allocate memory which creates the data structure in RAM memory to
temporally store the data. The software checks the amount of available RAM
and, if necessary, reduces the maximum capture time to allow data acquisition.

3. Click the button Start capture data to begin the data acquisition process; the
counters below the window of each selected stream are incremented every time

a new frame is captured.
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4. The acquisition process can be stopped using the button Stop capture data or

it automatically ends when the maximum acquisition time is reached.

5. Store acquired data in the hard disk using the button Save data. Frames are
stored at the path C:\Saved_Data\Data_v1, where a different folder is created

for each selected stream.

The maximum acquisition time depends on the amount of available RAM and on
the type of stream selected for acquisition process. In particular, the skeleton stream
provides only the 3D skeleton coordinates of 20 joints for each frame, so the amount
of required space is quite low. For depth and RGB frames it is possible to define
as Prow and pey respectively the number of rows and columns in one frame, with
Dhytes the number of bytes required to represent a pixel and with fps the number
of frames per second. The following simple equation can be used to calculate the
amount of bytes for 1 second of data:

dataisec = Prow - Peol " Poytes - Ips (Al)

Each pixel of a depth frame requires pyyses = 2, considering a resolution of 320 x 240
and fps = 30, from equation A.1 follows that it requires 4 608 000 bytes for 1 second
of data. Equation (A.1) can be used also for RGB frames, considering p., = 640,
Prow = 480 and ppyies = 4, due to the presence of the alpha channel. Thus, 1 second
of RGB video requires 36864000 bytes. Considering these figures, it is possible
to conclude that RGB data requires a space which is 8 times bigger than depth
information, and it is the stream that makes the difference in the maximum amount
of acquirable data.

The configurations listed in Table A.1 have been tested on a machine with 16
GB of RAM and a standard HDD. Considering the amount of time required by the
operating system and leaving some free RAM for other programs, it is possible to
acquire 260 seconds of RGB and depth data, with an amount of occupied RAM
of about 11 GB. Considering only RGB frames the maximum capture time is a bit
lower than 5 minutes while, capturing only depth data, the acquisition of 15 minutes
of data requires only about 4 GB of RAM, and even more data could be considered.

In order to capture more than 5 minutes of data with RGB and depth information,
it is necessary to adopt another approach and to use a Solid State Drive (SSD). The
tool named Kinect Stream Saver Application [176] starts the writing process during
the acquisition process. If the hard disk exploits the magnetic technology, the writing
speed is not enough and the software crashes after around 6 minutes in the used
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Table A.1.: Performance obtained by Skeletal viewer on a laptop with 16 GB of

RAM and standard HDD considering different streams.

RGB Depth RGB + Depth

RAM used [GB] 10.3 4.1 10.7
Capture time [s] 280 900 260
Save time [s] 300 120 300

laptop with 16 GB of RAM. On the other hand, the adoption of a SSD allows to
write data on the disk at real time without losing any frame of RGB and depth data.

The Skeletal viewer tool has been used to capture data related to the side-view

mobility assessment analysis described in Chapter 3, and also to acquire and share

with the research community some RGB-D datasets, available at [146]. Such datasets

acquired with Kinect v1 are:

e TST Fall detection v1, which provides depth frames at a resolution of 320 x 240
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of people simulating falls. Data have been captured in top-view configuration
and four volunteers have been considered in the acquisition process, having a
total number of 20 tests. The dataset can be split in two groups of 10 tests
each: Group A, featuring multiple people walking in the area of interest and
interacting with objects, and Group B, where one person is present in the area
of interest and falls are simulated.

This dataset has been used in [177].

TST Intake Monitoring v1, a dataset of 48 sequences providing food and drink
intake movements performed by 35 young people. The depth frames have been
captured at a resolution of 320 x 240 considering the top-view configuration.
This dataset has been used in [178].

TST Intake Monitoring v2, a dataset acquired with the same aim of the pre-
vious one, providing 60 sequences performed by 20 people for 3 times. The
three repetitions are related to different movements describing food and drink
intake actions, such as drink snack, eat a soup or use knife and fork.



A.2. Kinect v2 capture software

RGBS Depth = R
Frames captured:  -—  Frames status: Fps: | 10 Frames captured: —  Frames save: d: —  Fps: 30 Frames captured: Frames saved: —  Fps: 30
Mapp  (avaiiable orly with same RGB-Depth framerates) TS

Frames captured: Frames saved: Acquisition time (n seconds) !

Select Streams
Allowed framerate: 1, 2, 3, 5, &, 10, 15, 30 fps
] Capture RGB (bmp) [] Capture RGB (png)

Lcaensi Path to save image data
(Defauit C:\saved_Data)
Mapping
C:\Saved_Data

[ capture IR

[] Capture Skeleton

Skeleton

Frames captured: Frames saved: —  Fps: 0

FPS =29.93 Time = 130999945

Figure A.2.: GUI of Complete viewer, the software developed to capture data from
Kinect v2.

A.2. Kinect v2 capture software

The tool named Complete viewer has been developed to capture and store data from
Kinect v2. With the latest version of Kinect sensor, the problem of capturing data
and storing them in the disk is even more complex because the resolution of RGB
frames (1920 x 1080) is much higher than the resolution of the previous version.
Due to the large amount of data required by the RGB frames, it is possible to select
two different formats for color images: the uncompressed bitmap format, and the
compressed png format. The method imwrite provided by OpenCV library [179]
has been used to compress and store the data using png format, obtaining an image
file with a weight of 3 MB which is much less than the memory requirement of the
bitmap file, i.e. about 8 MB.

The same approach of storing temporally the data in the RAM memory and then
writing them on the disk at the end of acquisition process has been implemented.
The possibility to choose the frame rate at which the data are captured has been
also included, in order to further reduce the amount of data to be stored.

The GUI of Complete viewer is shown in Figure A.2, where four different windows,
each of which related to one of the streams, can be noticed. In details, the following
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data can be captured:

e RGB: each frame is stored at the resolution of 1920 x 1080 and can be en-
coded with two different formats, the uncompressed bitmap format and the
png format, which is compressed.

e Depth: depth frames are acquired at the resolution of 512 x 424 and they are
stored with the same approach of Skeletal viewer, i.e. using a binary vector.

e Infrared: each frame has the same resolution of the depth stream, and it is
stored as a bitmap image.

e Skeleton: the skeleton frames of a sequence are stored in two .txt files and two
.csv files, containing the joints in depth coordinate space and world coordinate

space.

e Mapping: the mapping information is represented by a matrix of 1024 x 424

which allows to find a correspondence between RGB and depth information.

e Timing information: a timestamp related to each frame is stored for syn-
chronization. It is possible to have timestamps from Kinect library and from
QueryPerformance Counter (QPC) [143] stored in ColorTime. csv, DepthTime.csv,
BodyTime.csv, InfraredTime.csv.

A user can interact with Complete viewer with the following steps:

1. select the streams that have to be captured; for RGB stream it is possible to
choose the format to store the data (bmp or png), and the mapping stream
can be saved only if the RGB and depth streams are enabled and if the frame
rate is equal.

2. Choose the path to save data, which is C:\Saved_Data by default. Following
the same structure for Kinect v1, a sub-folder called Data_v2 is created, and
the files belonging to different streams are stored.

3. Select the frame rate for each stream, using the textboxes labeled as “Fps”
below each window; by default, 10 fps are used for RGB frames and 30 fps for
the other streams. Only a selected set of frame rates (submultiples of 30) is
allowed.
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Table A.2.: Performance obtained by Complete viewer on a laptop with 16 GB of
RAM and standard HDD considering different streams.

RGB  Depth RGB + Depth

RAM used [GB] 10 10.6 9.5

Capture time [s] 40 818 36
146 (b 260 (b

Save time [s] (bup) 180 (bmp)
1200 (png) 1200 (png)

4. Insert the maximum acquisition time, specified in seconds. The data structure
in RAM memory to store the data is created by clicking the button Allocate
memory. As implemented in Skeletal viewer, the software checks the amount
of available RAM and automatically limits the capture time to allow data

acquisition.
5. Start the acquisition process with the button Start capture.

6. Stop the acquisition process with Stop capture or wait for the reaching of the

maximum acquisition time.
7. The data can be written on the disk with the button Save data.

Table A.2 shows the performance obtained considering a laptop with 16 GB of
RAM and Intel i7 processor. The maximum capture time is quite low if the acqui-
sition of RGB frames is enabled. In particular, by applying equation (A.1) with the
resolution of Kinect v2 frames, i.e. 1920 x 1080 and 512 x 424 for RGB and depth
respectively, the maximum capture time is about 40 seconds with RGB, which is
much lower than the maximum time when only depth data are captured (about 800
seconds). It can be also noticed that the time required to store the data is con-
siderably different choosing png or bmp format. This is reasonable because part of
the time is required to convert the data structure of a frame provided by Microsoft
SDK to the one accepted by the OpenCV library, and some time is necessary for
compression. However, it has been observed that the time required to save data on
hard disk can be very different and it depends on the usage of the machine. Two
versions of the software Complete viewer are available for download at [146]. The
only difference is that one of those does not require OpenCV library to be executed,
so RGB frames can be saved only in bmp format.
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This tool has been modified to add a serial communication interface with the
IMU equipped with the Bluetooth transceiver. It has been used for recording and to
develop algorithms exploiting acceleration and RGB-D data, as described in Chapter
4. The following datasets, available at [146], have been collected with the modified

Complete viewer:

e TST TUG, a dataset constituted by depth, skeleton and inertial data captured
during the Timed Up and Go test. Movements have been acquired from 20
people performing the mobility assessment test 3 times.

This dataset has been used in the work described in Section 4.2 and published
in [140].

e TST Fall detection v2, which provides depth, skeleton and acceleration data
captured during the simulation of different ADLs and falls. A group of 11
healthy volunteers have been recruited for the simulation of 8 activities (4
ADLs and 4 falls) for 3 times.

This dataset has been used in the work described in Section 4.3 and published
in [141].
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