92 research outputs found

    Adaptive chaotic particle swarm algorithm for isogeometric multi-objective size optimization of FG plates

    Get PDF
    An effective multi-objective optimization methodology that combines the isogeometric analysis (IGA) and adaptive chaotic particle swarm algorithm is presented for optimizing ceramic volume fraction (CVF) distribution of functionally graded plates (FGPs) under eigenfrequencies. The CVF distribution is represented by the B-spline basis function. Mechanical behaviors of FGPs are obtained with NURBS-based IGA and the recently developed simple first-order shear theory. The design variables are the CVFs at control points in the thickness direction, and the optimization objective is to minimize the mass of structure and maximize the first natural frequency. A recently developed multi-objective adaptive chaotic particle swarm algorithm with high efficiency is employed as an optimizer. All desirable features of the developed approach will be illustrated through four numerical examples, confirming its effectiveness and reliability

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Multi objective particle swarm optimization: algorithms and applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Integration of renewable energy sources: reliability-constrained power system planning and operations using computational intelligence

    Get PDF
    Renewable sources of energy such as wind turbine generators and solar panels have attracted much attention because they are environmentally friendly, do not consume fossil fuels, and can enhance a nation’s energy security. As a result, recently more significant amounts of renewable energy are being integrated into conventional power grids. The research reported in this dissertation primarily investigates the reliability-constrained planning and operations of electric power systems including renewable sources of energy by accounting for uncertainty. The major sources of uncertainty in these systems include equipment failures and stochastic variations in time-dependent power sources. Different energy sources have different characteristics in terms of cost, power dispatchability, and environmental impact. For instance, the intermittency of some renewable energy sources may compromise the system reliability when they are integrated into the traditional power grids. Thus, multiple issues should be considered in grid interconnection, including system cost, reliability, and pollutant emissions. Furthermore, due to the high complexity and high nonlinearity of such non-traditional power systems with multiple energy sources, computational intelligence based optimization methods are used to resolve several important and challenging problems in their operations and planning. Meanwhile, probabilistic methods are used for reliability evaluation in these reliability-constrained planning and design. The major problems studied in the dissertation include reliability evaluation of power systems with time-dependent energy sources, multi-objective design of hybrid generation systems, risk and cost tradeoff in economic dispatch with wind power penetration, optimal placement of distributed generators and protective devices in power distribution systems, and reliability-based estimation of wind power capacity credit. These case studies have demonstrated the viability and effectiveness of computational intelligence based methods in dealing with a set of important problems in this research arena

    Using an adaptive collection of local evolutionary algorithms for multi-modal problems

    Get PDF
    The codebase for this paper, containing LSEA_EA algorithm, is available at https://github.com/fieldsend/soft_computing_2014_lsea_eaMulti-modality can cause serious problems for many optimisers, often resulting convergence to sub-optimal modes. Even when this is not the case, it is often useful to locate and memorise a range of modes in the design space. This is because “optimal" decision parameter combinations may not actually be feasible when moving from a mathematical model emulating the real problem, to engineering an actual solution, making a range of disparate modal solutions of practical use. This paper builds upon our work on the use of a collection of localised search algorithms for niche/mode discovery which we presented at UKCI 2013 when using a collection of surrogate models to guide mode search. Here we present the results of using a collection of exploitative local evolutionary algorithms (EAs) within the same general framework. The algorithm dynamically adjusts its population size according to the number of regions it encounters that it believes contain a mode, and uses localised EAs to guide the mode exploitation. We find that using a collection of localised EAs, which have limited communication with each other, produces competitive results with the current state-of-the-art multimodal optimisation approaches on the CEC 2013 benchmark functions

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Design synthesis of complex ship structures

    Get PDF

    REVISIÓN SOBRE ALGORITMOS DE OPTIMIZACIÓN MULTI-OBJETIVO GENÉTICOS Y BASADOS EN ENJAMBRES DE PARTÍCULAS

    Get PDF
    El enfoque evolutivo como también el comportamiento social han mostrado ser una muy buena alternativa en los problemas de optimización donde se presentan varios objetivos a optimizar. De la misma forma, existen todavía diferentes vias para el desarrollo de este tipo de algoritmos. Con el fin de tener un buen panorama sobre las posibles mejoras que se pueden lograr en los algoritmos de optimización bio-inspirados multi-objetivo es necesario establecer un buen referente de los diferentes enfoques y desarrollos que se han realizado hasta el momento.En este documento se revisan los algoritmos de optimización multi-objetivo más recientes tanto genéticos como basados en enjambres de partículas. Se realiza una revisión critica con el fin de establecer las características más relevantes de cada enfoque y de esta forma identificar las diferentes alternativas que se tienen para el desarrollo de un algoritmo de optimización multi-objetivo bio-inspirado.Review about genetic multi-objective optimization algorithms and based in particle swarmABSTRACTThe evolutionary approach as social behavior have proven to be a very good alternative in optimization problems where several targets have to be optimized. Likewise, there are still different ways to develop such algorithms. In order to have a good view on possible improvements that can be achieved in the optimization algorithms bio-inspired multi-objective it is necessary to establish a good reference of different approaches and developments that have taken place so far. In this paper the algorithms of multi-objective optimization newest based on both genetic and swarms of particles are reviewed. Critical review in order to establish the most relevant characteristics of each approach and thus identify the different alternatives have to develop an optimization algorithm multi-purpose bio-inspired design is performed.Keywords: evolutionary computation, evolutionary multi-objective optimization
    corecore