990 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Cooperative coevolution of artificial neural network ensembles for pattern classification

    Get PDF
    This paper presents a cooperative coevolutive approach for designing neural network ensembles. Cooperative coevolution is a recent paradigm in evolutionary computation that allows the effective modeling of cooperative environments. Although theoretically, a single neural network with a sufficient number of neurons in the hidden layer would suffice to solve any problem, in practice many real-world problems are too hard to construct the appropriate network that solve them. In such problems, neural network ensembles are a successful alternative. Nevertheless, the design of neural network ensembles is a complex task. In this paper, we propose a general framework for designing neural network ensembles by means of cooperative coevolution. The proposed model has two main objectives: first, the improvement of the combination of the trained individual networks; second, the cooperative evolution of such networks, encouraging collaboration among them, instead of a separate training of each network. In order to favor the cooperation of the networks, each network is evaluated throughout the evolutionary process using a multiobjective method. For each network, different objectives are defined, considering not only its performance in the given problem, but also its cooperation with the rest of the networks. In addition, a population of ensembles is evolved, improving the combination of networks and obtaining subsets of networks to form ensembles that perform better than the combination of all the evolved networks. The proposed model is applied to ten real-world classification problems of a very different nature from the UCI machine learning repository and proben1 benchmark set. In all of them the performance of the model is better than the performance of standard ensembles in terms of generalization error. Moreover, the size of the obtained ensembles is also smaller

    Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks

    Get PDF
    Nowadays, machine learning methods are actively used to process big data. A promising direction is neural networks, in which structure optimization occurs on the principles of self-configuration. Genetic algorithms are applied to solve this nontrivial problem. Most multicriteria evolutionary algorithms use a procedure known as non-dominant sorting to rank decisions. However, the efficiency of procedures for adding points and updating rank values in non-dominated sorting (incremental non-dominated sorting) remains low. In this regard, this research improves the performance of these algorithms, including the condition of an asynchronous calculation of the fitness of individuals. The relevance of the research is determined by the fact that although many scholars and specialists have studied the self-tuning of neural networks, they have not yet proposed a comprehensive solution to this problem. In particular, algorithms for efficient non-dominated sorting under conditions of incremental and asynchronous updates when using evolutionary methods of multicriteria optimization have not been fully developed to date. To achieve this goal, a hybrid co-evolutionary algorithm was developed that significantly outperforms all algorithms included in it, including error-back propagation and genetic algorithms that operate separately. The novelty of the obtained results lies in the fact that the developed algorithms have minimal asymptotic complexity. The practical value of the developed algorithms is associated with the fact that they make it possible to solve applied problems of increased complexity in a practically acceptable time. Doi: 10.28991/HIJ-2023-04-01-011 Full Text: PD

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    An Effective Ensemble Approach for Spam Classification

    Get PDF
    The annoyance of spam increasingly plagues both individuals and organizations. Spam classification is an important issue to distinguish the spam with the legitimate email or address. This paper presents a neural network ensemble approach based on a specially designed cooperative coevolution paradigm. Each component network corresponds to a separate subpopulation and all subpopulations are evolved simultaneously. The ensemble performance and the Q-statistic diversity measure are adopted as the objectives, and the component networks are evaluated by using the multi-objective Pareto optimality measure. Experimental results illustrate that the proposed algorithm outperforms the traditional ensemble methods on the spam classification problems

    Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming

    Get PDF
    Machine learning algorithms are inherently multiobjective in nature, where approximation error minimization and model's complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population

    Multiobjective global surrogate modeling, dealing with the 5-percent problem

    Get PDF
    When dealing with computationally expensive simulation codes or process measurement data, surrogate modeling methods are firmly established as facilitators for design space exploration, sensitivity analysis, visualization, prototyping and optimization. Typically the model parameter (=hyperparameter) optimization problem as part of global surrogate modeling is formulated in a single objective way. Models are generated according to a single objective (accuracy). However, this requires an engineer to determine a single accuracy target and measure upfront, which is hard to do if the behavior of the response is unknown. Likewise, the different outputs of a multi-output system are typically modeled separately by independent models. Again, a multiobjective approach would benefit the domain expert by giving information about output correlation and enabling automatic model type selection for each output dynamically. With this paper the authors attempt to increase awareness of the subtleties involved and discuss a number of solutions and applications. In particular, we present a multiobjective framework for global surrogate model generation to help tackle both problems and that is applicable in both the static and sequential design (adaptive sampling) case
    corecore