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Abstract When dealing with computationally expensive sim-
ulation codes or process measurement data, surrogate mod-
eling methods are firmly established as facilitators for design
space exploration, sensitivity analysis, visualization,proto-
typing and optimization. Typically the model parameter (=hy-
perparameter) optimization problem as part of global surro-
gate modeling is formulated in a single objective way. Mod-
els are generated according to a single objective (accuracy).
However, this requires an engineer to determine a single ac-
curacy target and measure upfront, which is hard to do if
the behavior of the response is unknown. Likewise, the dif-
ferent outputs of a multi-output system are typically mod-
eled separately by independent models. Again, a multiob-
jective approach would benefit the domain expert by giv-
ing information about output correlation and enabling au-
tomatic model type selection for each output dynamically.
With this paper the authors attempt to increase awareness
of the subtleties involved and discuss a number of solutions
and applications. In particular we present a multiobjective
framework for automatic global surrogate model generation
to help tackle both problems and that is applicable in both
the static and sequential design (adaptive sampling) case.
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1 Introduction

Regardless of the rapid advances in High Performance Com-
puting and multi-core architectures, it is rarely feasibleto
explore a design space using high fidelity computer simula-
tions [94]. As a result, data based surrogate models (other-
wise known as metamodels, emulators, or response surface
models) have become a standard technique to reduce this
computational burden and enable routine tasks such as visu-
alization, design space exploration, prototyping, sensitivity
analysis, and of course, optimization [99,88].

It is important to first comment on the difference be-
tween local and global surrogate models since motivation
and philosophy are distinct. Local surrogate modeling in-
volves building small, relatively low fidelity surrogates for
use in optimization. Local surrogates are used as rough ap-
proximators of the (costly) optimization surface and guide
the optimization algorithm towards good extrema while min-
imizing the number of simulations [6]. Once the optimum is
found, the surrogate is discarded. Many advanced methods
for constructing and managing these local surrogates have
been designed, including trust region methods [100,2], vari-
ous ensemble techniques [33], space mapping methods [19],
and hierarchical surrogates [104]. In general the theory isre-
ferred to as Surrogate Based Optimization (SBO) or Meta-
model Assisted Optimization (MAO). A good overview ref-
erence is given by [18], [79], and the work by Y. S. Ong
[74].

In contrast, with global surrogate modeling the surro-
gate model itself is usually the goal. The objective is to con-
struct a high fidelity approximation model that is as accurate
as possible over the complete design space of interest using
as few simulation points as possible. Once constructed, the
global surrogate model (also referred to as a replacement
metamodel) is reused in other stages of the computational
science and engineering pipeline. For example as a cheap
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accurate and scalable replacement model in standard design
software packages (e.g., [11]). Thus optimization is usually
not the main goal (though it still can be), but rather a useful
post-processing step.

Of course the dichotomy is not strict; ideas and approaches
between the two types can, and should, be exchanged, allow-
ing for different hybrids to emerge that borrow ideas from
both types. A good example in this respect is the popular Ef-
ficient Global Optimization (EGO) approach first described
by Jones et. al. in [50] and elaborated by many others (e.g.,
[84]).

The current paper attempts to increase the value and util-
ity of global surrogate methods for practitioners by explor-
ing a multiobjective approach to surrogate model genera-
tion. This gives an engineer or domain expert more flexibil-
ity in specifying a priori constraints on the surrogate model
generation process (cfr“The 5 percent problem” in section
3). In addition, a multiobjective approach allows multi-output
problems to be modeled directly, giving more information
than modeling each output independently. At the same time
we do not assume a fixed sample distribution but select and
perform simulations iteratively (adaptive sampling) as would
be the case in any real application.

2 Global surrogate modeling

We stress again that the context of this work is to efficiently
generate accurateglobalsurrogates (valid over the complete
design space) using a minimal number of computationally
expensive simulations. Optimization of the simulation out-
put is not the main goal, rather we are concerned with op-
timization of the model parameters (hyperparameter opti-
mization).

Global surrogate models are particularly useful for de-
sign space exploration, sensitivity analysis, prototyping, vi-
sualization, andwhat-if analysis. They are also widely used
to build model libraries for use in controllers or engineer-
ing design software packages. In addition, they can cope
with varying boundary conditions. This enables them to be
chained together in a model cascade in order to approximate
large scale systems [5]. A classic example is the full-wave
simulation of an electronic circuit board. Electromagnetic
modeling of the whole board in one run is almost intractable.
Instead the board is modeled as a collection of small, com-
pact, accurate surrogates that represent the different func-
tional components (capacitors, transmission lines, resistors,
etc.) on the board. Finally, if optimization is the goal, one
could argue that a global model is less useful since signifi-
cant time savings could be achieved if more effort were di-
rected at finding the optimum rather than modeling regions
of poor designs. However, this is the logic of purely local
models, but they forgo any wider exploration of radical de-

signs [29]. Some examples of global modeling approaches
can be found in [72,31,7,89].

The mathematical formulation of the problem is as fol-
lows: approximate an unknown multivariate functionf : Ω 7→
C

n, defined on some domainΩ ⊂R
d, whose function values

f (X) = { f (x1), ..., f (xk)} ⊂ Cn are known at a fixed set of
pairwise distinct sample pointsX = {x1, ...,xk} ⊂ Ω . Con-
structing an approximation requires finding a suitable func-
tion s from an approximation spaceS such thats : Rd 7→
Cn ∈Sandsclosely resemblesf as measured by some crite-
rion ξ . The task is then to find the best approximations∗ ∈S
such thats∗ satisfies mins∈Sξ = s∗. This minimization is
an optimization problem over the model parameters, com-
monly referred to as the hyperparameter optimization prob-
lem. This may be solved manually, through trial and error, or
using readily available optimization algorithms. Additional
assumptions are thatf is expensive to compute. Thus the
number of function evaluationsf (X) needs to be minimized
and data points must be selected iteratively, at points where
the information gain will be the greatest [96]. Mathemati-
cally this means defining a sampling function

φ(Xi−1) = Xi , i = 1, ..,N (1)

that constructs a data hierarchy

X0 ⊂ X1 ⊂ X2 ⊂ ... ⊂ XN ⊂ X (2)

of nested subsets ofX = {x1, ...,xk}, whereN is the number
of levels.X0 is referred to as theinitial experimental design
and is constructed using one of the many algorithms avail-
able from the theory of Design and Analysis of Computer
Experiments (see the work by Kleijnen et al. [55]). Once
the initial designX0 is available it can be used to seed the
sampling functionφ . An important requirement ofφ is to
minimize the number of sample points|Xi |− |Xi−1| selected
each iteration (f is expensive to compute), yet maximize the
information gain of each successive data level. This process
is referred to as adaptive sampling [15], but is also known as
active learning [16], reflective exploration [11], OptimalEx-
perimental Design [80] and sequential design [53]. The ad-
vantage of adaptive sampling is that the number of required
data points need not be specified up front, avoiding potential
over- or undersampling. At the same time, by intelligently
choosing the location of each data point the accuracy of the
surrogate may be maintained. An important consequence of
the adaptive sampling procedure is that the task of finding
the best approximations∗ becomes a dynamic problem in-
stead of a static one. Since the optimal model parameters
will change as the amount and distribution of data points
changes.

3 “The 5 percent problem”

The basic algorithm for generating a global surrogate model
through adaptive sampling is as follows: a small number of
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simulations are performed according to some Design of Ex-
periment plan. Given these sample points the space of can-
didate modelsS is searched for the besting fitting models∗

according toξ . If s∗ is acceptable (i.e., the model meets the
target requirement set out by the user) the algorithm ter-
minates. Else the sampling functionφ is used to generate
a new set of sampling points (adaptive sampling) and the
model search is resumed. This whole process continues until
the user-defined accuracy has been reached or the computa-
tional budget is exhausted.

A crucial aspect of this algorithm is identifying a suit-
able criterionξ , whereξ constitutes three parts:

ξ = (Λ ,ε,τ) (3)

with Λ the generalization estimator,ε the error (or loss)
function used, andτ the target value required by the user.
This means that the global surrogate model generation prob-
lem (namely findings∗) for a given set of dataD = (Xi, f (Xi))

can be formally defined as

s∗ = argmin
t∈T

argmin
θ∈Θ

Λ(ε,st,θ ,D) (4)

such that

Λ(ε,s∗t,θ ,D) 6 τ (5)

wherest,θ is the parametrizationθ (from a parameter space
Θ ) of sandst,θ is of model typet (from a set of model types
T).

The outer minimization overt ∈T is the task of selecting
a suitable approximation model type, i.e., a rational func-
tion, a neural network, a spline, etc. This is the model type
selection problem. In practice, one typically considers only
a singlet ∈ T, though others may be included for compari-
son. Then given a particular approximation typet, the task
is to find the hyperparameter assignmentθ that minimizes
the generalization estimatorΛ (e.g., determine the optimal
order of a polynomial model). This is the hyperparameter
optimization problem, though generally both minimizations
are simply referred to as the model selection problem.

Many implementations ofΛ have been described: the
hold-out, bootstrap, cross validation, jack-knife, Akaike In-
formation Criterion (AIC), etc. In the simple case whereΛ
is just the in-sample error, the problem simplifies to

s∗ = min
t∈T

min
θ∈Θ

ε(st,θ (Xi), f (Xi)) (6)

such that

ε(s∗t,θ∗ (Xi), f (Xi)) 6 τ (7)

The crucial problem is identifying suitable implementa-
tions forΛ ,ε and a target value forτ. The three are closely
linked but only theΛ -selection problem has been exten-
sively studied theoretically [52,101] and empirically [90,
68]. The selection ofε andτ is less appreciated and often

overlooked, but equally important [60,25]. Selecting an er-
ror functionε and required target accuracyτ is difficult since
it requires knowledge of the structure of the response and a
full understanding of what the generalization estimatorΛ
actually measures. Failure to do so leads to misinterpreta-
tion, inappropriate application, ultimately resulting ina trial
and error model generating procedure.

This brings us to, what we have termed,“The 5 per-
cent problem”.The phrase stems from an application where
an engineer needed a replacement metamodel. When asked
what model accuracy was required the answer was simply
5 percent. While this may seem like a straightforward, ob-
jective requirement, enforcing it in practice turned out tobe
difficult. The reason is twofold and is detailed below.

3.1 Choice of error function

First, there is the choice of the error functionε. Roughly
speaking there are two categories of error functions: abso-
lute and relative.

3.1.1 Absolute errors

Absolute errors (e.g., Average Absolute Error (AAE), Mean
Squared Error (MSE), etc.) are often undesirable in an appli-
cation context since they are not unit-free and depend on the
specific prediction value of the response. On the other hand
they are very popular in machine learning settings but not al-
ways rightly used. A good example is the Root Mean Square
Error (RMSE), by far the most popular error function:

RMSE(y, ỹ) =

√

1
n

n

∑
i=1

(yi − ỹi)2 (8)

Whereyi , ỹi are the real and predicted response values re-
spectively. The main advantage of the RMSE is that it is
the best finite-sample approximation of the standard error
√

E[y− ỹ] and standard deviation (in the case of an unbiased
model) [60]. However, its use is not recommended since it
penalizes large errors too severely while virtually ignoring
small errors. Such an error function is called pessimistic.
Also it is unintuitive to interpret. The RMSE is often inter-
preted as the true arithmetic average euclidean distance be-
tween the prediction ˜y and the true valuey. This is however
not the case, the RMSE is really one

√
n-th of this value and

thus has no simple geometrical interpretation whatsoever.A
better solution would be to use the Average Euclidean Error
(AEE) as proposed by [60]

AEE(y, ỹ) =
1
n

n

∑
i=1

√

(yi − ỹi)2 (9)

However, while the AEE enjoys many desirable proper-
ties, it still suffers from outliers (i.e., it is also pessimistic,
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though less than the RMSE). In cases where this is a prob-
lem alternative functions like the Geometric Average Error
(GAE) and the Harmonic Average Error (HAE) [60] can be
more useful.

GAE(y, ỹ) =

(

n

∏
i=1

√

(yi − ỹi)2

)
1
n

(10)

HAE(y, ỹ) =

(

1
n

n

∑
i=1

1
√

(yi − ỹi)2

)−1

=
n

1√
(y1−ỹ1)2

+ ...+ 1√
(yn−ỹn)2

(11)

In contrast to the RMSE and AEE, the HAE is an op-
timistic error function since it is dominated by the small
error terms. The HAE can be appropriate if the error fluc-
tuates greatly over different runs. This property may be use-
ful in the context ofk-fold cross validation with relatively
few samples. The GAE, on the other hand, is a balanced er-
ror function that suffers much less from extremes (large or
small). The GAE, however, has as a disadvantage that if the
error is zero in a single point, the overall error is also zero.
This is of course may not be desirable.

Many more absolute error variants exist and we do not
intend to give an exhaustive overview. Rather we wish to il-
lustrate that each function brings its own tradeoffs and inter-
pretation depending on how the absolute differences|yi − ỹi |
are aggregated. In general though, absolute error criteriaare
not ideally suited for performance estimation of an approxi-
mation model due to their context dependence (i.e.,τ is hard
to specify up front and depends on the units used).

3.1.2 Relative errors

Thus engineers typically prefer relative or percentage errors,
e.g., 5%. A figure of 5% implies some kind of global aver-
aged relative error, but there are different ways to calculate
relative errors (depending on what reference and aggrega-
tion function is used): Average Relative Error (ARE), Max-
imum Relative Error (MRE), Relative Squared Error (RSE),
Root Relative Square Error (RRSE), Relative Absolute Error
I (RAEI), Relative Absolute Error II (RAEII), Root Mean
Square Relative Error (RMSRE), etc. [31,60].

A natural solution is to take the most intuitive error func-
tion, the ARE:

ARE(y, ỹ) =
1
n

n

∑
i=1

|yi − ỹi |
|yi |

(12)

By taking the true value as a reference the ARE results
in an intuitively understandable number. Multiplied by 100
it results in a natural percentage. However, taking the ge-
ometric or harmonic mean (resulting in the Geometric av-
erage Relative Error (GRE) and Harmonic average Relative

Error (HRE) respectively) instead of the simple average can
also be interpreted as a global percentage error. But since
ARE, GRE, and HRE treat different types of errors differ-
ently (e.g., ARE is more sensitive to large errors than GRE)
care should be taken when interpreting a figure like 5%. In
addition, the “%” suffix is sometimes also used when using,
for example, RRSE (see below). This, however, should be
avoided since it is confusing.

The problem with the ARE is that care must be taken in
its interpretation when the true function valuesyi are small
or, in the extreme but not unlikely case, zero. Since then the
error tends to infinity, giving a biased result. What is some-
times done to combat this is add one (+1) to the denomina-
tor to prevent division by zero. While this solves the numer-
ical issue, the resulting error is an absolute-relative hybrid
and becomes impossible to interpret. A different solution is
to scale or translate the response to eliminate small absolute
values (e.g., as proposed in [41]). However, the best scale
factor is not always obvious and shifting the response can
introduce its own problems. For example, figure 1 illustrates
how a simple shifting of the response (+1000) can drasti-
cally improve the ARE value (3 orders of magnitude) for
exactly the same model parameters (error measured in the
samples).

Additionally, there is the well known issue of averag-
ing the errors (relative or absolute). This means that a model
with a low average error can still have areas where the pre-
diction is very poor (i.e., the mean is not robust). Figure 2
shows an example using relative errors. The data in the fig-
ure are the result of a NIST study involving semiconduc-
tor electron mobility. The response variable is a measure of
electron mobility, and the predictor variable is the natural
log of the density. The fit is a rational function with a pole.
Thus, since an engineer usually requires strict bounds on the
maximum error it seems better to minimize the maximum
error instead of the average (note that ARE6 MRE).

However, in the relative case, using a maximum aggre-
gation function has its own counter-intuitive properties.For
example, figure 3 illustrates how the zero function has a
lower MRE than a model which overshoots the data, but else
seems like a reasonable fit1. This property is particularly
problematic if the model parameter space is searched au-
tomatically (hyperparameter optimization). In this case the
optimization algorithm is easily deceived into generatingflat
models.

One would be tempted to resort to using the Maximum
Absolute Error (MAE) instead. Since while it may be diffi-
cult to give a priori average error targets, giving maximum
absolute error bounds is often easier since it can be related
more directly to the application. However, the MAE is not a
satisfactory solution either. First of all, like any absolute er-

1 In this case the samples are noisy but the same phenomenon can
occur with noise free data and a validation set.
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Fig. 1 Influence of shifting the response on the ARE
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ror, it requires knowledge of the full range of the response.
Also, it is not relative, meaning a deviation of 5 on a re-
sponse value 1000 is considered worse than a deviation of 3
on a value of 0.5. Furthermore, enforcing a MAE is equiva-
lent to restricting all fitted response values ˜y to lie inside the
tube defined by[y−MAE,y+MAE]. This requirement can
be too strict if the response contains regions that are very
hard to fit (e.g., discontinuities), information that is notal-
ways available.

Another approach then, is to use the RRSE function, re-
lated to the popularR2 criterion. In this case the deviation
from the mean is used as the reference value.

RRSE(y, ỹ) =

√

∑n
i=1(yi − ỹi)2

∑n
i=1(yi − ȳ)2 (13)
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Fig. 3 Comparison of the MRE over different models

The RRSE is intuitively attractive since it measures how
much better a fit is over the most simple model possible:
the mean. Also it does not become problematic for small
absolute values ofyi . Unfortunately, the problem with the
RRSE is that it gives a pessimistic estimate of the error if the
response that needs to be fitted is very smooth (i.e., the mean
is already quite a good fit). Thus an understanding of the
structure of the response is needed to properly interpret the
RRSE value. The RRSE is also less intuitive for an engineer
since it measures the improvement over the average model
rather than the quality of fit directly (making a good choice
of τ harder).
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An improved function that is less sensitive to large errors
and has some other attractive properties is given in [60], the
Bayesian Estimation Error Quotient (BEEQ):

BEEQ(y, ỹ) =

(

n

∏
i=1

∑n
i=1 |yi − ỹi|

∑n
i=1 |yi − ȳ|

)
1
n

(14)

However, like the GAE it will predict an error of zero overall
if just a single point has an error of 0.

One could continue discussing different error functions
(e.g., those based on the medain or mode) but it should be
clear now that each error function has its own characteris-
tics and that relative errors are not always as context free as
one might assume at first. While the examples given here are
quite simple, they are illustrative of the greater complexities
that arise when combining an error function with a model
selection metric. Also note that these subtleties are less a
problem in classification (where most research on model se-
lection is conducted). The concept of a good classifier is typ-
ically much more intuitive to grasp and define by a domain
expert than in the case of regression.

Remark that the error function also influences choice of
sampling strategy. For example if the error measure dictates
that it is important that the optima of the model are captured
accurately, one should make sure the sampling strategy em-
ployed will sample at those locations. Actually it turns out
that in most cases a sampling algorithm can be formulated
as a model selection critera and vica versa.

3.2 Choice of model selection metric

Assuming the choice of error function (and target value) can
be decided upon there is still the problem of selecting a mea-
sure for estimating the generalization capabilities of a model
(cross validation, bootstrap, validation set, jack-knife, etc.).
This is the well known problem of model selection and has
been discussed at length elsewhere [8,52,71,90,32]. A good
high level introduction is given in [105]. The point this paper
attempts to make is that it is far from obvious which method
to select that, when minimized, produces a model that an
engineer is satisfied with. Simply using the in-sample er-
ror is useless since it does not account for over-fitting and
is meaningless when used with interpolating methods (e.g.,
Kriging). Measures like AIC and its variants (BIC, CIC,
NIC, ...) and the methods from statistical learning theory
(Vapnik-Chervonenkis (VC) Dimension, etc.) are more ad-
vanced in that they take the complexity of the model into
account and have solid foundations in information theory.
Unfortunately, an AIC value can only be interpreted relative
to another value and has no meaning on its own. They also
mean very little to a domain expert.

A validation (hold-out) set is a better solution but it means
there is less data available for training. Also, the hold-out
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Fig. 4 A misleading validation set

error can give extremely biased results (thus deceiving the
hyperparameter optimization) if chosen poorly or if only a
few points are available. For example, figure 4 gives a sim-
ple example were minimizing the validation error can lead to
a sub-optimal model. This is of course an extreme example
but similar problems are often encountered with real data.

The cross validation error (and its extreme version, the
Leave-One-Out error), is a popular compromise, but it too
depends on the data distribution [17,71], can give mislead-
ing results [62], and is expensive to compute (the bootstrap
even more so). Also there is the question on how to select
the folds (randomly, evenly spread, etc.). Additionally one
could argue the different cross validation variants should
be interpreted as measuring sensitivity to loss of informa-
tion rather than approximation accuracy. Finally there is the
added complication of noise in the data and/or in the gener-
alization estimator (e.g.,k-fold cross validation). Since we
only consider deterministic computer experiments noisy data
is usually not an issue2. However, when dealing with mea-
sured data or stochastic simulations this adds an extra layer
of complexity.

Yet a different approach is to employ Bayesian statistics
(see the work by O’Hagan et. al. [73]). Through Bayesian
inference one can exactly quantify the uncertainty or con-
fidence one has in a particular model. This is usually very
useful from an application standpoint but is only possible
with specific model types.

The only true, unbiased test for model quality would be
to assess the model on a very dense, independent test set
or analytical solution. However, for any real problem this
is not a feasible option since data is too expensive and an
analytical solution is not available.

2 In some cases discretization and convergence noise may be
present, the magnitude depending on the application.
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3.3 The need for handling multiple criteria

In sum, as it should be clear now, it is hard to agree upfront
on a single requirement that the final replacement metamodel
must respect. The fundamental reason is that an approxima-
tion task inherently involves multiple, conflicting, criteria.
[60] summarizes this particularly succinctly:

It is an illusion that performance evaluation can be
done completely fairly and impartially. This is partly
because simple metrics cannot capture a complete
picture of the performance of an estimation algo-
rithm and those that are more complete [...] are more
complex and subject to subjective interpretations. Also,
use of any metric in performance evaluation implic-
itly favors the estimator that tries to optimize this
same metric.

Thus what usually happens in practice is the following: (1)
a best effort is made to identify a suitable model selection
metric, error function and targets; (2) simulations are per-
formed, the model is generated and delivered to the engineer
together with some statistical test results (e.g., different error
metrics); and (3) the engineer visually inspects and explores
the model and decides if it is satisfactory. If not the process
must be repeated.

While the final evaluation stage by a domain expert should
always be performed, it would be advantageous if the differ-
ent desired criteria could be enforced from the start. This
can be done in three main ways:

1. the different criteria (objectives) are combined into a sin-
gle, global criterion which is then used to drive the model
generation

2. the different objectives are enforced sequentially in a
multi-level process

3. the different objectives are enforced simultaneously through
a multiobjective approach

The first option is the easiest and allows existing algorithms
to be re-used as is. An example of such scalarization is the
geometric mean approach used by Goel et al. in [33]. How-
ever the problem remains of choosing an appropriate combi-
nation function (and its interpretation) and requiring an un-
derstanding of the ranges and nuances of the different mem-
ber functions. Thus the problem is simply moved to a higher
level.

The second option is a sequential or milestone approach.
Multiple criteria are supported by specifying different hier-
archical levelsL1, ...,Ll that must be reached in succession.
For example, first the hyperparameter optimization process
must produce a model that satisfiesL1 (e.g., a ARE of 5%).
Once this target is reached, and only then, is the following
level L2 checked (e.g., a MRE of 10%). Thus, by sequen-
tially working towards subsequent milestones, multiple cri-
teria can be incorporated. The potential problem of this ap-

proach is that dependencies and tradeoffs between criteria
can cause a deadlock (e.g., reaching one level means violat-
ing another). A different way to interpret this is as a con-
strained optimization problem in the hyperparameter space,
each level adds a constraint. Care must be taken that there
is at least one feasible region. Also the task for the opti-
mizer (over the model parameters) becomes considerably
more difficult since the optimization landscape may change
suddenly and drastically when a change in level takes place.

The third solution is to tackle the problem directly as
a dynamic multiobjective optimization problem in the hy-
perparameter space (recall that due to the incremental sam-
pling the optimization surface is dynamic and not static).
Each criterion becomes an objective and standard ranking
methods are used to identify the Pareto-optimal set. The dis-
advantage here is that there is no longer the luxury of hav-
ing a single, unambiguous best solution. However, since we
noted above that such a linear ranking makes no sense this
should come as no surprise. The advantage is that the prob-
lem can be tackled directly using standard algorithms. From
the final Pareto set the user is then able to extract knowl-
edge about the problem and make a better decision when
choosing the final solution. In addition, the final Pareto front
enables the generation of diverse ensembles, where the en-
semble members consist of the (partial) Pareto-optimal set
(see references in [33,82,49]). In this way all the informa-
tion in the front can be used. An added advantage of using
ensembles is that it allows the calculation of the prediction
uncertainty which is very useful for an application.

Finally, one may imagine different hybrid combinations
of the three methods mentioned above. For example, the
multiobjective approach where the number of objectives varies
dynamically. For example, when only little data is available
it makes no sense to enforce application specific criteria, or
force the model response into particular bounds. That makes
more sense when sufficient data is available and the model
uncertainty has been reduced. Other combinations are pos-
sible but this is a topic that has seen little research and that
goes beyond the scope of this paper. Rather we shall con-
centrate on the multiobjective approach.

4 Modeling multiple outputs

The previous section described how a multiobjective approach
to global surrogate modeling can help solvethe 5 percent
problem. A second use case is when dealing with multi-
output systems. It is not uncommon that a simulation en-
gine has multiple outputs that all need to be modeled [10].
For example, the combustion problem described in [44] has
both a chemical and temperature source term that needs to
be modeled. Also many Finite Element packages generate
multiple performance values simultaneously.



8

The direct approach is to model each output indepen-
dently with separate models (possibly sharing the same data).
This, however, leaves no room for trade-offs nor gives any
information about the correlation between different outputs.
Instead of performing two modeling runs (doing a separate
hyperparameter optimization for each output) both outputs
can be modeled simultaneously if models with multiple out-
puts are used in conjunction with a multiobjective optimiza-
tion routine. The resulting Pareto front then gives informa-
tion about the accuracy trade-off between the outputs in hy-
perparameter space and allows the practitioner to choose
the model most suited to the particular context. More argu-
ments, of essentially the same discussion, are given in [67].

Again, multi-output Pareto based modeling enables the
generation of diverse ensembles. This is a popular approach
in rainfall runoff modeling and model calibration in hydrol-
ogy [91,24]. Models are generated for different flow com-
ponents and/or derivative measures and these are then com-
bined into a weighted ensemble or fuzzy committee. A Pareto
based approach to multi-output modeling also allows inte-
gration with the automatic surrogate model type selection al-
gorithm described in [39]. This enables automatic selection
of the best model type (Artificial Neural Network (ANN),
Kriging, Support Vector Machine (SVM), ...) for each out-
put without having to resort to multiple runs [36,37].

5 Related work

There is a vast body of research available on single objective
hyperparameter optimization strategies and model selection
criteria for different model types: [9,59,95,90,1,4,75] and
the extensive work by Yao et. al. [102,103]. Many authors
have noticed the problems with single objective hyperpa-
rameter optimization but it is only very recently that mul-
tiobjective versions of classical machine learning methods
have been presented [70,92,30,47]. An extensive and excel-
lent overview of the work in this area is given by Jin et. al. in
[49] and the book (edited by Jin) [46]. By far the majority of
the cited work uses multiobjective techniques to improve the
training of learning methods. Typically an accuracy crite-
rion (such as the validation error) is used together with some
regularization parameter or model complexity measure (e.g.,
the number of support vectors in SVMs) in order to produce
more parsimonious models [25]. Other criteria used include:
sensitivity, specificity, interpretability, and number ofinput
features [92,49].

It seems less work has been done on high level objectives
(with error functions and generalization estimators in par-
ticular) that do not depend on a particular machine learning
method. [26] optimize an accuracy metric (the RMSE) to-
gether with an application specificReturnmetric useful for
stock market forecasting. An example of the use of multiple

error measures (and incidentally one of the first formula-
tions of multiobjective learning) is [64] who minimized the
L2-norm, theL∞-norm and a complexity measure. Unfortu-
nately, a single-objective GA was employed to perform the
optimization, resulting in only a single solution. [27] also
give an example with two error functions, the Euclidean and
robust error which they use to fit a noisy sinusoid with an
ANN.

Few references are available that explicitly deal with the
trade-offs between different error functions for surrogate mod-
eling. [25] agree that determining the error function is key
but do not consider the problem any further. [3] give an ex-
tensive treatment of 15 popular error functions for time se-
ries extrapolation but is of little use for regression. A more
relevant and extensive overview is given by Li and Zhao in
[60] who discuss many practical metrics for performance
estimation in general and propose a number of new ones.
A more restricted and philosophical discussion is given in
[43]. The previous references are mainly theoretical. Em-
pirical results on performance estimation are harder to find.
One example is [21] who compare four different error func-
tions used for neural network classification training.

Another topic that has been the subject of extensive re-
search is that of multiobjective surrogate based optimization
(MOSBO). Surrogate methods are widely used for the op-
timization of expensive functions [78]. While initially their
use has been constrained to the single objective case, an in-
creasing number of results are being reported in the multiob-
jective case. An example is the work on statistical improve-
ment by Keane et. al. [51] and ParEGO [56], the multiob-
jective version of the popular Efficient Global Optimization
(EGO) approach [50]. Another example is the application
to parameter optimization of earth system models in [77],
for crashworthiness design optimization in [61], and for thin
wall structure optimization in [87]. The well known NSGA-
II algorithm [13] has also been extended to incorporate sur-
rogate models [12,98]. In this context some work has also
been done on comparing different performance measures for
use in MOSBO [54,97]. [54] compare different performance
criteria for improving metamodel based optimization. They
also“...recognize that in order to obtain desirable informa-
tion or knowledge about a response surface, multiple per-
formance measures taken in concert may be necessary.”Un-
fortunately they stop there and do not discuss the issue any
further. Though the research into MOSBO is still young, an
excellent overview of current research is already available in
[57].

The contribution of the current work is that it deals with
global surrogate modeling with iterative sampling and hy-
perparameter optimization. The goal is to generate a high
fidelity global approximation using as few simulations as
possible (replacement metamodeling) and minimizing user
interaction. The paper takes an application perspective, and
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multiobjective optimization is considered on a higher, be-
havioral level (“What criteria should a model satisfy”) ver-
sus a more model specific level (“How to generate a parsi-
monious neural network”).

More concretely, the authors stress the importance of a
critical analysis of performance estimation criteria and the
associated trade-offs when generating surrogates (optimiz-
ing the hyperparameters). In particular, a founded choice
of error function and target is often overlooked and per-
formance estimation is done in a more ad hoc manner [7,
14], constrained to a single objective [31,23,22], or done a
posteriori (after the model parameters have been fixed) to
compare different models [72,22]. While the implications
and trade-offs of different performance criteria are well de-
scribed in the statistics community (e.g., [3]), the resulting
insights and possible solutions can use more visibility.

In addition we propose to model multi-output simula-
tors simultaneously where this makes sense. Thus giving in-
sight into the modeling trade-off between the outputs and
avoiding multiple runs. An added benefit of this approach
is the possibility of automatically selecting the best model
type for each output. As [57] states“Little is known about
which types of model accord best with particular features
of a landscape and, in any case, very little may be known
to guide this choice.”. Thus an algorithm to automatically
solve this problem is very useful [54]. This is also noticed
by [98] who compare different surrogate models for approx-
imating each objective during optimization. They note that
in theory their approach allows the use of a different model
type for each objective. However, such an approach will still
require an a priori model type selection and does not allow
for dynamic switching of the model type or the generation
of hybrids. We know of no other related work that tackles
this issue.

In sum this paper takes a domain expert’s point of view.
By building on advances and established research in ma-
chine learning [49] and statistics [3] we attempt to further
improve the global surrogate modeling process and make it
more useful and accessible for an engineer. At the same time
we hope to increase awareness of the issues involved.

6 Applications

This section presents some concrete illustrations of the ideas
and concepts discussed previously. All tests were run using
the SUrrogate MOdeling (SUMO) Toolbox which we first
briefly discuss below.

6.1 The SUMO Toolbox

The SUMO Toolbox [38,35] is an adaptive tool that inte-
grates different modeling approaches and implements a fully

automated, adaptive surrogate model construction algorithm.
Given a simulation engine the toolbox produces a surrogate
model within the time and accuracy constraints set by the
user. Different plugins are supported: model types (ratio-
nal functions, Kriging, splines, SVM, etc.), model parameter
optimization algorithms (BFGS, EGO, simulated annealing,
etc.), sample selection (random, error based, density based,
etc.), and sample evaluation methods (local, on a cluster
or grid). The behavior of each component is configurable
through a central XML configuration file and components
can easily be added, removed or replaced by custom imple-
mentations (see figure 5).

Fig. 5 SUMO Toolbox Plugins

The toolbox control flow is as follows: First, a small ini-
tial set of samples is chosen according to some experimental
design (e.g., Latin hypercube, Box-Behnken, etc.). Based on
this initial set, one or more surrogate models are constructed
and their hyperparameters optimized according to a chosen
hyperparameter optimization algorithm (e.g., BFGS, Parti-
cle Swarm Optimization (PSO), Genetic Algorithm (GA),
EGO, DIRECT, NSGA-II, etc.). Models are assigned a score
based on one or more measures (e.g., cross validation, AIC,
etc.) and the optimization continues until no further improve-
ment is possible. The models are then ranked according to
their score and new samples are selected based on the best
performing models and the behavior of the response (the ex-
act criteria depend on the sampling algorithm used). The hy-
perparameter optimization process is continued or restarted
intelligently and the whole process repeats itself until one
of the following three conditions is satisfied: (1) the max-
imum number of samples has been reached, (2) the maxi-
mum allowed time has been exceeded, or (3) the user re-
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quired accuracy has been met. Also, the sample evaluation
component runs in parallel with the other components (non-
blocking) and not sequentially. The toolbox and all algo-
rithms described here is available for download fromhttp://www.sumo.inte.ugent.be.

6.2 Low Noise Amplifier (LNA)

6.2.1 Background

We first consider a test case from electronics: a simple RF
circuit, a narrow band Low Noise Amplifier (LNA) [58].
A LNA is the typical first stage of a receiver, having the
main function of providing the gain needed to win the noise
of subsequent stages, such as a mixer. In addition it has to
give negligible distortion to the signal while adding as little
noise as possible. We have extensively discussed the model-
ing of this system in [39,40,38]. For this paper we restrict
ourselves to the 2D version and will use it to illustrate the
use of multiple criteria in generating approximation models.

The input parameters are the (normalized) width of the
MOSFETWn and the normalized inductanceLsn. The output

is the input noise current
√

i2in which previous results have
shown to be the most difficult to model [39].

6.2.2 Experimental setup

Previous experience with this function teaches us that thisis
a difficult function to model accurately with Kriging models
(see [40]). Kriging models have difficulty reproducing the
smooth surface of the input noise, they suffer from too many
unwanted ‘ripples’ between the data points if a hold-out or
cross validation measure is minimized. For this reason we
consider two criteria. The first is the RRSE on a 20% min-
max validation set, the second, a custom smoothness metric
that penalizes a model if it produces ripples between data
points.

The SUMO Toolbox (v6.1) was configured to use the
Kriging [65] and NSGA-II [13] plugins. For the first run a
fixed 7x7 factorial design was used, no additional sampling
was performed. For the second run a density based sample
selection algorithm was used that covers the design space
evenly (previous tests showed it to give the best results with
Kriging). Starting from a LHC design of 15 points together
with the 4 corner points, the algorithm adds 15 points be-
tween each hyperparameter optimization iteration up to a
maximum of 400.

For the first run NSGA-II was configured with a pop-
ulation size of 30 and run for a maximum of 250 genera-
tions. For the second run the maximum number of genera-
tions was set to 20, with the evolution continuing after each
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Fig. 6 Pareto search trace for the LNA problem (no sampling)

sampling iteration. Each individual in the population repre-
sents a Kriging model as a tuple(θ1,θ2) with θi the corre-
lation parameter inlog10 space (θi ∈ [−5,3]). The correla-
tion function was set to Gaussian and a linear regression was
used.

6.2.3 Results

A plot of the full Pareto search trace for the first run (no
sampling) is shown in figure 6. As the figure shows there is
a clear trade-off between the two objectives. This can also be
seen from the plot of the model at each of the two extreme
points (figure 7). Given these results a domain expert now
has the flexibility to browse though the front and select the
most suitable model.

When sample selection is enabled the optimal Pareto
set changes as more data becomes available. The succes-
sive Pareto fronts at the start of each sampling iteration are
shown in figure 83. The figure clearly shows how the front
advances and the model quality improves as more data be-
comes available. In addition the trade-off in the front seems
to decrease as the number of points increase. This should be
expected since as the amount of data increases there is less
uncertainty about the correct hyperparameter values and the
agreement between both measures increases.

6.3 Automotive problem

The second example is an application from the automotive
industry (see [31] for details) and illustrates the modeling of
a multi-output system.

3 A movie showing the evolution is available at
http://sumolab.blogspot.com/
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Fig. 8 Pareto search trace for the LNA problem (sampling enabled)

6.3.1 Background

Today the early concept phase of a car body development
process is marked by the optimal coordination of design
specifications with the requirements on the mechanical be-
havior of the structure as well as on the feasibility. This plan-
ning process is repetitive for the same body parts and the
solution finding is carried out mostly by experience with an
additional virtual tryout afterwards in order to improve the
solution. The use of surrogate modeling can enable an early
feasibility prediction of body parts.

The geometry of a B-pillar bottom of a side frame is
shown in figure 9. There you have a recurring feasibility
challenge in sheet metal forming that can be explained by
radii, depths and angles as experience shows. Which of these

Fig. 9 B-pillar bottom of a side frame [31]

geometry parameters and in which combination they have an
effect on the feasibility is, however, intuitively hard to pre-
dict. For simulation purposes the door entry area can be sep-
arated from the side frame by simple boundary conditions
without major restrictions for the validity of the analysisbut
computing times considerably go down.

The entry angleα1, opening angleα2, frame depthh
and entry radiusr, have been chosen as geometry param-
eters (see [31] for details). In addition, for every geometry
constellation the blank boundary was determined so that the
forming result was optimal. Additional process parameters,
like draw bead or blank holder forces, have not been used.
So there were six parameters that have been taken into ac-
count. With these input quantities a sampling based on a
LHC was created. Maximum scaled distances of the strain
states to the forming limit curve and a maximum thinning
limit respectively were chosen as output quantities indicat-
ing feasibility. The data sampling phase resulted in 1998
data points evaluated that were suitable for modeling. The
overall target for this particular problem setting was to pre-
dict a given set of geometry parameters as feasible, i.e., to



12

predict the existence of cracks (cracking output) or unac-
ceptable thinning (thinningoutput).

6.3.2 Experimental setup

Both outputs shall be modeled together using the ANN and
LS-SVM plugins of the SUMO Toolbox. The ANN mod-
els are based on the Matlab Neural Network Toolbox and
are trained with Levenberg Marquard backpropagation with
Bayesian regularization [66,28] (300 epochs). The topology
and initial weights are determined by a GA. The LS-SVM
models are based on the LS-SVMlab toolbox plugin [93]
and the hyperparameters are searched inlog10 space with
σ ∈ [−4,4], c∈ [−5,5] (an RBF kernel is used). The multi-
objective algorithm used is the one implemented in the Mat-
lab GADS toolbox which, in turn, is based on NSGA-II. The
population size is set to 10. For comparison each output will
be modeled separately as well (single objective).

In all cases the metric used to drive the hyperparameter
optimization is the Average Relative Error (ARE) on 5-fold
cross validation. For the single objective runs the timeout
was 25 generations, for the multiobjective runs the timeout
was 50 generations.

6.3.3 Results

Figure 10 shows the final error curves after the SUMO Tool-
box has terminated. A point is plotted for each time the tool-
box finds a model that improves on the previous model. As
can be seen from the figure, the ANN models clearly out-
perform the SVM models, especially for thecrackingout-
put. One could argue the poor performance of the LS-SVM
models is due to poor hyperparameter optimization. How-
ever, this is not the case. For reference a brute force searchof
the hyperparameter landscape was conducted on a 50 by 60
grid. This is shown in figure 11 (bounds inlog10 scale, the
white crosses show the area explored by the SUMO Tool-
box). The minimum found through this search:

fcracking(−0.1600,−1.4993)= 0.1348

fthinning(0,−2.9996) = 0.0730

is comparable to the minimum found by the SUMO Tool-
box:

fcracking(−0.2173,0.2978)= 0.1280

fthinning(0.0423,1.0948)= 0.0741

Thus the hyperparameter optimization is not to blame
(remember that the cross validation procedure introduces
some noise into the surface). A more extensive cross vali-
dation (15 folds) was also done on the final best model in
each case (table 1). As can be seen, the accuracy remains
unchanged.

cracking thinning

ANN 0.0414 0.0325
LS-SVM 0.1305 0.0741

Table 1 ARE on 15-fold cross validation of the final models (automo-
tive example)

The poor performance of SVMs in this case is in line
with the author’s previous experience. We found SVM mod-
els to require too much data when a non-linear, noise-free
response needs to be fitted smoothly and accurately. In those
cases, SVM models are very good at fitting the non-linear re-
gions but generate unwanted ‘ripples’ in the regions where
the response needs to be smooth or data is sparse. ANN
models on the other hand, are able to adapt much better
to the heterogeneity of the response. The sigmoid transfer
functions allow for high non-linearity, while proper training
(e.g., through the use of regularization) ensures a smooth fit
in the sparse regions.

Figure 12 shows the full trace of the multiobjective hy-
perparameter optimization. In this case the model genera-
tion is driven by a 2-objective (= the cross validation score
on each output) optimization algorithm. In both cases it is
immediately clear that there is no real Pareto front, a single
best model can be identified in each case. Thus this teaches
us that there is a very strong correlation between both out-
puts and that good performance on one output, implies good
performance on the other. This is actually to be expected
sincecrackingandthinningare closely related (as can also
be seen from figure 11).

Of course this is not always the case (see for example
[37]). It is not always clear how much the outputs are re-
ally correlated, or how much one quality metric influences
another (in the case of multiple metrics). We argue that in
those cases a direct multiobjective approach should be con-
sidered. It is guaranteed to give at least as much information
as doing multiple single objective runs for about the same
computational cost (which is still outweighed by the cost of
the simulation). Also, it gives the engineer more flexibility
and is a cleaner approach than manually combining the mul-
tiple objectives into a single formula.

6.4 Chemistry problem

6.4.1 Background

This example and its description is taken from [44], where
the authors describe the generation of an optimal ANN using
a pattern search algorithm. We use this example to briefly
illustrate the automatic model type selection per output. For
a more extensive example see [36].

The chemical process under consideration describes methane-
air combustion. The GRI 2.11 chemical mechanism contain-
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Fig. 10 Model accuracies in the single objective case (left:cracking, right: thinning)
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Fig. 11 SVM hyperparameter optimization surface (left:cracking, right: thinning)

ing 277 elementary chemical reactions among 49 species
is used. The steady laminar flamelet equations [76] are of-
ten employed to describe the reaction-diffusion balance in
non-premixed flames. The solutions to these equations pro-
vide temperature and mass fractions of all species in terms
of two parameters. The mixture fractionz and the reaction
progress variablec are used for this parametrization. The
two responses are the temperature and the chemical source
term ofc, which can be viewed as a measure of heat release.

For the approximation 1000 data samples are available,
half of which will be used for training, the other half to
drive the hyperparameter optimization. Sample data were
obtained by applying an acceptation-rejection method [81].

6.4.2 Experimental setup

The heterogeneous evolution plugin of the SUMO Toolbox
is used and configured with the following model types: RBF
ANNs, LS-SVMs, and Rational functions. Together with the
ensemble models (which result from a heterogeneous crossover,
e.g., a crossover between a neural network and a rational
function), this makes that 4 model types will compete to fit
the data. The GA used is the NSGA-II based algorithm as
implemented in the Matlab GADS toolbox. The population
size of each model type is set to 10 and the evolution was
run for 290 generations. A full discussion of the automatic
model type selection algorithm is out of scope for this paper.
Such details can be found in [34,39]. The difference with the
work discussed in [39] is that now the algorithms have been
extended to the multiobjective case.
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Fig. 12 Model accuracies in the multiobjective case (left: ANN, right: SVM)
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Fig. 13 Heterogeneous Pareto trace

6.4.3 Results

The full Pareto trace (enlarged for clarity) is shown in fig-
ure 13. The figure shows that the LS-SVM models are best
at fitting the temperature output, while fitting the chemical
source term works best with a combination of models (en-
semble). The ensembles turn out to consist of a combina-
tion of LS-SVM and RBFNN models. The rational functions
turn out to perform very poorly on this data and are thus not
shown on the (enlarged) figure. This trace can now also be
used to generate a global ensemble of models (e.g., for un-
certainty estimation).

7 Summary and conclusion

The use of surrogate models to aid optimization, design ex-
ploration, sensitivity analysis, etc. has become standardprac-
tice among scientists and engineers alike. This work has
concentrated on the construction of global surrogate models.
A crucial problem of generating global surrogate models for
a particular application (or any function approximation task
for that matter), is agreeing upfront with the domain expert
what criteria the final surrogate should satisfy. The problem
is that each criterion (encompassing an error function, gen-
eralization estimator, and target value) involves a tradeoff
between interpretability, accuracy, bias, and computational
efficiency. Thus, for cases where this trade-off cannot be in-
ferred from domain knowledge or application constraints the
authors advocate a multiobjective approach to solving this
problem should be considered. The advantage of a multiob-
jective approach is also that it allows multiple outputs to be
modeled together, giving information about the tradeoff in
the hyperparameter space. It further enables the generation
of diverse ensembles and the application of an automatic
model type selection algorithm. This enables each output
to be automatically modeled with the most suitable model
type. There is also some empirical evidence that the number
of local optima can be reduced by converting multi-modal
single-objective problems, into multiobjective ones [49]. If
the same can be proven in machine learning it means the
task of identifying good surrogate models can become eas-
ier through a multiobjective approach.

However, a disadvantage of the multiobjective approach
is that as the number of dimensions (criteria/outputs) in-
creases the solution space increases exponentially [85]. Thus
the search for the Pareto optimal set becomes harder, re-
quires more search iterations, and the final set is more cum-
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bersome for the practitioner to explore and understand. For
costly simulation codes the extra computational effort is neg-
ligible, and good GUI tools can help a domain expert un-
derstand the relationships present in the Pareto-optimal set.
However, for cheaper codes a trade off between simulation
cost and modeling cost will have to be made. The poor scal-
ability of non-dominated sorting algorithms above 4 dimen-
sions is also an issue [57]. Luckily, algorithmic advances
(e.g., [83,69]) and gains in computational efficiency (e.g.,
[45]) continue to be made.

A disadvantage of the multiobjective approach versus
the milestone approach is that the direct multiobjective ap-
proach takes all criteria into account straight away. This is
not necessarily a problem but is not always the most com-
putationally efficient. For example, in the case of adaptive
sampling it makes no sense to check or enforce an (expen-
sive) application specific constraint if only a few data points
are available. The model first needs to mature by incorporat-
ing more data before undergoing more stringent checks. In
this case the number of objectives varies dynamically and
thus a scalarized multiobjective approach with a dynami-
cally varying weighting parameter (as discussed in [48]) can
be useful. Alternatively a cooling approach as done in [96]
could be used.

Thus, naturally much work remains. First of all, while
support for multiple criteria is already very useful, more re-
search is needed on intuitive criteria. Ideally criteria should
be easily formulated in language that a domain expert is
comfortable with and fully understands. Fuzzy theory can
be helpful in this respect. Besides researching the feasibility
of fuzzy criteria more work still needs to be done on classic
model selection methods and explore the relationship with
a constraint based approach. This to fully understand the
relationship between error function and generalization es-
timator, and how they impact the final response. A way to
vary the criteria dynamically with the sample selection loop
would also be useful as is the study of transductive learning
[86]. A possible integration with domain partitioning meth-
ods (e.g., as done in [41]) is also promising.

Another area requiring further investigation is understand-
ing how the iterative sample selection process influences the
hyperparameter optimization landscape. There is a mutual
dependency between the model type, hyperparameter op-
timization strategy, and sampling strategy (e.g., see [40]).
The exact nature of this dependency depends on the model
type. Determining how they interact and may be optimally
combined is a topic of ongoing research. For the tests in
this paper the authors have simply let the optimization con-
tinue from the previous generation. However, some initial
tests have shown that an intelligent restart strategy can im-
prove results. Knowledge of how the number and distribu-
tion of data points affects the hyperparameter surface (de-
termined by some metric) would allow for a better tracking

of the optimum, reducing the computational cost. The influ-
ence of noise and discrete variables on the hyperparameter
optimization (e.g., neural network topology selection) also
remains an issue.

In general, while some progress towards dynamic multi-
objective optimization has been made [63,42], this is a topic
that current research in multiobjective surrogate modeling
is only just coming to terms with [57]. Or as English pithily
puts it:“Optimization is easy, learning is hard (in the typical
function).” [20]
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