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Summary

Many real-world problems involve the simultaneous optimization of several competing ob-
jectives and constraints that are difficult, if not impossible, to solve without the aid of
powerful optimization algorithms. What makes multi-objective optimization so challeng-
ing is that, in the presence of conflicting specifications, no one solution is optimal to all
objectives and optimization algorithms must be capable of finding a number of alternative
solutions representing the tradeoffs. However, multi-objectivity is one facet of real-world
applications.

Particle swarm optimization (PSO) is a stochastic search method that has been found
to be very efficient and effective in solving sophisticated multi-objective problems where
conventional optimization tools fail to work well. PSO’s advantage can be attributed to
its swarm based approach (sampling multiple candidate solutions simultaneously) and high
convergence speed. Much work has been done to the development of PSO algorithms in the
past decade and it is finding increasingly application to the fields of bioinformatics, power
and voltage control, spacecraft design and resource allocation.

A comprehensive treatment on the design and application of multi-objective particle
swarm optimization (MOPSO) is provided in this work; and it is organized into seven chap-
ters. The motivation and contribution of this work are presented in Chapter 1. Chapter 2
provides the necessary background information required to appreciate this work, covering
key concepts and definitions of multi-objective optimization and particle swarm optimiza-
tion. It also presents a general framework of MOPSO which illustrates the basic design
issues of the state-of-the-arts. In Chapter 3, two mechanisms, fuzzy gbest and synchronous
particle local search, are developed to improve MOPSO performance. In Chapter 4, we
put forward a competitive and cooperative coevolution model to mimic the interplay of
competition and cooperation among different species in nature and combine it with PSO to
solve complex multiobjective function optimization problems. The coevolutionary algorithm
is further formulated into a distributed MOPSO algorithm to meet the demand for large
computational power in Chapter 5. Chapter 6 addresses the issue of solving bin packing
problems using multi-objective particle swarm optimization. Unlike existing studies that
only consider the issue of minimum bins, a multiobjective two-dimensional mathematical
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model for the bin packing problem is formulated in this chapter. And a multi-objective
evolutionary particle swarm optimization algorithm that incorporates the concept of Pareto
optimality is implemented to evolve a family of solutions along the trade-off surface. Chapter
7 gives the conclusion and directions for future work.
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Chapter 1

Introduction

Optimization may be considered as a decision-making process to get the most out of available

resources for the best attainable results. Simple examples include everyday decisions, such

as what type of transport to take, which clothes to wear and what groceries to buy. For

these routine tasks, the decision to be made can be very simple. For example, most people

will choose the cheapest transport. Consider now, the situation where we are running

late for a meeting due to some unforseen circumstances. Since the need for expedition is

conflicting to the first consideration of minimizing cost, the selection of the right form of

transportation is no longer as straightforward as before and the final solution will represent

a compromise between the different objectives. This type of problems which involves the

simultaneous consideration of multiple objectives are commonly termed as multi-objective

(MO) problems.

Many real-world problems naturally involve the simultaneous optimization of several

competing objectives. Unfortunately, these problems are characterized by objectives that

are much more complex as compared to routine tasks mentioned above and the decision

space are often so large that it is often difficult, if not impossible, to be solved without

advanced and efficient optimization techniques. This thesis investigates the application of

an efficient optimization method, known as Particle Swarm Optimization (PSO), to the field

of MO optimization.

1
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1.1 Motivation

Traditional operational research approaches to MO optimization typically entails the trans-

formation of the original problem into a SO problem and employs point-by-point algorithms

such as branch-and-bound to iteratively obtain a better solution. Such approaches have

several limitations including the generation of only one solution for each simulation run,

the requirement of the MO problem to be well-behaved, i.e. differentiability or satisfying

the Kuhn-Tucker conditions, and the sensitivity to the shape of the Pareto front. On the

other hand, metaheuristical approaches that are inspired by social, biological or physics phe-

nomena such as cultural algorithm (CA), particle swarm optimization (PSO), evolutionary

algorithm (EA), artificial immune system (AIS), differential evolution (DE), and simulated

annealing (SA) have been gaining increasing acceptance as much more flexible and effective

alternatives to complex optimization problems in the recent years. This is certainly a stark

contrast to just two decades ago, as Reeves remarked in [156] that an eminent person in

operational research circles suggested that using a heuristic was an admission of defeat!

MO optimization is a challenging research topic not only because it involves the si-

multaneous optimization of several complex objectives in the Pareto optimal sense, it also

requires researchers to address many issues that are unique to MO problems, such as fitness

assignment [45] [118], diversity preservation [96], balance between exploration and exploita-

tion [10], and elitism [108]. Many different CA, PSO, EA, AIS, DE and SA algorithms for

MO optimization have been proposed since the pioneering effort of Schaffer in [168], with

the aim of advancing research in above mentioned areas. All these algorithms are different in

methodology, particularly in the generation of new candidate solutions. Among these meta-

heuristics, multi-objective particle swarm optimization (MOPSO), which originates from the

simulation of behavior of bird flocks, is one of the most promising stochastic search method-

ology because of its easy implementation and high convergence speed. MOPSO algorithm

intelligently sieve through the large amount of information embedded within each particle

representing a candidate solution and exchange information to increase the overall quality
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of the particles in the swarm.

This work seeks to explore and improve particle swarm optimization techniques for MO

function optimization as well as to expand its applications in real world bin packing prob-

lems. We will primarily use an experimental methodology backed up with statistical analysis

to achieve the objectives of this work. The effectiveness and efficiency of the proposed al-

gorithms are compared against other state of the art multi-objective algorithms using test

cases.

It is hoped that findings obtained by this study would give a better understanding of

PSO concept, and its advantages and disadvantages in application to MO problems. A

fuzzy update strategy is designed to help PSO overcome difficulties in solving MO problems

with lots of local minimum. Coevolutionary PSO algorithm and distributed PSO algorithm

are implemented to reduce processing time in solving complex MO problems. And PSO is

also applied to bin packing problem to illustrate that PSO can be used to solve real world

combinatorial problems.

1.2 Contributions

1.2.1 MOPSO Algorithm Design

The design of fuzzy particle updating strategy and synchronous particle local search: The

fuzzy updating strategy models the uncertainty associated with the optimality of global best,

thus helping the algorithm to avoid undesirable premature convergence. The synchronous

particle local search performs directed local fine-tuning, which helps to discover a well-

distributed Pareto front. Experiment shows that balance between the exploration of fuzzy

update and the exploitation of SPLS is the key for PSO to solve complex MO problems.

Without them, PSO can not deal with multi-modal MO problems effectively.

The formation of a novel Competitive and Cooperative Coevolution Model for MOPSO:

As an instance of the divide-and-conquer paradigm, the proposed competitive and cooper-
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ative coevolution model helps to produce reasonable problem decompositions by exploiting

any correlation or interdependency between subcomponents. This proposed method was val-

idated through comparisons with existing state of the art multiobjective algorithms through

the use of established benchmarks and metrics. The competitive and cooperative coevolu-

tion MOPSO is the only algorithm to attain the true Pareto front in all test problems, and

in all cases converges faster to the true Pareto front than any other algorithm used.

The implementation of Distributed Coevolutionary MOPSO: A distributed coevolution-

ary particle swarm optimization algorithm (DCPSO) is implemented to exploit the inherent

parallelism of coevolutionary particle swarm optimization. DCPSO is suitable for concur-

rent processing that allows inter-communication of subpopulations residing in networked

computers, and hence expedites the computational speed by sharing the workload among

multiple computers.

1.2.2 Application of MOPSO to Bin Packing Problem

The mathematical formulation of two-objective, two-dimensional bin packing problems: The

bin packing problem is widely found in applications such as loading of tractor trailer trucks,

cargo airplanes and ships, where a balanced load provides better fuel efficiency and a safer

ride. In these applications, there are often conflicting criteria to be satisfied, i.e., to minimize

the bins used and to balance the load of each bin, subject to a number of practical con-

straints. Existing bin packing problem studies mostly focus on the minimization of wasted

space. And only Amiouny [3] has addressed the issue of balance (to make the center of grav-

ity of packed items as close as possible to target point). However Amiouny assumed that all

the items can be fitted into the bin, which will lead to bins with loosely packed items. In

this thesis, a two-objective, two-dimensional bin packing model (MOBPP-2D) is formulated

as no such model is available in literature. The minimum wasted space and the balancing

of load are the two objectives in MOBPP-2D, which provides a good representation for the

real-world bin packing problems.
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The creative application of PSO concept on MOBPP-2D problem: The basic PSO con-

cept instead of the rigid original formula has been applied to solve multiobjective bin packing

problems. The best bin instead of the best solution is used to guide the search because bin

level permutation may keep more information about previous solutions and help avoid ran-

dom search. Multi-objective performance tests have shown that the proposed algorithm

performs consistently well for the test cases used.

In conclusion, although PSO is a relatively new optimization technique, our research

work has shown that PSO has great potential on solving MO problems. The successful

application to discrete bin packing problem also proves that PSO’s application is not limited

to continuous problem as it is originally designed.

1.3 Thesis Outline

This work is organized into seven chapters. The necessary concepts and definitions of multi-

objective optimization and particle swarm optimization algorithm are covered in Chapter 2.

It also presented an introduction to MOPSOs, with a general framework which illustrates

the basic design issues of the state-of-the-arts. Subsequently, a survey on the basic MO

algorithm components of fitness assignment, diversity maintenance and elitism is presented

to highlight the development trends of multi-objective problem solving techniques.

Chapter 3 addresses the issue of PSO’s fast convergence to local minimum. In par-

ticular, two mechanisms, fuzzy gbest and synchronous particle local search, are developed

to improve algorithmic performance. Subsequently, the proposed multi-objective particle

swarm optimization algorithm incorporating these two mechanisms are validated against

existing multi-objective optimization algorithms.

Chapter 4 extends the notion of coevolution to decompose the problem and track the

optimal solutions in multi-objective particle swarm optimization. Most real-world multi-

objective problems are too complex for us to have a clear vision on how to decompose them
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by hand. Thus, it is desirable to have a method to automatically decompose a complex

problem into a set of subproblems. This chapter introduces a new coevolutionary paradigm

that incorporates both competitive coevolution and cooperative coevolution observed in

nature to facilitate the emergence and adaptation of the problem decomposition.

Chapter 5 exploits the inherent parallelism of coevolutionary particle swarm optimiza-

tion to further formulate it into a distributed algorithm suitable for concurrent processing

that allows inter-communication of subpopulations residing in networked computers. The

proposed distributed coevolutionary particle swarm optimization algorithm expedites the

computational speed by sharing the workload among multiple computers.

Chapter 6 addresses the issue of solving bin packing problems using multi-objective par-

ticle swarm optimization. Analyzing the existing literature for solving bin packing problems

reveals that the current corpus has severe limitation as they focus only on minimization of

bins. In fact, some other important objectives, such as the issue of bin balance, also need

to be addressed for bin packing problems. Therefore, a multi-objective bin packing problem

is formulated and test problems are proposed. To accelerate the optimization process of

solving multi-objective bin packing problem, a multi-objective evolutionary particle swarm

optimization algorithm is implemented to explore the potential of high convergence speed

of PSO on solving multi-objective bin packing problem.

Chapter 7 gives the conclusion and directions for future work.



Chapter 2

Background Materials

2.1 MO Optimization

The specification of MO criteria captures more information about the real world problem as

more problem characteristics are directly taken into consideration. For instance, consider

the design of a system controller that can be found in process plants, automated vehicles

and household appliances. Apart from obvious tradeoff between cost and performance,

the performance criteria required by some applications such as fast response time, small

overshoot and good robustness, are also conflicting in nature and need to be considered

directly [21] [53] [114] [201].

Without any loss of generality, a minimization problem is considered in this work and

the MO problem can be formally defined as

min
~x∈ ~Xnx

~f(~x) = {f1(~x), f2(~x), ..., fM(~x)} (2.1)

s.t. ~g(~x) > 0,~h(~x) = 0

where ~x is the vector of decision variables bounded by the decision space ~Xnx , and ~f is the

set of objectives to be minimized. The terms “solution space” and “search space” are often

7
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Figure 2.1: Illustration of the mapping between the solution space and the objective space.

used to denote the decision space and will be used interchangeably throughout this work.

The functions ~g and ~h represents the set of inequality and equality constraints that defines

the feasible region of the nx-dimensional continuous or discrete feasible solution space. The

relationship between the decision variables and the objectives are governed by the objective

function ~f : ~Xnx 7−→ ~FM . Figure 2.1 illustrates the mapping between the two spaces.

Depending on the actual objective function and constraints of the particular MO problem,

this mapping may not be unique.

2.1.1 Totally conflicting, nonconflicting, and partially conflicting MO prob-

lems

One of the key differences between SO (single objective) and MO optimization is that MO

problems constitute a multi-dimensional objective space ~FM . This leads to three possi-

ble instances of MO problem, depending on whether the objectives are totally conflicting,

nonconflicting, or partially conflicting [193]. For MO problems of the first category, the

conflicting nature of the objectives are such that no improvements can be made without

violating any constraints. This result in an interesting situation where all feasible solutions

are also optimal. Therefore, totally conflicting MO problems are perhaps the simplest of the
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three since no optimization is required. On the other extreme, a MO problem is nonconflict-

ing if the various objectives are correlated and the optimization of any arbitrary objective

leads to the subsequent improvement of the other objectives. This class of MO problem can

be treated as a SO problem by optimizing the problem along an arbitrarily selected objective

or by aggregating the different objectives into a scalar function. Intuitively, a single optimal

solution exist for such a MO problem.

More often than not, real world problems are instantiations of the third type of MO

problems with partially conflicting objectives and this is the class of MO problems that

we are interested in. One serious implication is that a set of solutions representing the

tradeoffs between the different objectives is now sought rather than an unique optimal

solution. Consider again the example of cost vs performance of a controller. Assuming

that the two objectives are indeed partially conflicting, this presents at least two possible

extreme solutions, one for lowest cost and one for highest performance. The other solutions,

if any, making up this optimal set of solutions represent the varying degree of optimality

with respect to these two objectives. Certainly, our conventional notion of optimality gets

thrown out of the window and a new definition of optimality is required for MO problems.

2.1.2 Pareto Dominance and Optimality

Unlike SO optimization where there is a complete order exist (i.e, f1 ≤ f2 or f1 ≥ f2), ~Xnx

is partially-ordered when multiple objectives are involved. In fact, there are three possible

relationships among the solutions defined by Pareto dominance.

Definition 2.1: Weak Dominance:~f1 ∈ ~FM weakly dominates ~f2 ∈ ~FM , denoted by ~f1 �

~f2 iff f1,i ≤ f2,i ∀i ∈ {1, 2, ...,M} and f1,j < f2,j ∃j ∈ {1, 2, ...,M}

Definition 2.2: Strong Dominance: ~f1 ∈ ~FM strongly dominates ~f2 ∈ ~FM , denoted by

~f1 ≺ ~f2 iff f1,i < f2,i ∀i ∈ {1, 2, ...,M}

Definition 2.3: Incomparable: ~f1 ∈ ~FM is incomparable with ~f2 ∈ ~FM , denoted by

~f1 ∼ ~f2 iff f1,i > f2,i ∃i ∈ {1, 2, ...,M} and f1,j < f2,j ∃j ∈ {1, 2, ...,M}
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Figure 2.2: Illustration of the (a) Pareto Dominance relationship between candidate solu-
tions relative to solution A and (b) the relationship between the Approximation Set, PFA

and the true Pareto front, PF∗.

With solution A as our point of reference, the regions highlighted in different shades of

grey in Figure 2.2(a) illustrates the three different dominance relations. Solutions located

in the dark grey regions are dominated by solution A because A is better in both objectives.

For the same reason, solutions located in the white region dominates solution A. Although

A has a smaller objective value as compared to the solutions located at the boundaries

between the dark and light grey regions, it only weakly dominates these solutions by virtue

of the fact that they share a similar objective value along either one dimension. Solutions

located in the light grey regions are incomparable to solution A because it is not possible

to establish any superiority of one solution over the other: solutions in the left light grey

region are better only in the second objective while solutions in the right light grey region

are better only in the first objective.

With the definition of Pareto dominance, we are now in the position to consider the set

of solutions desirable for MO optimization.

Definition 2.4: Pareto Optimal Set (PS∗): The Pareto optimal set is the set of nondomi-

nated solutions such that PS∗ = {~x∗i |@ ~F (~xj) ≺ ~F (~x∗i ), ~F(~xj) ∈ ~FM}.
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Definition 2.5: Pareto Optimal Front (PF∗): The Pareto optimal front is the set of objec-

tive vectors of nondominated solutions such that PF∗ = {~f∗i |@~fj ≺ ~f∗i ,
~fj ∈ ~FM}.

The nondominated solutions are also termed “noninferior”, “admissible” or “efficient” so-

lutions. Each objective component of any nondominated solution in the Pareto optimal set

can only be improved by degrading at least one of its other objective components [184].

2.1.3 MO Optimization Goals

An example of the PF∗ is illustrated in Figure 2.2(b). Most often, information regarding the

PF∗ are either limited or not known a priori. It is also not easy to find a nice closed analytic

expression for the tradeoff surface because real-world MO problems usually have complex

objective functions and constraints. Therefore, in the absence of any clear preference on the

part of the decision-maker, the ultimate goal of multi-objective optimization is to discover

the entire Pareto front. However, by definition, this set of objective vectors is possibly an

infinite set as in the case of numerical optimization and it is simply not achievable.

On a more practical note, the presence of too many alternatives could very well over-

whelm the decision-making capabilities of the decision-maker. In this light, it would be more

practical to settle for the discovery of as many nondominated solutions possible as compu-

tational resources permits. More precisely, the goal is to find a good approximation of the

PF∗ and this approximate set, PFA should satisfy the following optimization objectives.

• Minimize the distance between the PFA and PF∗.

• Obtain a good distribution of generated solutions along the PFA.

• Maximize the spread of the discovered solutions.

An example of such an approximation is illustrated by the set of nondominated solu-

tions denoted by the filled circles residing along the PF∗ in Figure 2.2(b). While the first

optimization goal of convergence is the first and foremost consideration of all optimization
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problems, the second and third optimization goal of maximizing diversity are unique to MO

optimization. The rationale of finding a diverse and uniformly distributed PFA is to pro-

vide the decision maker with sufficient information about the tradeoffs among the different

solutions before the final decision is made. It should also be noted that the optimization

goals of convergence and diversity are somewhat conflicting in nature, which explains why

MO optimization is much more difficult than SO optimization.

2.2 Particle Swarm Optimization Principle

Particle swarm optimization (PSO) was first introduced by James Kennedy (a social psy-

chologist) and Russell Eberhart (an electrical engineer) in 1995 [92], which originates from

the simulation of behavior of bird flocks. Although a number of scientists have created com-

puter simulations of various interpretations of the movement of organisms in a bird flock or

fish school, Kennedy and Eberhart became particularly interested in the models developed

by Heppner (a zoologist) [62].

In Heppner’s model, birds would begin by flying around with no particular destination

and in spontaneously formed flocks until one of the birds flew over the roosting area. To

Eberhart and Kennedy, finding a roost is analogous to finding a good solution in the field of

possible solutions. And they revised Heppner’s methodology so that particles will fly over

a solution space and try to find the best solution depending on their own discoveries and

past experiences of their neighbors.

In the original version of PSO, each individual is treated as a volume-less particle in

the D dimensional solution space. The equations for calculating velocity and position of

particles are shown below:

vk+1
id = vk

id + rk
1 × p× sgn(pk

id − xk
id) + rk

2 × g × sgn(pk
gd − xk

id) (2.2)

xk+1
id = xk

id + vk
id (2.3)
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where d = 1, 2, ...,D and D is the dimension of search space; i = 1, 2, ...,N and N is the

size of swarm; k = 1, 2, ... denotes the number of cycles (iterations); vk
id is the d dimension

velocity of particle i in cycle k; xk
id is the d dimension position of particle i in cycle k;

pk
id is the d dimension of personal best of particle i in cycle k; pk

gd is the d dimension of

global best in cycle k; p and g are the increment step size; rk
1 and rk

2 are two random values

uniformly distributed in the range [0, 1]; sgn() is the sign function which returns the sign of

the number.

Such a simple paradigm was proved to be able to optimize simple two-dimensional linear

functions. With increment step size set relatively high, the flock will cluster in a tiny circle

around the target in a few cycles. With increment step size set low, the flock will gradually

approach the target, swing out sometimes, and finally landing on the target. A high value of

p relative to g result in excessive wandering of some isolated particles through the solution

space, while the reverse results in the flock rushing prematurely toward local minimum.

Approximately equal values of the two increments seem to result in most effective search of

the solution space.

2.2.1 Adjustable Step Size

Further research shows that to adjust velocity not by a fixed step size but according to

the distance between current position and best position can improve performance. So the

equation 2.2 is changed to:

vk+1
id = vk

id + c1 × rk
1 × (pk

id − xk
id) + c2 × rk

2 × (pk
gd − xk

id) (2.4)

Here c1 is called cognition weight and c2 is called social weight. Low values of them allow

particles to roam far from target regions before being tugged back; while high values results

in abrupt movement toward, or past, target region. Because there is no way to guess whether

c1 or c2 should be larger, they are usually both set to 2.
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One important parameter Vmax is also introduced, and the particle’s velocity on each

dimension cannot exceed Vmax. If Vmax is too large, particle may fly past good solutions. If

Vmax is too small, particle may not explore sufficiently beyond locally good regions. Vmax

is usually set at 10-20% of the dynamic range of each dimension. And early experiments

showed that a population of 20-50 is enough for most applications.

2.2.2 Inertial Weight

The maximum velocity Vmax serves as a constraint to control the exploration ability of

a particle swarm. To better control the exploration and exploitation in particle swarm

optimization, the concept of inertial weight (w) was developed. Inertial weight was first

introduced by Shi and Eberhart in 1998 [176] with the motivation to eliminate the need for

Vmax. After incorporating w, equation 2.4 is changed to:

vk+1
id = w × vk

id + c1 × rk
1 × (pk

id − xk
id) + c2 × rk

2 × (pk
gd − xk

id) (2.5)

Shi and Eberhart argued that a large inertial weight facilitates the global search (discovering

new places), while a small inertial weight facilitates local search (fine-tuning) [174]. A

linearly decreasing inertial weight from 0.9 to 0.4 is recommended.

2.2.3 Constriction Factor

The work done by Clerc and Kennedy [23] showed that the use of a constriction factorK may

be necessary to insure convergence for PSO. The introduced constriction factor influences

the velocity of the particles by dampening it. And the equation for incorporating K into

PSO is as follows:

vk+1
id = k × [vk

id + c1 × rk
1 × (pk

id − xk
id) + c2 × rk

2 × (pk
gd − xk

id)] (2.6)
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where k = 2

|2−ϕ−
√

ϕ2−4ϕ|
, ϕ = c1 + c2, and ϕ � 4. When the constriction factor is used, ϕ

is usually set to 4.1. The constriction factor is thus 0.729. And c1 = c2 = 0.729× 2.05 =

1.49445.

2.2.4 Other Variations of PSO

One version of the algorithm reduces the two best positions (gbest and pbest) to one that is

the midway between them in each dimension. This version is not successful because it has

a bad tendency to converge to that point whether it is an optimum or not.

In another version, the momentum term is removed. The adjustment was as follows:

vk+1
id = c1 × rk

1 × (pk
id − xk

id) + c2 × rk
2 × (pk

gd − xk
id) (2.7)

This version, though simplified, proved to be ineffective for finding the global optimum.

Eberhart and Kennedy [41] has also tried a local version of PSO, in which particles

only have information of their own bests and their neighbor’s bests, rather than that of the

entire swarm. This is a circular structure where each particle is connected to itsK immediate

neighbors. In this way, one segment of the swarm may converge on a local minimum, while

another segment converges on a different minimum or keep searching. Information spreads

from neighbor to neighbor, until one optimum, which is really the best one found by any

part of the swarm, eventually drags all particles to it. This version of PSO is less likely to

be entrapped into a local minimum, but it clearly requires more cycles on average in order

to reach a criterion error level.

2.2.5 Terminology for PSO

In order to establish a common terminology, in the following we provide definitions of the

technical terms commonly used in PSO.
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Particle: Individual. Each particle represents a point in the solution space, which can

move (fly) in the solution space to search for good solutions.

Swarm: Population or group of particles. PSO is a population based algorithm, which

uses a large population of particles to search for good solutions simultaneously.

Cycle: Iteration. Each cycle represents a change of positions for all particles for one

time.

Velocity: Velocity represents how far each particle move (fly) in each cycle in solution

space.

Inertia Weight: Denoted by w, the inertia weight controls the impact of the previous

velocity on the current velocity of a given particle.

pbest: Personal best position found by a given particle, so far.

gbest: Global best position found by the entire swarm of particles.

Cognition Weight: Denoted by c1, cognition weight represents the attraction that a

particle has toward its personal best position.

Social Weight: Denoted by c2, social weight represents the attraction that a particle

has toward the global best position found by the entire swarm.

2.3 Multi-objective Particle Swarm Optimization

Many different metaheuristical approaches, such as cultural algorithm, particle swarm op-

timization, evolutionary algorithm, artificial immune systems, differential evolution, and

simulated annealing, have been proposed since the pioneering effort of Schaffer in [168]. All

these algorithms are different in methodology, particularly in the generation of new candi-

date solutions. Among these metaheuristics, MOPSO is one of the most promising stochastic

search methodology because of its easy implementation and high convergence speed.
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Figure 2.3: Framework of MOPSO

2.3.1 MOPSO Framework

The general MOPSO framework can be represented in the pseudocode shown in Figure 2.3.

There are many similarities between SO particle swarm optimization algorithms (SOPSOs)

and MOPSOs with both techniques involving an iterative adaptation of a set of solutions

until a pre-specified optimization goal/stopping criterion is met. What sets these two tech-

niques apart is the manner in which solution assessment and gbest selection are performed.

This is actually a consequence of the three optimization goals described in Section 2.1.3.

In particular, solution assessment must exert a pressure to drive the particles toward the

global tradeoffs as well as to diversify the particles uniformly along the discovered PFA. The

incorporation of elitism is one distinct feature that characterizes state of the art MOPSO

algorithms. Elitism in MOPSO involves two closely related process, 1) the archiving of good

solutions and 2) the selection of gbest for each particle from these solutions. The archive

updating and the selection of gbest for each particle must also take diversity into consid-

eration to encourage and maintain a diverse solution set. While the general motivations

may be similar, different MOPSO algorithms can be distinguished by the way in which the

mechanisms of elitism and diversity preservation are implemented.

The optimization process of MOPSO starts with the initialization of the swarm. This

is followed by evaluation and density assessment of candidate solutions. After which, good

solutions are updated into an external archive. MOPSOs perform the archiving process
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differently. Nonetheless, in most cases, a truncation process will be conducted based on

some density assessment to restrict the number of archived solutions. The pbest selection

process is the comparison of particle’s current position and former pbest position. And the

gbest selection process typically involves the set of nondominated solutions updated in the

previous stage. Then the PSO updating operators are applied to explore and exploit the

search space for better solutions.

2.3.2 Basic MOPSO Components

The framework presented in the previous section serves to highlight the primary components

of MOPSO, elements without which the algorithm is unable to fulfill its basic function of

finding PF∗ satisfactorily. More elaborate works on each component with different concerns

exist in the literature.

Fitness Assignment

As illustrated in Figure 2.4, solution assessment in MOPSO should be designed in such a

way that a pressure ←−P n is exerted to promote the solutions in a direction normal to the

tradeoffs region and at the same time, another pressure ←−P t to promote the solutions in a

direction tangential to that region. These two orthogonal pressures result in the unified

pressure ←−P u to direct the particle search in the MO optimization context. Based on the

literature, it is possible to identify two different classes of fitness assignment: 1) Pareto

based assignment, 2) aggregation based assignment.

Pareto based Fitness Assignment: Pareto based MOPSOs have emerged as the most

popular approach [2] [26] [47] [109] [130]. On its own, Pareto dominance is unable to induce
←−
P t and the solutions will converge to arbitrary portions of the PFA, instead of covering to

the whole surface. Thus Pareto based fitness assignments are usually applied in conjunction

with density measures, which usually adopts a two stage process where comparison between
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Figure 2.4: Illustration of pressure required to drive evolved solutions towards PF∗

solutions is conducted based on Pareto fitness before density measure is used. Note that

this indirectly assigns higher priority level to proximity. Another interesting consequence is

that ←−P n will be higher in the initial stages of the search; and when the solutions begin to

converge to the PF∗, the influence of ←−P t becomes more dominant as most of the solutions

are equally fit.

However, Fonseca and Fleming [54] highlighted that Pareto based assignment may not

be able to produce sufficient guidance for search in high-dimensional problems and it has

been shown empirically that Pareto based MO algorithms do not scale well with respect

to the number of objectives in [95]. To understand this phenomenon, let us consider a

M-objective problem where M>>2. Under the definition of Pareto dominance, as long as a

solution has one objective value that is better than another solution, never mind the degree

of superiority, it is still considered to be nondominated even if it is grossly inferior in the

other M-1 objectives. Intuitively, the number of nondominated solutions in the searching

population grows with the number of objectives resulting in the lost of sufficient pressure

toward PF∗.
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To this end, some researchers have sought to relax the definition of Pareto optimality.

Ikeda et al [78] proposed the α-dominance scheme which considers the contribution of all the

weighted difference between the respective objectives of any two solutions under comparison

to prevent the above situation from occurring. Mostaghim et al [130] and Reyes et al

[157] implemented an ε-dominance scheme which has the interesting property of ensuring

convergence and diversity. In this scheme, an individual dominates another individual only

if it offers an improvement in all aspects of the problem by a pre-defined factor of ε. A

significant difference between α-dominance and ε-dominance is that a solution that strongly

dominates another solution also α-dominates that solution while this relationship is not

always valid for the latter scheme. Another interesting alternative in the form of fuzzy

Pareto optimality is presented by Farina and Amato [45] to take into account the number

and size of improved objective values.

Aggregation based Fitness Assignment: The aggregation of the objectives into a single

scalar is perhaps the simplest approach to generate PFA. Unlike the Pareto based approach,

aggregation based fitness induces ←−P u directly. However, aggregation is usually associated

with several limitations such as its sensitivity to PF∗ shape and the lack of control on the

direction of ←−P u. This results in the contrasting lack of interest paid by MO optimization

researchers as compared to Pareto based techniques. Ironically, the failure of Pareto based

MO algorithms in high-dimensional objective space may well turn the attention towards the

use of aggregation based fitness assignment in MO algorithms.

Baumgartner et al [8] and Parsopoulos et al [145] implemented aggregation-based multi-

objective particle swarm optimization algorithms that have been demonstrated to be capable

of evolving uniformly distributed and diverse PFA. In [8], the swarm is partitioned into n

subswarms, each of which uses a different set of weights. Parsopoulos et al investigated

two very interesting aggregation based MOPSO approaches in [145]. In one approach, the

weights of each objective can be changed between 1 or 0 periodically during the optimization

process (called Bang-Bang weighted aggregation); while in the other, the weights are gradu-
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ally modified according to some predefined function (called dynamic weighted aggregation).

Instead of performing the aggregation of objective values, Hughes [74] suggested the

aggregation of individual performance with respect to a set of predetermined target vectors.

In this approach, individuals are ranked according to their relative performance in an as-

cending order for each target. These ranks are then sorted and stored in a matrix such that

it may be used to rank the population, with the most fit being the solution that achieves

the best scores most often. It has been shown to outperform many nondominated sorting

algorithms for high-dimensional MO problems [74].

At this point of time, it seems that Pareto based fitness are more effective in low-

dimensional MO problems while aggregation based fitness has an edge with increasing num-

ber of objectives. Naturally, some researchers have attempted to marry both methods

together. For example, Turkcan and Akturk [204] proposed an hybrid MO fitness assign-

ment method which assigns a nondominated rank that is normalized by niche count and

an aggregation of weighted objective values. On the other hand, Pareto-based fitness and

aggregation-based fitness are used independently in various stages of the searching process

in [46,133].

Diversity Preservation

Density Assessment: A basic component of diversity preservation strategies is density as-

sessment. Density assessment evaluates the density at different sub-divisions in a feature

space, which may be in the parameter or objective domain. Depending on the manner

in which solution density is measured, the different density assessment techniques can be

broadly categorized under 1) Distance-based, 2) Grid-based, and 3) Distribution-based. One

of the basic issues to be examined is whether density assessment should be computed in the

decision space or objective space. Horn and Nafpliotis [70] stated that density assessment

should be conducted in the feature space where the decision-maker is most concerned about

its distribution. Since many people are more interested in obtaining a well-distributed and
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diverse PFA, most works reported in the MO literature applied density assessment in the

objective space.

Distance-based assessment is based on the relative distance between individuals in the

feature space. Examples include niche sharing [109] [165] [186], k-th nearest neighbor [166]

[224] and crowding [153] [155] [157]. Niche sharing or niching is by far the most popular

distance-based approach.

Niching was proposed by Goldberg [60] to promote population distribution as well as to

search for possible multiple peaks in SO optimization. The main limitation of this method

is that its performance is sensitive to the setting of niche radius. Fonseca and Fleming [54]

gave some bounding guidelines of appropriate niche radius values for MO problems when

the number of individuals in the population and the minimum/maximum values in each

objective dimension are given. However, such information are often not known a prior in

many real-world problems. Tan et al [195] presented a dynamic sharing scheme where the

niche radius is computed online based on the evolved tradeoffs.

The k-th nearest neighbor is another approach which requires the specification of an

external parameter. In [166], average Euclidean distance to the two nearest solutions is

used as the measure of density. Zitzler et al [224] adopted k as the square root of the

total population size based on some rule-of-the-thumb used in statistical density estimation.

Like niching, this approach is sensitive to the setting of the external parameter, which in

this case is k. The k-th nearest neighbor can also be misleading in situations where all the

nearest neighbors are located in a similar region of the feature space. In certain sense, the

nearest neighbor is similar to the method of crowding. However, crowding do not have such

bias since it is based on the average distance of the two points on either side of current

point along each dimension of the feature space. Crowding is not influenced by any external

parameters. Nonetheless, distance-based assessment schemes (nitching, crowding and k-th

nearest neighbor) are susceptible to scaling issues and their effectiveness are limited by the

presence of noncommensurable objectives.
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Grid-based assessment is probably the most popular approach after niching [26] [28]. In

this approach, the feature space is divided into a predetermined number of cells along each

dimension and distribution density within a particular cell has direct relation to the num-

ber of individuals residing within that cell location. Contrary to distance-based assessment

methods which include methods that are very different, both conceptually and in imple-

mentation, the main difference among the various implementation of this approach, if any,

lies in how cells and individuals are located and referenced. For example, the cell location

of an individual in [26] is found using recursive subdivision. However, in [118], the location

of each cell center is stored and the cell associated with an individual is found by searching

for the nearest cell center. The primary advantage of grid-based assessment is that it is not

affected by the presence of noncommensurable objectives. However, this technique depends

heavily on the number of cells in the feature space containing the population and it works

well if knowledge of the geometry of the PF∗ is known. Furthermore, its computational

requirements are considerably more than distance-based assessments.

Distribution-based assessment is rather different from distance-based and grid-based

methods because distribution density is based on the probability density of the individuals.

The probability density is used directly in [11] to identify least crowded regions of the

PFA. It has also been used to compute the entropy as a means to quantify the information

contributed by each individual to the PFA in [31] [99] [187]. Like grid-based methods, it is

not affected by noncommensurable objectives. The tradeoff is that it can be computationally

intensive because it involves the estimation of probability density of the individuals. On

the other hand, the computational effort is a linear function of population size which is

advantageous for large population sizes. While some distribution-based methods require

external parameter setting such as the window width in Parzen window estimation [58],

there exist an abundance of guidelines in the literature.

An empirical investigation is conducted in [96] on the effectiveness of the various density

assessment methods in dealing with convex, nonconvex and line distributions. In general,
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the study shows that all techniques under investigation are able to improve distribution

quality in the sense of uniformity. But the findings also suggest that it is not possible

to ascertain which method is better for which type of problem because of the interactions

between density assessment and searching process.

Encouraging Diversity Growth: Other means of encouraging diversity growth can also

be found in the literature. For instance, in [203], Toffolo and Benini applied diversity as an

objective to be optimized. Specifically, the MO problem is transformed into a two-objective

problem with diversity as one of the objectives and the other objective being the ranks with

respect to the objectives of the original MO problem.

Diversity can also be encouraged through the simultaneous searching of multiple isolated

subswarms. In [8], each subswarm is guided towards a particular region of PF∗ through using

different sets of weights on objectives. Chow et al [22] assigned one subswarm for each

objective. A communication channel is established between the neighboring subswarms for

transmitting the information of the best particles, in order to provide guidance for improving

their objective values.

Elitism

The use of the elitist strategy is conceptualized by De Jong in [36] to preserve the best

individuals found during the searching process. When elite individuals are used to guide

the search, it can improve convergence greatly, although it maybe achieved at the risk of

premature convergence. Zitzler [227] is probably the first to introduce elitism into MO

algorithms, sparking off the design trend of a new generation of MO algorithms [24].

Archiving: The first issue to be considered in the incorporation of elitism is the storage

or archiving of elitist solutions. Archiving usually involves an external repository and this

process is much more complex than in SOs since we are now dealing with a set of Pareto

optimal solutions instead of a single solution. The fact that PF∗ is an infinite set raises the

natural question of what should be maintained? Without any restriction on the archive size,
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the number of nondominated solutions can grow exceedingly large. Therefore, in the face of

limited computing and memory resources in implementation, it is sometimes unwise to store

all the nondominated solutions found. Most works enforce a bounded set of nondominated

solutions which requires a truncation process when the size of the nondominated solutions

exceeds a predetermined bound [26] [111]. This leads to the question of which solution

should be kept? It is only natural to truncate the archive based on some form of density

assessment discussed earlier when the number of nondominated solutions exceeds the upper

bound.

For bounded archiving, two implementations of truncation can be found in the literature,

i.e., batch mode and recurrence mode. The truncation criteria will be based on the density

assessment process described earlier. In the batch-mode, all solutions in the archive will

undergo density assessment and the worst individuals are removed in a batch. On the other

hand, in the recurrence mode, an iterative process of density assessment and truncation is

repeated to the least promising solution in the archive until the desired size is achieved.

While the recurrence-mode of truncation has higher capability to avoid the extinction of

local individuals compared to the batch-mode truncation, the recurrence-mode truncation

often requires more computational effort. To reduce the computational cost involved with

the pairwise comparison between a new solution and the archived solution in recurrence-

mode truncation, a more efficient data-structure has been proposed in [47].

The restriction on the number of archive solutions leads to two phenomena which have

a detrimental effect on the searching process. The first is the shrinking PFA phenomenon

which results from the removal of extremal solutions and the subsequent failure to rediscover

them. In the second phenomenon, nondominated solutions in the archive are replaced

by least crowded particles. In the subsequent cycles, new particles that would have been

dominated by the removed solutions are updated into the archive. Repeated cycles of this

process is known as the oscillating PFA. The alternative and simplest approach is, of course,

to store all the nondominated solutions found.
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Selection of gbest: The next issue to be considered is the introduction of elitist solutions

into the gbest selection process. Contrary to SO optimization, the gbest for MO optimization

exist in the form of a set of nondominated solutions which inevitably leads to the issue

of gbest selection for each particle. One problem faced is the “exploration-exploitation”

dilemma. A higher degree of exploitation attained through the selection of gbest according

to domination relationship leads to the lost of diversity. The consequences of the lack of

necessary diversity to fuel the searching process is a PFA that fails to span the entire PF∗

uniformly and, in the worst case, premature convergence to local optimal solutions. While

too much exploration through selection of least crowded nondominated solution as gbest

may lead to slow convergence speed.

Gbest selection schemes that sought to balance the tradeoff between exploration and

exploitation have been proposed. Alvarez-Benitez et al [2] presented a general framework

for MOPSOs which allows designers to control the balance between exploration of diversity

and exploitation of proximity. Tan et al [192] proposed an enhanced exploration strategy

in which the ratio of solutions selected based on ranking and diversity is adapted based

on an online performance measure. Solutions selected on the basis of rank are subjected

to turbulence operators while those selected based on niche count undergo local search to

improve solution distribution.

2.3.3 Benchmark Problems

Benchmark problems are used to reveal the capabilities, important characteristics and pos-

sible pitfalls of the algorithm under validation. In the context of MO optimization, these

test functions must pose sufficient difficulty to impede MO algorithm’s search for Pareto

optimal solutions. Deb [33] has identified several characteristics that may challenge MO

algorithm’s ability to converge and maintain population diversity. Multi-modality is one of

the characteristics that hinder convergence. Convexity, discontinuity and non-uniformity of

the PF∗ may prevent the MOPSO from finding a diverse set of solution.
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Table 2.1: Definition of ZDT test problems

Problem Definition

ZDT1 f1(x1) = x1,

g(x2, ...xm) = 1 + 9 ·
∑m

i=2 xi

(m−1) ,

h(f1, g) = 1−
√

f1
g

where m = 30, xi ∈ [0, 1]
ZDT2 f1(x1) = x1,

g(x2, ...xm) = 1 + 9 ·
∑m

i=2 xi

(m−1)
,

h(f1, g) = 1− (f1
g )2

where m = 30, xi ∈ [0, 1]
ZDT3 f1(x1) = x1,

g(x2, ...xm) = 1 + 9 ·
∑m

i=2 xi

(m−1) ,

h(f1, g) = 1−
√

f1
g −

f1
g sin(10πf1)

where m = 30, xi ∈ [0, 1]
ZDT4 f1(x1) = x1,

g(x2, ...xm) = 1 + 10(m− 1) +
∑m

i=2(x
2
i − 10 cos(4πxi)),

h(f1, g) = 1−
√

f1
g

where m = 10, x1 ∈ [0, 1], −1 ≤ xi < 1, ∀i = 2, ..., 10
ZDT6 f1(x1) = 1− exp(−4x1) · sin6(6πx1),

g(x2, ...xm) = 1 + 9 · (
∑m

i=2 xi

m−1 )0.25,
h(f1, g) = 1− (f1

g )2

where m = 10, xi ∈ [0, 1]

The problems of ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, FON, KUR and POL are selected

to validate the effectiveness of multi-objective optimization techniques in converging and

maintaining a diverse Pareto optimal solution set in this work. This set of test problems

are characterized by the different features mentioned above and should be a good test

suite for a fair comparison of different multi-objective algorithms. Many researchers, such

as [29] [35] [198] [210] [225], have used these problems in the validations of their algorithms.

The test problems of ZDT1 through ZDT6 are constructed by Zitzler et al [225] based
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on the guideline described by Deb [33]. The ZDT test problems have the following functional

structure.
min f1(~xd1)

min f2(~xd2) = g(~xd2) · h(f1, g)
(2.8)

where ~xd1, ~xd2 ∈ ~x, and the g and h functions control the problem difficulty and the shape

of the Pareto front respectively. By having independent functions relating to convergence

and diversity, this framework facilitates the incorporation of various problem features to

construct different test problems. Table 2.1 summaries the definition and features of the

various ZDT test problems.

FON [52] is a two-objective minimization test problem that has been widely used in

the literature. Besides having a nonconvex Pareto front, there are high interactions be-

tween decision variables. FON has a large and nonlinear tradeoff curve that is suitable for

challenging an algorithm’s ability to find and maintain the entire Pareto front uniformly.

f1(x1, ..., x8) = 1− exp[−
∑8

i=1(xi − 1√
8
)2],

f2(x1, ..., x8) = 1 + exp[−
∑8

i=1(xi − 1√
8
)2],

(2.9)

where −2 ≤ xi < 2, ∀i = 1, 2, ..., 8

KUR [105] is characterized by an optimal Pareto front that is non-convex and discon-

nected, i.e., it contains three distinct disconnected regions on the final tradeoff as shown in

Figure 2.5. The global tradeoff for KUR are difficult to be discovered since they are dis-

connected in the decision variable space. There are high interactions between the decision

variables which will also pose problems to the MO algorithms.

f1(x1, x2, x3) =
∑2

i=1[−10 exp(−0.2
√
x2

i + x2
i+1)],

f2(x1, x2, x3) =
∑3

i=1[|xi|0.8 + 5 · sin(x3
i )],

(2.10)

where xi ∈ [−5, 5], ∀i = 1, 2, 3

POL [149] challenges the algorithm’s ability to cope with discontinuities as the Pareto
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Figure 2.5: True Pareto front of KUR

optimal solutions of POL are discontinuous in the objective space as well as in the decision

variable space. Most parts (the lower region) of the Pareto optimal region, as shown in

Figure 2.6, are constituted by the boundary solutions of the search space.

f1(x1, x2) = 1 + (A1 − B1)2 + (A2 − B2)2

f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2

A1 = 0.5sin1− 2cos1 + sin2− 1.5cos2

A2 = 1.5sin1− cos1 + 2sin2− 0.5cos2

B1 = 0.5sinx1 − 2cosx1 + 2sinx2 − 0.5cosx2

B2 = 1.5sinx1 − cosx1 + 2sinx2 − 0.5cosx2

(2.11)

where−π ≤ xi ≤ π, ∀i = 1, 2

2.3.4 Performance Metrics

Performance analysis of different MO algorithms essentially boils down to the evaluation of

the approximate Pareto front under the constraints of some computational budget. Then

performance metrics or indicators play an important role as functions that return a scalar
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Figure 2.6: True Pareto front of POL

quantity, reflecting the quality of the scrutinized solution set. In SO optimization, this

quality comes in the form of the objective function. For MO optimization, however, quality

can be defined in a variety of ways, for example, the uniformity of solutions, the dominance

relationship between two solution sets and the closeness to the Pareto optimal front.

There have been increasing concerns on the choice of performance metrics. To this end,

Knowles and Corne [102] and Zitzler et al [223] have discussed at length, the suitability and

limitations of various performance metrics. Comparative studies performed by researchers

such as Jaszkiewicz [85], Deb et al [35], Tan et al [192], Veldhuizen and Lamont [210], made

use of a suite of unary performance metrics pertinent to the optimization goals of proximity,

diversity and distribution, which are used in this work and described as follows.

Proximity Indicator: The metric of generational distance (GD) gives a good indication

of the gap between PF∗ and PFA. Mathematically, the metric is a function of individual

distance given as,

GD =
1
nPF

·
(
nPF

nPF∑

i=1

d2
i

) 1
2 (2.12)

where nPF = |PFA|, di is the Euclidean distance (in objective space) between the i-th
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member of PFA and the nearest member of PF∗. Intuitively, a low value of GD is desirable,

which reflects a small deviation between the evolved and the true Pareto front.

Diversity Indicator: The matric of maximum spread (MS) measures how well the true

Pareto front is covered by the discovered Pareto front. The equations for calculating MS is

as follows,

MS =
{ 1
M

M∑

i=1

(min[fA
i , f

∗
i ]−max[fA

i
, f∗

i
]

f
∗
i − f∗i

)2} 1
2 (2.13)

where fA
i and fA

i
is the maximum and minimum of the i-th objective in PFA respectively;

f
∗
i and f∗

i
is the maximum and minimum of the i-th objective in PF ∗ respectively. The

greater the MS is, the more area of PF∗ is covered by the PFA.

Distribution Indicator: The metric of spacing [172] gives an indication of how evenly

the solutions are distributed along the discovered front. It is defined as,

S =
1
d̄′
·
( 1
nPF

·
nPF∑

i=1

(d′i − d̄′)2
) 1

2 (2.14)

d̄′ =
1
nPF

nPF∑

i=1

d′i

where d′i is the Euclidean distance (in the objective domain) between the i-th member and

its nearest neighbor in PFA.

General Quality Indicator: By taking into account performance in diversity and proxim-

ity, the metric of hypervolume (HV) provides a general quality measure of the solution set.

In order to calculate a normalized value and eliminate bias, Veldhuizen and Lamont [210]

expressed the metric of HV as a ratio between the HV of PFA and PF∗,

HVR =
HV(PFA)
HV(PF∗)

(2.15)

HV = volume
nPF⋃

i=1

vi (2.16)

Mathematically, for each member ~fA
i in the non-dominated set, a hypercube vi is constructed
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with a reference point and ~fA
i as the diagonal corners of the hypercube. The reference point

can be found by constructing a vector of the worst objective function values.

2.4 Conclusion

The necessary concepts and definitions of multi-objective optimization and particle swarm

optimization algorithm are covered in this chapter. It also presented the general MOPSO

framework which illustrates the basic design issues of fitness assignment, diversity main-

tenance and elitism. Finally, state of the art MOPSO techniques, MO test problems and

performance indicators used in this work are discussed.



Chapter 3

A Multiobjective Memetic

Algorithm Based on Particle

Swarm Optimization

The balance between exploration and exploitation is crucial to the success of search and

optimization algorithms [104]. It is known that memetic algorithms (MAs) [129] hybridiz-

ing evolutionary algorithms (EAs) and local search (LS) heuristics can be implemented to

maintain a balance between exploration and exploitation [17] [55] [81] [124] [139]. However

such hybrids are rarely considered in particle swarm optimization algorithm design.

This chapter is concerned with the development of a memetic algorithm within the con-

text of MOPSO. In contrast to single-objective (SO) optimization, it is essential to obtain

a well-distributed and diverse solution set for finding the final tradeoff in MO optimiza-

tion. However, the high speed of convergence in PSO often implies a rapid loss of diversity

during the optimization process, which inevitably leads to undesirable premature conver-

gence. Thus, the challenge in designing a multiobjective memetic algorithm based on particle

swarm optimization is to deal with the premature convergence without compromising the

convergence speed.

Apart from hybridizing LS heuristic and PSO, the existing particle updating strategy

in PSO is extended to account for the requirements in MO optimization. Two heuristics

33
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are proposed, including a synchronous particle local search (SPLS) and a fuzzy global-best

(f-gbest) for the updating of a particle trajectory. The SPLS utilizes swarm information to

perform a directed fine-tuning operation, while the second heuristic is based upon the con-

cept of possibility [40] to deal with the problem of maintaining diversity within the swarm as

well as to promote exploration in the search. The proposed multiobjective memetic particle

swarm optimization algorithm incorporating f-gbest and SPLS is named as FMOPSO.

The remainder of this chapter is organized as follows: Details of the proposed features

in FMOPSO are described in Section 3.1. Section 3.2 examines FMOPSO performance

and individual and combined effects of the proposed features, and Section 3.3 presents a

comparative study of FMOPSO with well-known MO optimization algorithms on benchmark

problems. Conclusions are drawn in Section 3.4.

3.1 Multiobjective Memetic Particle Swarm Optimization

FMOPSO aims to preserve population diversity for finding the optimal Pareto front and to

include the feature of local fine-tuning for good population distribution by filling any gaps

or discontinuities along the Pareto front. In this section, the proposed features of SPLS and

f-gbest will be described, and the implementation detail of FMOPSO will be presented.

3.1.1 Archiving

In FMOPSO, elitism is implemented in the form of a fixed-size archive to prevent the

lost of good solutions due to the stochastic nature of the optimization process. The size

of archive can be adjusted according to the desired number of particles to be distributed

on the tradeoffs in the objective space. The archive is updated at each cycle, e.g., if the

candidate solution is not dominated by any members in the archive, it will be added to the

archive. Likewise, any archive members dominated by this solution will be removed from

the archive. In order to maintain a set of uniformly distributed nondominated particles in
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Figure 3.1: The process of archive updating

the archive, the dynamic niche sharing scheme [195] is employed. When the predetermined

archive size limit is reached, a recurrent truncation process [96] based on niche count is used

to eliminate the most crowded archive member. The archiving process is shown in Figure

3.1.
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3.1.2 Selection of Global Best

In MOPSO, gbest plays a very important role in guiding the entire swarm towards the global

Pareto front. Contrary to SO optimization, the gbest for MO optimization exist in the form

of a set of nondominated solutions which inevitably leads to the issue of selecting the gbest.

It is known that the selection of an appropriate gbest is critical for the search of a diverse

and uniformly distributed solution set in MO optimization.

Adopting a similar approach in [26], each particle in the swarm will be assigned a

nondominated solution from the archive as gbest. Specifically, binary tournament selection

of nondominated solutions from the archived is carried out independently for each particle

in every cycle. Therefore, each particle is likely to be assigned different archived solution

as gbest. This implies that each particle will search along different direction in the decision

space, thus aiding the exploration process in the optimization. In order to promote diversity

as well as to encourage exploration into the least populated region in the search space, the

selection is based on niche count. In the event of a tie, preference will be given to solutions

lying at the extreme ends of an arbitrarily selected objective.

3.1.3 Fuzzy Global Best

In PSO, the swarm converges rapidly within the intermediate vicinity of the gbest. However,

such a high convergence speed often results in: 1) the lost of diversity required to maintain

a diverse Pareto front and 2) premature convergence if the gbest corresponds to a local

optimum. This motivates the development of f-gbest, which is based on the concept of

possibility measure to model the lack of information about the true optimality of the gbest.

In contrast to conventional approaches, the gbest is denoted as “possibly at (d1×d2×d3...×

dD)” instead of a crisp location.

Consequently, the calculation of particle velocity can be rewritten as,

pk
cd = N(pk

gd, σ) (3.1)
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σ = f(k) (3.2)

vk+1
id = w × vk

id + c1 × rk
1 × (pk

id − xk
id) + c2 × rk

2 × (pk
cd − xk

id) (3.3)

where pk
cd is the d dimension of f-gbest in cycle k. From Equation 3.1, it can be observed

that the f-gbest is characterized by a normal distribution N(pk
gd, σ), where σ represents the

degree of uncertainty about the optimality of the gbest. In order to account for information

received over time that reduces uncertainty about global best position, σ is modeled as some

nonincreasing function of the number of cycles as given in Equation 3.2. For simplicity, f(k)

is defined as:

f(k) =





σmax cycles ≺ α×max cycles

σmin otherwise
(3.4)

where σmax, σmin, and α are set as 0.15,0.0001, and 0.4 respectively.

The f-gbest should be distinguished from conventional turbulence or mutation operator,

which applies a random perturbation to the particles. The function of f-gbest is to encourage

the particles to explore a region beyond that defined by the search trajectory as illustrated in

Figure 3.2. By considering the uncertainty associated with each gbest as a function of time,

f-gbest also provides a simple and efficient exploration at the early stage when σ is large and

encourages local fine-tuning at the latter stage when σ is small. Subsequently, this approach

helps to reduce the likelihood of premature convergence and guides the search toward filling

any gaps or discontinuities along the Pareto front for better tradeoff representation.

3.1.4 Synchronous Particle Local Search

The MOPSO is hybridized with a synchronous particle local search (SPLS) which performs

directed local fine-tuning to improve the distribution of the solution set. The issues con-

sidered in the design of the LS operator include: 1) the selection of appropriate search

direction; 2) the selection of appropriate particles for local optimization; and 3) the alloca-

tion of computational budget for LS.
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Figure 3.2: Search region of f-gbest

SPLS is performed in the vicinity of the particles, and the procedure is outlined in the

following pseudo code.

Step 1) Select SLS particles randomly from particle swarm.

Step 2) Select NLS nondominated particles with the best niche count from the archive

to a selection pool.

Step 3) Assign an arbitrary nondominated solution from the selection pool to each of

the SLS particles as gbest.

Step 4) Assign an arbitrary search space dimension for each of the SLS particles.

Step 5) Assimilation: With the exception of the assigned dimension, update the position

of SLS particles in the decision space with the selected gbest position.

Step 6) Update the position of all SLS assimilated particles along the pre-assigned

dimension only.

The operation of SPLS is illustrated in Figure 3.3. The rationale of selecting the least

crowded particles from the archive in Step 2 is to encourage the discovery of better solutions
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Figure 3.3: SPLS of assimilated particles along x1 and x3

that fill the gaps or discontinuities along the discovered Pareto front. Instead of selecting

the particles directly from the archive for fine-tuning purposes, the assimilation process

in Step 5 provide a means of integrating swarm and archive information. In contrast to

random variation, Step 6 exploits knowledge about the possible location of gbest to probe

the feasibility of the global best position along the assigned direction.

From the pseudo code, it is clear that the allocation of computational resource for

LS is determined by SLS . A high setting of SLS allows the swarm to perform LS from

different starting points, i.e., it enables the swarm to exploit along different directions.

Likewise, a small setting of SLS will restrict the LS operation. Therefore, we can control

the computational effort spent on LS by appropriate settings of SLS . In this work, the value

of SLS and NLS is chosen as 20 and 2 respectively.
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Figure 3.4: Flowchart of FMOPSO

3.1.5 Implementation

The flowchart of FMOPSO is shown in Figure 3.4. In every cycle, archiving is performed

after the evaluation process of particles. Then, the pbest and gbest of each particle in the

swarm are updated. Note that, the pbest of each particle will be updated only if a better

pbest is found, and the f-gbest is implemented in place of conventional deterministic gbest.

The update of particle position using f-gbest is performed concurrently with the SPLS.

To maintain a balance between the exploration of “fly”and the exploitation of SPLS, the

total number of evaluations is kept at the size of the particle swarm (Npop) for every cycle.

Specifically, SLS particles will undergo the SPLS, while the rest of the Npop− SLS particles

in the swarm will be updated with the velocity calculated by Equation 3.3.

3.2 FMOPSO Performance and Examination of New Fea-

tures

In this section, the performance of FMOPSO and the effects of new features (f-gbest and

SPLS) are examined using benchmark problems. The tradeoffs generated by FMOPSO for

the different benchmarks in one arbitrary run are shown in Figure 3.5 (10 000 evaluations for
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ZDT1, FON, KUR and POL, 50 000 evaluations for ZDT4, 20 000 evaluations for ZDT6).

It can be seen that FMOPSO can converge to the true Pareto front and evolve a diverse

solution set for all benchmark problems although the solutions for ZDT1 and FON are

not evenly distributed along the true Pareto front. Since FMOPSO has found the near-

optimal Pareto front and covered the full extent for ZDT1 and FON, the SPLS will help

find more nondominated solutions on the gaps or discontinuities along the Pareto front and

the dynamic niche sharing scheme will improve spacing metric if given more cycles. Figure

3.5 shows that FMOPSO can overcome the difficulties presented by these benchmarks.

3.2.1 Examination of New Features

In this section, four versions of the algorithm (standard MOPSO, MOPSO with f-gbest

only, MOPSO with SPLS only, FMOPSO) are compared to illustrate the individual and

combined effects of the proposed features.

Effects of Fuzzy Update: MOPSO incorporating SPLS only is compared against FMOPSO

to determine whether the fuzzy update really played an important role in FMOPSO algo-

rithm. The evolutionary trajectories of FMOPSO (fuzzy update) and SPLS only (conven-

tional update) on ZDT1, ZDT4 and ZDT6 are plotted in Figures 3.6-3.8. It can be observed

that fuzzy update allows the discovery of a well-distributed and diverse solution set without

compromising convergence speed. On the other hand, MOPSO with SPLS only tends to

converge prematurely, despite its slower convergence speed.

Further information can be extracted by comparing the explored objective space versus

cycle number of FMOPSO and SPLS only on ZDT1 as shown in Figure 3.9. It can be noted

that the explored objective space for fuzzy update is more extensive as compared to the

standard update. By taking into account the uncertainty of the information gathered about

the gbest position, the fuzzy updating strategy actually prevents the evolving particles to

converge upon similar regions. Therefore, in the searching process, the explored space is

extended.
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Figure 3.5: Evolved tradeoffs by FMOPSO for a) ZDT1, b) ZDT4, c) ZDT6, d) FON, e)
KUR and f) POL

Figure 3.6: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT1
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Figure 3.7: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT4

Figure 3.8: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT6

Figure 3.9: Explored objective space FMOPSO at cycle a)20, b)40, c)60, d)80, e)100 and
SPLS only at cycle f)20, g)40, h)60, i)80, j)100 for ZDT1
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Figure 3.10: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT1

Effects of Synchronous Particle Local Search: MOPSO with f-gbest only is compared

against FMOPSO to determine the influence of SPLS on algorithm performance. The

evolutionary trajectories of FMOPSO and f-gbest only on ZDT1, ZDT4 and ZDT6 are

plotted in Figure 3.10-3.12.

Figure 3.10(a) and Figure 3.12(a) ascertain the exploitative nature of SPLS as reflected

by the fast convergence speed relative to that without local search. Figure 3.11 shows that

the inclusion of f-gbest only cannot find the true Pareto front of ZDT4 in 50 000 evaluations.

From the evolutionary trajectories, it can be observed that f-gbest only can also lead the

search to come closer and closer to the true Pareto front as shown by the decreasing GD,

but the improvement is too slow for ZDT4 without the guide of SPLS. Without the balance

between the exploration of fuzzy update and the exploitation of SPLS, the inclusion of f-gbest

only cannot deal with the multi-modality nature of ZDT4 effectively. The discontinuity in

the spacing metric of the f-gbest only is because in those cycles there are less than three

nondominated solutions in the archive. Furthermore, from the evolutionary trajectories in

terms of MS and S for the different problems, it can be observed that SPLS provides a

means of steadily improving diversity and distribution.

Performance Comparison of all four versions: The results of standard MOPSO, MOPSO

with f-gbest only, MOPSO with SPLS only, and FMOPSO with respect to the different per-

formance metric of ZDT1, ZDT4 and ZDT6 are summarized in Table 3.1, Table 3.2 and
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Figure 3.11: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT4

Figure 3.12: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT6

Table 3.3, respectively. When there are less than 3 solutions in the archive, NaN is shown

as the computation of spacing metric requires more than 3 solutions.

It can be observed from Tables 3.2 and Table 3.3 that the incorporation of SPLS alone

can greatly improve the performance of standard MOPSO in terms of proximity, diversity,

and distribution for ZDT4 and ZDT6. The good performance of spacing also shows that

the local search ability of SPLS helps the discovery of nondominated solutions on the gaps

or discontinuities along the Pareto front. In Table 3.1, even though SPLS only cannot find

the true Pareto front for ZDT1, it can still maintain a relatively good spacing metric.

From Table 3.1 and Table 3.3, it can be seen that the implementation of f-gbest alone

helps MOPSO to discover the near-optimal Pareto front for ZDT1 and ZDT6. However,

the f-gbest alone cannot guarantee a good performance on spacing metric. This is expected
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Table 3.1: Performance of different features for ZDT1

Standard f-gbest-only SPLS-only FMOPSO

Mean 0.3179 0.0144 0.1260 0.0046
Median 0.2947 0.0107 0.1137 0.0032

GD Min 0.1239 0.0031 0.0114 0.0014
Max 0.7973 0.0428 0.2842 0.0180
Std 0.1406 0.0106 0.0597 0.0041

Mean 1.0582 0.7700 0.9740 0.8032
Median 0.9357 0.7459 0.8827 0.7018

S Min 0.6542 0.4723 0.5856 0.3543
Max 2.4528 1.2692 1.7858 1.9060
Std 0.3842 0.1996 0.2775 0.3237

Mean 0.6703 0.9775 0.8258 0.9977
Median 0.6677 0.9815 0.8437 1.0000

MS Min 0.4465 0.8950 0.5938 0.9829
Max 0.8961 0.9959 0.9579 1.0000
Std 0.1278 0.0184 0.1003 0.0045

since the enhancement of global search capability provided by f-gbest is not aimed for the

uniform distribution of solutions along the Pareto front. On the other hand, the combination

of f-gbest and SPLS allows the discovery of a well-distributed and diverse solution set for

ZDT1, ZDT4 and ZDT6 without compromising the convergence speed of the algorithm.

3.3 Comparative Study

In this section, the performance of FMOPSO is compared to five existing MO algorithms,

including CMOPSO [26], SMOPSO [130], IMOEA [198], NSGAII [35], and SPEA2 [224]. All

the algorithms were implemented in C++ and the simulations were performed on an Intel

Pentium IV 2.8-GHz personal computer. Thirty simulation runs were performed for each

algorithm on each test problem in order to study the statistical performance. A random
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Table 3.2: Performance of different features for ZDT4

Standard f-gbest-only SPLS-only FMOPSO

Mean 6.8211 7.8011 0.2326 0.0009
Median 6.6020 5.3704 0.1245 0.0008

GD Min 2.7099 1.2445 0.00073 0.00066
Max 14.6854 26.7440 1.1683 0.0023
Std 2.7790 6.8388 0.3090 0.0003

Mean NaN NaN 1.1347 0.3255
Median NaN NaN 1.1103 0.3313

S Min 0.6684 0.6032 0.3012 0.2264
Max 2.6588 3.1383 1.7716 0.4541
Std NaN NaN 0.3304 0.0530

Mean 0.0049 0.0038 0.7499 0.9999
Median 0.0006 0.0000 0.9030 1.0000

MS Min 0 0 0.1815 0.9989
Max 0.1057 0.0727 1.0000 1.0000
Std 0.0193 0.0142 0.2732 0.0002

initial population was created for each of the thirty runs on each test problem. Note that

the number of evaluations is set to be relatively small to examine the convergence of the

algorithms compared. The parameter settings and indices of the different algorithms are

shown in Table 3.4 and Table 3.5, respectively.

ZDT1: The tradeoffs generated by the different algorithms are shown in Figure 3.13(a)-

(f). Figure 3.14 summarizes statistical performance of the different algorithms. The distri-

bution of the results is represented in box plot format [19]. The box plot format had been

applied to visualize the distribution of the simulated results efficiently [226]. Each box plot

represents the distribution of the 30 results, where a thick horizontal line within the box

encodes the median while the upper and lower ends denote the upper and lower quartile

respectively. Dashed Appendages illustrate the spread and shape of distribution and dots
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Table 3.3: Performance of different features for ZDT6

Standard f-gbest-only SPLS-only FMOPSO

Mean 2.0468 0.0008234 0.0671 0.0008121
Median 2.6877 0.0008213 0.0008120 0.0008171

GD Min 0.0007459 0.0006607 0.0005993 0.0006203
Max 4.5743 0.0010 1.9997 0.0009
Std 1.8385 0.00008347 0.3633 0.00008171

Mean NaN 4.4864 NaN 0.4406
Median NaN 4.5363 NaN 0.4394

S Min 0.6435 1.6784 0.2692 0.2636
Max 6.3745 7.6267 6.0548 0.6302
Std NaN 1.2937 NaN 0.0853

Mean 0.5327 0.9138 0.9393 0.9992
Median 0.5893 0.9995 0.9992 0.9992

MS Min 0 0.0271 0 0.9992
Max 0.9995 0.9995 0.9992 0.9992
Std 0.3726 0.2352 0.2055 0.0000

represent outside values. The evolutionary trajectories of the different performance metrics

are plotted in Figure 3.15.

From Figure 3.13(a)-(f), it can be observed that, except FMOPSO, other algorithms

still have many solutions that are located far away from the true Pareto front. From Figure

3.14, it can be seen that the average performance of FMOPSO is the best among the six

algorithms adopted. In addition, FMOPSO is also able to evolve a diverse solution set as

evident from Figure 3.14(b) and (c). At the same time, it is noted that the solutions are

not evenly distributed along the true Pareto front as illustrated by a relatively large spacing

metric. Since FMOPSO has covered the full extent of the true Pareto front as illustrated

by the high value of MS and the evaluation number is set to be relatively small for ZDT1

(only 10 000 evaluations), it will improve spacing metric if given more evaluations for the
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Table 3.4: Parameter settings of the different algorithms

Parameter Settings

Population Population size 100; Archive (or secondary population) size 100.
Representation 15 bits for each variable in IMOEA, NSGAII and SPEA2.

Real number representation in FMOPSO, CMOPSO, and SMOPSO.
Selection Binary tournament selection
Crossover rate 0.8 in IMOEA, NSGAII, and SPEA2
Crossover method Uniform crossover in IMOEA, NSGAII, and SPEA2
Mutation rate 1

chromosome length for ZDT1, ZDT4 and ZDT6;
1

bit number per variable for FON and KUR;

Mutation method Bit-flip mutation for IMOEA, NSGAII and SPEA2.
Adaptive mutation for CMOPSO.
Turbulence operator for SMOPSO.

Grid Division 30 for CMOPSO
Evaluations 10 000 for ZDT1, FON, KUR and POL; 50 000 for ZDT4; 20 000 for

ZDT6.

Table 3.5: Indices of the different algorithms

Index 1 2 3 4 5 6

Algorithms FMOPSO CMOPSO SMOPSO IMOEA NSGAII SPEA2

incorporated SPLS and dynamic niche sharing scheme.

A look at the evolutionary trajectories can reveal more information about the perfor-

mance of different algorithms. From Figure 3.15, it can be noted that FMOPSO has the

faster convergence speed while the progress of other algorithms stagnates after about 50

cycles. However, it can be observed that NSGA II and SPEA2 are able to evolve a diverse

solution set rather quickly. On the other hand, the incorporation of the proposed features
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Figure 3.13: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for ZDT1 (PFA + PF∗ •)

Figure 3.14: Algorithm performance in a) GD, b) MS, and c) S for ZDT1

allowed FMOPSO to improve steadily and eventually discovering a more diverse solution

set.

ZDT4: The tradeoffs generated by the different algorithms are shown in Figure 3.16(a)-

(f). Figure 3.17 summarizes statistical performance of the different algorithms. The evolu-

tionary trajectories of the different performance metrics are plotted in Figure 3.18.

From Figure 3.16 and 3.17, it can be seen that SMOPSO, CMOPSO, IMOEA, NSGAII
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Figure 3.15: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT1

and SPEA2 are only able to locate one of the local Pareto fronts. Furthermore, it can be

observed that SMOPSO and CMOPSO are unable to evolve a diverse solution set consis-

tently. On the other hand, from Figure 3.16(a) and 3.17(a), it is noted that FMOPSO

is able to escape the local optima of ZDT4 consistently as reflected by the good results

obtained in GD. FMOPSO is also able to evolve a diverse and well-distributed set within

50 000 evaluations, resulting in high values of MS and low values of S. ZDT4 proved to be

the most difficult problem faced by the algorithms since no algorithms adopted here, except

FMOPSO, is able to deal with multi-modality effectively.

By comparing Figure 3.15 and 3.18, the multimodality nature of ZDT4 is apparent

from the fact that the algorithms progress in “hops”rather than in a smooth trajectory

experienced for ZDT1. The evolutionary trajectories also demonstrate the varying degree of

success experienced by the different algorithms in dealing with local optimality. In general,

most of the algorithms failed to escape local optima within 50 000 evaluations. The great

fluctuation in spacing is an indication of the discontinuity present in the evolved Pareto

front as the algorithms progress towards the true Pareto front.

ZDT6: The tradeoffs generated by the different algorithms are shown in Figure 3.19(a)-

(f). Figure 3.20 summarizes statistical performance of the different algorithms. The evolu-

tionary trajectories of the different performance metrics are plotted in Figure 3.21.

From Figure 3.19-3.20, it is clear that CMOPSO, NSGAII and SPEA2 can not find true

Pareto front within 20 000 evaluations. Although SMOPSO and IMOEA are able to find the
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Figure 3.16: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for ZDT4 (PFA × PF∗ •)

Figure 3.17: Algorithm performance in a) GD, b) MS, and c) S for ZDT4
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Figure 3.18: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT4

true Pareto front, they failed to evolve a diverse and well-distributed solution set as shown

in Figure 3.20(b) and (c). Overall, FMOPSO is able to evolve a diverse and well-distributed

near-optimal Pareto front for ZDT6 within 20 000 evaluations. As shown in Figure 3.21,

at the end of 20 000 evaluations, CMOPSO, NSGAII and SPEA2 are still exploring the

decision space. If given larger number of evaluations, these three algorithms may be able to

evolve better solutions.

FON: The tradeoffs generated by the different algorithms are shown in Figure 3.22(a)-

(f). Figure 3.23 summarizes statistical performance of the different algorithms. The evolu-

tionary trajectories of the different performance metrics are plotted in Figure 3.24.

From Figure 3.22 and 3.23, it can be observed that most of the algorithms are able to

find at least part of the true Pareto front for FON. The PSO paradigm appears to have a

slight edge in dealing with the nonlinear tradeoff curve of FON, i.e., the three PSO-based

algorithms outperformed other algorithms consistently on generational distance. It can be

observed that FMOPSO demonstrated the best results in terms of MS and S. In addition,

it also showed competitive performance in terms of GD. On the other hand, SMOPSO and

CMOPSO failed to evolve a diverse set of solution as compared to FMOPSO. This could be

due to the fast convergence speed of SMOPSO and CMOPSO, which may result in the loss

of the required diversity to cover the entire final Pareto front.

From Figure 3.24, it can be observed that the diversity of the solution set stops improving

with the convergence of the algorithm. It will be interesting to note that algorithms with
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Figure 3.19: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for ZDT6 (PFA × PF∗ •)

Figure 3.20: Algorithm performance in a) GD, b) MS, and c) S for ZDT6
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Figure 3.21: Evolutionary trajectories in a) GD, b) MS, and c) S for ZDT6

Figure 3.22: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for FON (PFA × PF∗ •)

slower convergence speed such as NSGA II and SPEA2 in this instance tend to evolve a

more diverse solution set for FON. This is probably due to the efforts spent on diversity

preservation. At the same time, the proposed features allowed FMOPSO to evolve a diverse

solution set without the need to compromise convergence speed.

KUR: The tradeoffs generated by the different algorithms are shown in Figure 3.25(a)-
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Figure 3.23: Algorithm performance in a) GD, b) MS, and c) S for FON

Figure 3.24: Evolutionary trajectories in a) GD, b) MS, and c) S for FON

(f). Figure 3.26 summarizes statistical performance of the different algorithms. The evolu-

tionary trajectories of the different performance metrics are plotted in Figure 3.27.

The disconnection of the Pareto front of KUR seems not a very big problem for the

algorithms adopted here as shown in Figure 3.25-3.27. All algorithms are able to find the

near-optimal Pareto front. While in MS, FMOPSO is still the best. In addition, FMOPSO

also showed competitive performance in terms of convergence and distribution.

It should be noted that, in Figure 3.27(a), the GD metric of NSGAII begin to increase

after 30 generations instead of decreasing. One possible reason is that in the beginning

NSGAII converge to some parts of true Pareto front. While it explored other regions of the

true Pareto front, some new nondominated solutions are found. These new nondominated

solutions are not so close to the true Pareto front although they are better distributed along

the true Pareto front.
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Figure 3.25: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for KUR (PFA + PF∗ •)

Figure 3.26: Algorithm performance in a) GD, b) MS, and c) S for KUR
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Figure 3.27: Evolutionary trajectories in a) GD, b) MS, and c) S for KUR

POL: The tradeoffs generated by the different algorithms are shown in Figure 3.28(a)-(f).

Figure 3.29 summarizes statistical performance of the different algorithms. The evolutionary

trajectories of the different performance metrics are plotted in Figure 3.30.

From Figure 3.28 and 3.29, it can be noted that NSGAII has the worst results in

terms of convergence, diversity and distribution. On the other hand, FMOPSO, CMOPSO,

SMOPSO and IMOEA showed competitive performance. PSO paradigm has a slight edge in

the aspect of convergence. However, it should be noted that the performance of CMOPSO

and SMOPSO in the aspect of S and MS respectively are not as good as IMOEA and

FMOPSO.

It can be seen from Figure 3.30 that all algorithms show similar trend in solving POL

problem. In the middle of the searching process, most algorithms fluctuate greatly in spacing

metric, but they will stabilize at around 100 cycles. The stabilization of three metrics is an

indication that the algorithms have converged.

In general, for all test problems, FMOPSO responded well to the challenges of the dif-

ferent difficulties. The FMOPSO performed consistently well in the distribution of solutions

along the Pareto front. This is even so for the test problems of ZDT6 that is designed to

challenge the algorithms ability to maintain the Pareto front. FMOPSO demonstrates its

ability to converge upon true Pareto front regardless of difficulties such as discontinuities,

convexities and non-uniformities. It also showed no problems in coping with local traps and

this is reflected by its performance in the test problem ZDT4 (219 local Pareto front).
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Figure 3.28: Evolved tradeoffs by a) FMOPSO, b) CMOPSO, c) SMOPSO, d) IMOEA, e)
NSGA II, and f) SPEA2 for POL (PFA + PF∗ •)

Figure 3.29: Algorithm performance in a) GD, b) MS, and c) S for POL
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Figure 3.30: Evolutionary trajectories in a) GD, b) MS, and c) S for POL

3.4 Conclusion

A new memetic algorithm has been designed within the context of multi-objective parti-

cle swarm optimization. In particular, two new features in the form of f-gbest and SPLS

have been proposed. The SPLS performs directed local fine-tuning, which helps to dis-

cover a well-distributed Pareto front. The f-gbest models the uncertainty associated with

the optimality of gbest, thus helping the algorithm to avoid undesirable premature conver-

gence. The proposed features have been examined to show their individual and combined

effects in MO optimization. The comparative study showed that the proposed FMOPSO

produced solution sets that are highly competitive in terms of convergence, diversity and

distribution.



Chapter 4

A Competitive and Cooperative

Co-evolutionary Approach to

Multi-objective Particle Swarm

Optimization Algorithm Design

Although PSO has proven to be successful in various fields, researchers are facing the in-

creasing challenge of problem complexity in today’s applications. The computational cost

increases with the size and complexity of the MO problem and the large number of function

evaluations involved in the optimization process may be cost prohibitive. The necessity to

improve MOPSO’s efficacy and efficiency becomes more acute especially in high-dimensional

problems.

A direct method to overcome the exponential increase in problem difficulty is to segre-

gate the search space into smaller subspaces and conduct the overall optimization process

over smaller regions. In this regard, the notion of coevolution is very attractive. The

coevolutionary paradigm, inspired by the reciprocal evolutionary change driven by the co-

operative [152] or competitive interaction [160] between different species, has been extended

to MO optimization recently [27] [79] [117] [121] [191]. The aim is to fulfill the MO op-

timization goals of attaining a good and diverse solution set with enhanced effectiveness

and efficiency. To this end, the various implementations of coevolutionary structures in

61
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multi-objective evolutionary optimization have been successful. As a specific instance, Tan

et al [191] demonstrated that high convergence speed can be achieved while maintaining a

good diversity of solutions by the incorporation of coevolutionary models.

Nevertheless, despite the different co-evolutionary models proposed for multi-objective

evolutionary optimization, there have not been any genuine attempts to extend it into multi-

objective particle swarm optimization. The closest attempt is a cooperative co-evolutionary

model for single objective optimization proposed by van den Bergh and Engelbrecht [205].

Also, it should be highlighted that current co-evolutionary approaches usually consider

cooperation and competition interaction between species separately. This is in stark contrast

to nature where there is competition even in the veneer of seemingly perfect plant-pollinator

co-evolution. Different species of bees will compete for nectar [169] and different species of

flowers will compete to attract more bees. As such, this chapter adopts a competitive

and cooperative co-evolution model to mimic the interplay of competition and cooperation

among different species in nature and combine it with MOPSO to solve complex optimization

problems.

The underlying idea behind the competitive and cooperative co-evolution framework is

to allow the decomposition process of the optimization problem to adapt and emerge rather

than being fixed at the start of the optimization process. In particular, each species will

compete to represent a particular component of the MO problem while the eventual winners

will cooperate to achieve better solutions. Through this iterative process of competition

and cooperation, the various components are optimized by different species based on the

optimization requirements of each particular time instant.

The reminder of the chapter is organized as such: In Section 4.1, the related works

on co-evolutionary algorithms are reviewed, and the general framework of the proposed

competitive and cooperative co-evolutionary paradigm is introduced. The detailed competi-

tive and cooperative co-evolutionary multi-objective particle swarm optimization algorithm

(CCPSO) is presented in Section 4.2. In section 4.3, the performance of the proposed algo-
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rithm is measured against other leading evolutionary algorithms (EAs) on some established

test functions. In section 4.4, a sensitivity analysis of parameters is given. Conclusions are

drawn in section 4.5.

4.1 Competition, Cooperation and Competitive-cooperation

in Coevolution

The coevolutionary paradigm can be broadly classified into two main categories namely,

competitive coevolution and cooperative coevolution. For the former, the various species

will always fight to gain an advantage over the others. However, for the latter, species will

interact with one another within a domain model and have a cooperative relationship [152].

Regardless of the different approaches, successful implementation of coevolutionary requires

the explicit consideration of several design issues [151] such as problem decomposition, pa-

rameter interactions and credit assignment, which are inherently problem dependent. Since

this work incorporates the coevolutionary paradigm into multi-objective particle swarm op-

timization, issues that are unique to the optimization model should be considered also i.e.

the interaction of the coevolutionary model with the social learning model and the balance

between proximity and diversity in multiobjective optimization.

In this section, relevant works of coevolutionary model will be reviewed where their

key features and limitations will be highlighted and discussed. Subsequently, the adopted

competitive-cooperation model will be presented along with detailed discussions on how the

different design issues are addressed.

4.1.1 Competitive Co-evolution

The model of competitive co-evolution can be viewed as an “arms race”or “predator-

prey”where different species reciprocally drive each other to increase the overall level of
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performance [4] [160]. Specifically, the losing species will continually adapt themselves dur-

ing the evolutionary process to counter the winning species in order to become the new

winner.

Lohn et al [117] incorporates the competitive co-evolutionary model into MO optimiza-

tion, which contains two competing species, the species of candidate solutions and the species

of target objective vectors. Empirical studies have shown the superiority of the proposed

model as compared to other well-known MO algorithms such as SPEA and NSGA. However,

a major limitation of this approach is the lack of explicit diversity preservation mechanism to

guide the co-evolutionary optimization process. This is especially important in the context

of MO optimization where the optimization goals of proximity and diversity are of equal

importance. In particular, for the species of target vectors, convergence pressure must be

exerted to promote individuals in a direction that is normal as well as tangential to the

tradeoff region at the same time.

Compared to cooperative co-evolution, competitive convolution is less widely applied,

especially in the domain of multi-objective numerical optimization. The competitive co-

evolutionary model poses several difficult design issues that could probably explain the

lack of work in this area. While competitive co-evolution is a natural model for evolving

objects such as game playing programs for which it is difficult to write an external fitness

function, the need to hand-decompose the problem into antagonistic components places

severe limitation on its range of applicability. Inappropriate decomposition might easily

lead to the problem of cycling, where the competitive convolution model are stuck with

poor solutions that defeat each other in a cycle. Furthermore, frequent evaluations of species

members are needed to determine an accurate ranking corresponding to high computational

complexity for practical problems.
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4.1.2 Cooperative Co-evolution

The cooperative co-evolution model is inspired by the ecological relationship of symbiosis

where different species live together in a mutually beneficial relationship. The underlying

idea in cooperative co-evolution is to divide and conquer [152]: divide large system into

many components, evolve the components separately and then combine them together to

form the whole system. The associated algorithm hence involves a number of independently

evolving species that together form complex structures for solving difficult problem.

An early attempt to integrate the cooperative model for MO optimization is based on

the idea of dividing the decision space of the problem into several parts and each part is

optimized by a MO genetic algorithm (MOGA) [54]. In this MO cooperative coevolutionary

genetic algorithm (MOCCGA) [89], each individual is evaluated twice in collaboration with

either a random or the best representative from the other subpopulations and the best

Pareto rank is assigned as fitness. However, MOCCGA is limited by the lack of elitism and

the localized perception of Pareto optimality.

To improve on the lack of the localized perception of Pareto optimality, Maneeratana

et al [121] incorporated elitism in the form of a fixed sized archive to store the set of non-

dominated solutions. The same cooperative model is also successfully extended to other MO

algorithms such as Niched Pareto GA [70], NSGA [184] and NSGAII [79] with significant

improvements over their canonical counterparts. Like MOCCGA, these algorithms also

suffer from the problem that fitness assignment conducted within each species may not be

a good indicator of optimality.

In [79], Iorio and Li presented the nondominated sorting cooperative coevolutionary

algorithm (NSCCGA) which is essentially the coevolutionary extension of NSGAII. NSC-

CGA is different from the previous two works in the sense that elitist solutions are reinserted

into the subpopulations and fitness assignment takes into account the set of nondominated

solutions found via the nondominated sorting. Instead of selecting nondominated individ-



CHAPTER 4. 66

uals with the best degree of crowding, representatives are selected randomly from the best

nondominated front.

Tan et al [191] implemented a cooperative co-evolutionary algorithm (CCEA) that is

based on the decomposition of the problem according to the number of parameters, where

each species will optimize one parameter of the solution vector. A different ranking scheme

was adopted where each individual is ranked against the non-dominated solutions stored

in the archive instead of within the species. Furthermore, an extending operator which

reinserts non-dominated solutions with the best niche count into the evolving species is

implemented in CCEA to improve diversity and distribution of the Pareto front. The authors

also investigated the effects of various representative selection and observed that robust

performances can be better achieved by conducting cooperation with two representative

from each subpopulations and retaining the better collaboration.

Similar cooperative co-evolutionary model was extended to the particle swarm optimiza-

tion for SO optimization [205] where each swarm will optimize a single component of the

solution vector, analogous to the decomposition used in the relaxation method [182]. The

advantage of this approach over conventional particle swarm optimization is that only one

component is altered at a time, resulting in the desired fine grain search. Also, diversity was

significantly increased due to the different combinations formed via the different members

from the different swarms.

In cooperative co-evolutionary algorithms, the fitness of an individual is depended on its

ability to collaborate with individuals from other species, which favors the development of

cooperative strategies and individuals. In addition, the modules that are evolved simultane-

ously in cooperative co-evolution can be categorized to two basic levels, component level and

system level [94]. In the cases of single-level co-evolution [27] [79] [89] [121], each evolving

species represents a component of the problem to be solved. On the other hand, a two-level

co-evolutionary process involves simultaneous optimization of the system and components

in separate species [6] [57].
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However, one major issue of these co-evolutionary approaches is their dependence on

the appropriate hand-decomposition of the problem into components before the optimiza-

tion process. In particular, Iorio and Li [79] highlighted that co-evolutionary algorithms are

susceptible to parameter interactions, as interacted parameters may end up being optimized

by different species. Besides, as MO optimization is associated with a set of non-dominated

solutions, appropriate measures must be undertaken to drive the various species in tandem

towards the optimal Pareto front to facilitate the search of a diverse and uniformly dis-

tributed solution set. Apparently, there is an inherent tradeoff between the fine-grain search

capability and the diversity in the relatively small sized searching species of co-evolutionary

algorithms.

Competitive-Cooperation Co-evolution

From the earlier discussions, it is apparent that problem decomposition places severe restric-

tions on algorithmic design and performance for both competitive and cooperative models.

Furthermore, it should be noted that cooperation and competition among the different

species are adopted independently in co-evolutionary algorithms, even though the two differ-

ent types of interaction are rarely exclusive within an ecological system. As plant-pollinator

co-evolution in nature [169], different species of bees will compete for nectar and different

species of flowers will compete to attract more bees. In this particular example, the problem

decomposition arises naturally as the role at which each species play is an emergent property

in nature. As such, the proposed co-evolutionary model will incorporate both elements of

cooperation and competition which represent a more holistic view of the co-evolutionary

forces in nature.

The proposed model involves two tightly-coupled coevolutionary processes and the rela-

tionship between them is illustrated in Figure 4.1. As in the case of conventional cooperative

co-evolutionary algorithms, particles from the different species collaborate to solve the prob-

lem at hand during the cooperative process. Each species evolves in isolation and there is
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Figure 4.1: Framework of the competitive-cooperation model

no restriction on the form of representation or the underlying optimization algorithm. On

the other hand, the cooperative species will enter into competition with other species for

the right to represent the various components of the problem.

Credit Assignment: Credit assignment for the competitive-cooperation process is per-

formed at the species and particle level respectively. Following the situation described

earlier, the different objectives of the MO problem at the cooperative process are evaluated

by assembling each particle along with the representatives of the other species to form a

valid solution. Accordingly, appropriate fitness assignment such as Pareto ranking can be

computed for the particular particle. In the competitive process, the fitness of particular

species is computed by estimating how well it performs in a particular role relative to its

competitors in the cooperation with other species to produce good solutions.

Problem Decomposition and Component Interdependency: As mentioned earlier, prob-

lem decomposition is one of the primary issues to be addressed in co-evolutionary optimiza-

tion and the difficulty is that information pertinent to the number or role of components

are usually not known a priori and many problems can only be decomposed into compo-
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nents exhibiting complex interdependencies. To this end, the competitive and cooperative

co-evolutionary model addresses this issue through emergent problem decomposition.

The competitive process in the proposed model will trigger a potential “arms race”among

the various species to improve their contribution to overall fitness of the ecosystem. The

benefits of this competition also include the discovery of interdependencies between the

components as the species competition provides an environment in which interdependent

components end up being optimized by same species. The reasonable problem decomposi-

tions emerge due to evolutionary pressure rather than being specified by the user.

Diversity: The competitive and cooperation co-evolutionary model provides a means of

exploiting the complementary diversity preservation mechanisms of both competitive and

cooperative models. In cooperative model, the evolution of isolated species tends to generate

higher diversity across the different species, although this property does not necessarily

extend to within each species. On the other hand, within a species diversity is driven

by the necessity to deal with the changing competition posed by the other species in the

competitive model. Furthermore, the competitive process in competitive and cooperation co-

evolutionary model allows a more diversified search as the optimization of each component

is no longer restricted to one species. The competing species provides another round of

optimization for each component, which increases the extent of the search while maintaining

low computational requirements.

4.2 Competitive-Cooperation Co-evolution for MOPSO

The competitive-cooperation co-evolutionary multi-objective particle swarm optimization

algorithm (CCPSO) introduced in this chapter attempts to emulate the conflict and coex-

istence between cooperation and competition in nature by implementing both aspects into

a MOPSO. Section 4.2.1 describes the cooperative co-evolutionary mechanism for CCPSO.

Section 4.2.2 explains the competitive co-evolutionary mechanism for CCPSO. And the

flowchart of CCPSO is shown in section 4.2.3.
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4.2.1 Cooperative Mechanism for CCPSO

For MO problems, the original PSO uses a swarm of n-dimensional vectors. In CCPSO,

these vectors are partitioned into n subswarms of 1-D vectors, each subswarm representing

a dimension of the original problem. Each subswarm attempts to optimize a single variable

of the solution vector, essentially a 1-D optimization problem.

One complication to this configuration is the fact that the objective function to be

minimized, requires an n-dimensional vector as input. If each subswarm represents only a

single dimension of the search space, it is clearly not possible to directly compute the fitness

of the particles of a single subswarm considered in isolation. A context vector is required

to provide a suitable context in which the particles of a subswarm can be evaluated. The

simplest scheme for constructing such a context vector is to take the representative particle

from each of the n subswarms and concatenating them to form such an n-dimensional vector.

To calculate the fitness for all particles in subswarm i, the other n − 1 components in the

context vector are kept constant (with their values set to the representative particles from

the other subswarms), while the i-th variable of the context vector is replaced in turn by each

particle from the i-th subswarm. Accordingly, appropriate fitness assignment such as Pareto

ranking and niche count can be computed for the particular particle. The representative of

each subswarm is selected based on Pareto ranking and niche count.

The pseudocode of the cooperative mechanism is shown in Figure 4.2. At the start of

the optimization process, the i-th subswarm (Si) is initialized to represent the i-th variable.

Concatenation between particles in Si and representatives from the other subswarms form

valid solutions for evaluation. As an example, consider a 3-decision variable problem where

subswarms, S1, S2 and S3, represent the variables x1, x2 and x3 respectively. When assessing

the fitness of s1,j , it will combine with the representatives of S2 and S3 to form a valid

solution.

Archive update is conducted after each particle evaluation. After which, Pareto ranking

and niche count computation of particle, si,j are conducted with respect to the archive. The
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Figure 4.2: Pseudocode for the adopted cooperative coevolutionary mechanism.

Pareto rank is given by

rank(si,j) = 1 + nsi,j (4.1)

where nsi,j is the number of archive members dominating the particle si,j in the objective

domain. Similar to the ranking process, the niche count (nc) of each particle is calculated

with respect to the archive of nondominated solutions. The dynamic sharing proposed

in [195] is employed in this work.

The cooperative process is carried out in turn for all n subswarms. Before proceeding

to the evaluation of the next subswarm, the representative for variable i denoted as si,rep is

updated in order to improve convergence speed. This updating process is based on a partial

order such that ranks will be considered first followed by niche count in order to break the

tie of ranks. For any two particles, si,j and si,k, si,j is selected over si,k if rank(si,j) <

rank(si,k) or {rank(si,j) = rank(si,k) and nc(si,j) < nc(si,k)}. The rationale of selecting a
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Figure 4.3: Pseudocode for the adopted competitive coevolutionary mechanism.

nondominated representative with the lowest niche count is to promote the diversity of the

solutions using the approach of cooperation among multiple subswarms.

4.2.2 Competitive Mechanism for CCPSO

Given the cooperative scheme of optimizing a single variable in each subswarm, one simple

approach is to allow the different subswarms to take up the role of a particular problem

component in a round-robin fashion. The most competitive subswarm is then determined

and the component will be optimized by the winning species in the next cooperative process.

Ideally, the competition depth is such that all particles from a particular subswarm compete

with all other particles from the other subswarm in order to determine the extent of its

suitability. However, such an exhaustive approach requires extensive computational effort

and it is practically infeasible. A more practical approach is to conduct competition with

only selected particles among a certain number of competitor subswarms to estimate the

species fitness and suitability.

The pseudocode of the competitive mechanism is shown in Figure 4.3. For the i-th

variable, the representative of the associated subswarm, i.e. si,rep, is selected along with
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competitors from the other subswarms to form a competition pool. With regard to the issue

of competitor selection, CCPSO adopts a simple scheme of selecting a random particle from

each competing subswarm.

These competitors will then compete via the cooperative mechanism described before to

determine the extent of cooperation achieved with the representative of the other subswarms.

The winning species can be determined by simply checking the originating subswarm of the

representative after the representative update. At the end of the competitive process, Si

will remain unchanged if its competition representative wins the competition. In the case

where a winner emerges from other subswarms, Si will be replaced by the particles from the

winning subswarm. The rationale of replacing the losing subswarm instead of associating

the winning subswarm directly with the variable is that different variables may have similar

but not identical properties. Therefore, it would be more appropriate to seed the losing

subswarm with the desirable information and allow it to evolve independently.

By embedding the competitive mechanism within the cooperative process, the adapta-

tion of problem decomposition and the optimization process are conducted simultaneously.

Hence, no additional computation cost is incurred by the competition. It has the further ad-

vantage of providing the chance for the different subswarms to solve for a single component,

with the competitors as a source of diversity.

4.2.3 Flowchart of CCPSO

The flowchart of the proposed algorithm is shown in Figure 4.4. The optimization process

starts with the initialization of the different species. After that, the cooperation mechanism

described in Section 4.2.1 is conducted to evaluate the particles in each species. The algo-

rithm employs a fixed-size archive to store non-dominated solutions along the evolution. As

mentioned in the prior sections, the archive is updated after every particle evaluation within

the cooperative or competitive mechanism. A complete solution formed by the species will

be added to the archive if it is not dominated by any archived solutions. Likewise, any
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Figure 4.4: Flowchart of Competitive-Cooperative Co-evolutionary MOPSO

archive members dominated by this solution will be removed. When the predetermined

archive size is reached, a recurrent truncation process [96] based on niche count is used to

eliminate the most crowded archive member.

pbest is updated during the cooperation process while gbest is selected only after all

the species are evaluated. The update of particle position includes the fly operator defined

in equation 2.2 and 2.5. The competitive process is then activated to adapt the assignment

of decision variables to the species. This process will continue until the stopping criterion

is satisfied.

4.3 Performance Comparison

In this section, CCPSO is compared with the various evolutionary multi-objective optimiza-

tion methods (NSGAII [35], SPEA2 [224], IMOEA [198] and PAES [103]) on four benchmark
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problems (FON, KUR, ZDT4 and ZDT6). Two multi-objective particle swarm optimization

algorithms (SIGMA [130] and MOPSO [26]) have also been included to reflect an accurate

measure of the algorithm against other established PSO algorithms implemented rather

than simply pitting the CCPSO against other MOEAs, where any inherent advantages or

disadvantages that a MOPSO may have over MOEAs may skew the results. The parameter

settings and indices of the different algorithms are shown in Table 4.1 and Table 4.2, re-

spectively. Four performance metrics (GD, MS, S and N) are used to provide a quantitative

assessment for the performance of different algorithms, where N represents the number of

non-dominated solutions generated by the algorithm, and is restricted by the size of the

archive (100). Naturally a higher N is desirable as the Pareto front is better defined.

Table 4.1: Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, SMOPSO, IMOEA,
CMOPSO;
Subpopulation size 10 in CCPSO;
Population size 1 in PAES;
Archive (or secondary population) size 100.

Chromosome Binary coding; 30 bits per decision variable in IMOEA,
PAES, NSGAII and SPEA2.
Real number representation in CCPSO, CMOPSO, and
SMOPSO.

Selection Binary tournament selection.
Crossover operator Uniform crossover in IMOEA, NSGAII and SPEA2.
Crossover rate 0.8 in IMOEA, NSGAII and SPEA2.
Mutation operator Bit-flip mutation in IMOEA, PAES, NSGAII and SPEA2.

Turbulence operator in CCPSO, CMOPSO, and SMOPSO.
Mutation rate 1

L for ZDT4, ZDT6, DTLZ2 and DTLZ3 where L is the
chromosome length;
1
B for FON and KUR where B is the bit size per decision
variable;

Turbulence strength 0.2.
Niche Radius Dynamic sharing [195].
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Table 4.2: Indices of the different algorithms

Index 1 2 3 4 5 6 7

Algorithms NSGA-II SPEA2 SIGMA CCPSO IMOEA MOPSO PAES

FON: FON has a non-convex and nonlinear tradeoff curve that challenges the algorithm’s

ability to find and maintain the entire tradeoff curve uniformly. A stopping criterion of 8000

evaluations is used for this problem. Figure 4.5 shows the Pareto fronts generated by the

algorithms across thirty independent runs. The distribution of the different performance

metrics is represented by box plots in Figure 4.6, while evolutionary trajectories of GD and

N are shown in Figure 4.7. Figure 4.8 plots the objective space explored by particles in one

arbitrary run for CCPSO.

As shown in Figure 4.5, the Pareto fronts generated by CCPSO and MOPSO is superior

to those generated by the rest of the algorithms as these two algorithms can find the extreme

solutions at each end of the objective space and cover both ends of the true Pareto front.

For IMOEA, it can not provide enough pressure for the search along objective 1 and ends

up covering only half of the true Pareto front. From the boxplots in Figure 4.6, it is

apparent that the PSO paradigm has a slight edge in dealing with the nonlinear tradeoff of

FON. While SIGMA, CCPSO and MOPSO demonstrated competitive performance, the four

MOEAs exhibited a varying degree of success. In particular, PAES and IMOEA performed

inconsistently in thirty runs as shown by the large variance on GD, MS and S. It can

be observed that MOPSO attains the best performance in MS. Nonetheless, CCPSO and

MOPSO are competitive in the aspects of convergence and distribution as evident in Figure

4.6(a)-(c). Figure 4.7 reveals that SIGMA, CCPSO and MOPSO are capable of attaining

higher convergence speed, and Figure 4.8 further illustrates how CCPSO converged to true

Pareto front in just 10 cycles.
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Figure 4.5: Pareto fronts generated across 30 runs by (a) NSGAII, (b) SPEA2, (c) SIGMA,
(d) CCPSO, (e) IMOEA, (f) MOPSO, and (g) PAES for FON

Figure 4.6: Performance metrics of (a) GD, (b) MS, and (c) S for FON

KUR: KUR is characterized by a tradeoff that is nonconvex and disconnected, i.e., it

contains three distinct disconnected regions on the final tradeoff. The decision variables

corresponding to the global tradeoff for KUR are difficult to be discovered, since they are

disconnected in decision space as well. A stopping criterion of 4500 evaluations is used for

this problem. The distribution of the different performance metrics is represented by box

plots in Figure 4.9, while the evolutionary trajectories of GD and N are shown in Figure

4.10. Figure 4.11 plots the objective space explored by particles in one arbitrary run for
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Figure 4.7: Evolutionary trajectories in GD and N for FON

CCPSO.

Most of the algorithms faced no problems finding solutions near the true Pareto front for

KUR. It is evident from Figure 4.9 that CCPSO performs better than the other algorithms

in GD and S while remaining strongly competitive in terms of MS. Figure 4.10 also reveals

that CCPSO has a better convergence speed. Unlike the case of FON where the PSO-

based algorithms are significantly faster than the MOEA counterparts, SPEA2 demonstrated

competitive convergence speed. Figure 4.11 further illustrates how CCPSO converge to true

Pareto front in just 20 cycles. In Figure 4.10, it should be noted that results of PAES

in terms of GD is not plotted as PAES can not locate the true Pareto front within the

allocated number of evaluations and its performance on GD is very poor compared to the
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Figure 4.8: Convergence behavior of CCPSO for FON

Figure 4.9: Performance metrics of (a) GD, (b) MS, and (c) S for KUR

other algorithms.

ZDT4: ZDT4 is characterized by a severe multi-modal landscape and a stopping crite-

rion of 10 000 evaluations is used for this problem. The evolved Pareto fronts from all 30

simulation runs for the algorithms are plotted in Figure 4.12. The distribution of the differ-

ent performance metrics is represented by box plots in Figure 4.13, while the evolutionary
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Figure 4.10: Evolutionary trajectories in GD and N for KUR

trajectories with respect to different performance metrics are shown in Figure 4.14.

ZDT4 proved to be a very difficult problem to solve, mainly due to the high number

(219) of local fronts. As observed from Figure 4.12(d) and Figure 4.13, CCPSO is the only

algorithm capable of attaining the true Pareto front. In addition, the poor performances

of MOPSO and SIGMA in the aspects of GD and MS may be the consequence of high

convergence speed, which leads to the algorithms getting trapped in local optima. The

steps observed in the trend of MS and N for CCPSO in Figure 4.14 correspond to the effect

of jumping from one local Pareto front to another during the search.

ZDT6: ZDT6 has a biased search space and non-uniformly distributed solutions along

the global tradeoff, which makes it difficult for algorithms to evolve a well-distributed Pareto
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Figure 4.11: Convergence behavior of CCPSO for KUR

Figure 4.12: Pareto fronts generated across 30 runs by (a) NSGAII, (b) SPEA2, (c) SIGMA,
(d) CCPSO, (e) IMOEA, (f) MOPSO, and (g) PAES for ZDT4
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Figure 4.13: Performance metrics of (a) GD, (b) MS, and (c) S for ZDT4

Figure 4.14: Evolutionary trajectories in GD, MS, S, and N for ZDT4



CHAPTER 4. 83

front. The evolved Pareto fronts from all 30 simulation runs for the algorithms are plotted

in Figure 4.15. The distribution of the different performance metrics is represented by box

plots in Figure 4.16, while the evolutionary trajectories with respect to different performance

metrics are shown in Figure 4.17.

As in the case for FON, the PSO algorithms in general outperformed the rest of the

algorithms, managing to cover almost the entire true Pareto front over the thirty runs.

The PSO algorithms also seems having no problem escaping from local minima, with the

exception of points on the extreme left of the objective space. CCPSO is the best among

the algorithms with only a few solutions trapped at those points as shown in Figure 4.15.

From Figure 4.16(a) and (b), it is apparent that NSGA-II and SPEA2 are unable to

reach the true Pareto front consistently and failed to cover the entire true Pareto front

throughout the thirty runs. It can be noted from Figure 4.16 and Figure 4.17 that while

PAES outperforms NSGA-II and SPEA2 in the aspect of GD, it performs poorly in attaining

a well-distributed Pareto front. From Figure 4.16 and Figure 4.17, it can be observed that

the proposed CCPSO has a better capability to attain a near-optimal, well-distributed, and

well-spread Pareto front with a faster convergence speed.

4.4 Sensitivity Analysis

It can be observed from the above comparative studies that CCPSO is capable of evolving

a near-optimal, diverse and uniformly distributed Pareto front for the different benchmark

problems. In this section, the impact of various parameter settings of CCPSO is examined. A

number of simulations are performed with different settings of w = {0.2, 0.1, 0.6}, Ssubpop =

{5, 10, 20, 50}, and Sarc = {100, 150, 200, 250}. An additional setup involving an adaptive

inertia weight that reduces from 0.9 to 0.4 is also applied and compared against the static

settings. For each experiment only one parameter was changed while maintaining all other

parameters constant, and the boxplots show results of parameters being varied in increasing
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Figure 4.15: Pareto fronts generated across 30 runs by (a) NSGAII, (b) SPEA2, (c) SIGMA,
(d) CCPSO, (e) IMOEA, (f) MOPSO, and (g) PAES for ZDT6

Figure 4.16: Performance metrics of (a) GD, (b) MS, and (c) S for ZDT6

order. The parameters are changed one by one in order to tell algorithm designers the

individual effects of each parameter. Such information will be a good starting point for

designers to fine-tune their program to real world problems.

Inertial Weight: Figure 4.18-Figure 4.20 show the performance of CCPSO over dif-

ferent inertia weight (w) settings. The inertia weight, which helps maintain the balance

between exploration and exploitation, is varied among 0.2, 0.4, 0.6 and an adaptive weight

that reduces from 0.9 to 0.4. Note that a smaller w represents a higher tendency to adopt
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Figure 4.17: Evolutionary trajectories in GD, MS, S, and N for ZDT6

changes brought about by changes due to pbest and gbest. It can be observed that the

inertia has a greater impact on MS as compared to S and GD. In particular, a higher w and

the adaptive inertia scheme provide a better spread of solutions. It should also be noted

that CCPSO is capable of performing consistently and effectively within a large range of w.

FON: A 0.4 weight performed the best in GD. A weight of 0.6 outperformed the rest in

MS while performance in S were all virtually indistinguishable.

KUR: A 0.4 weight was the optimal setting for all metrics.

ZDT4: A weight of 0.2 performed the best in GD while a 0.6 weight obtained the best
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Figure 4.18: Box plots for GD by varying inertia weight

Figure 4.19: Box plots for MS by varying inertia weight
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Figure 4.20: Box plots for S by varying inertia weight

maximum spread. However a weight of 0.4 was second best in these metrics while obtaining

the best spacing.

ZDT6: A weight of 0.4 was again the optimal setting for all metrics.

Subswarm Size: Figure 4.21-Figure 4.23 show the performance of CCPSO over differ-

ent settings Ssubpop = {5, 10, 20, 50}. The population size of the subswarm was varied while

maintaining the total number of evaluations. From the box plots, it is apparent that smaller

subswarm size gives rise to better convergence to true Pareto front. Nonetheless, it is noted

that better diversity are achieved at higher Ssubpop settings. This is because, by maintaining

a fixed number of evaluations, there is an inherent tradeoff between the diversity provided

by a larger swarm size and the number of cycles allowed for exploitation.

FON: A subswarm size of 10 performed the best in terms of GD, but a larger subswarm

size of 20 obtained better scores in S and MS.

KUR: A subswarm size of 10 performed better in nearly all metrics.
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Figure 4.21: Box plots for GD by varying subswarm size

ZDT4: Smaller subswarm size performed better in all metrics. In particular, a subswarm

size of 10 was the only one to achieve a maximum number of non-dominated solutions in all

runs.

ZDT6: Performance in GD was virtually indistinguishable with all of them separated

by a GD of less than 10−3. Smaller subswarm size performed much better for S, but larger

subswarm size performed better for MS.

Archive Size: Figure 4.24-Figure 4.26 show the performance of CCPSO over different

settings of Sarc = {100, 150, 200, 250}. Apart from the problem of ZDT4 in which the archive

size seems to have little effect, CCPSO tends to achieve better results in all aspects with

increasing archive sizes. This is because the restriction on the number of archive solutions

leads to two phenomena [48] which have a detrimental effect on the search process. The first

is the shrinking PF phenomenon which results from the removal of extremal solutions and the

subsequent failure to rediscover them. In the second phenomenon, nondominated solutions
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Figure 4.22: Box plots for MS by varying subswarm size

Figure 4.23: Box plots for S by varying subswarm size
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Figure 4.24: Box plots for GD by varying archive size

in the archive are replaced by least crowded individuals. In the subsequent generations, new

individuals that would have been dominated by the removed solutions are updated into the

archive only to be replaced solutions dominating them. Nonetheless, it can be noted that

an archive size of 100 is sufficient to produce good results.

FON: Archive sizes of 150 and 200 performed better in all metrics except GD, where

the larger the archive size, the better the GD performance.

KUR: Archive sizes of 150 and 200 were once again the best performers, with very close

scores in almost all metrics.

ZDT4: An archive size of 200 performed the best in GD, while an archive size of 100

performed the best for S and MS.

ZDT6: An archive size of 100 was easily the best performer in terms of GD but performed

poorly in S and MS.
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Figure 4.25: Box plots for MS by varying archive size

Figure 4.26: Box plots for S by varying archive size
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In general, an inertia weight setting of 0.4 provided the best results for CCPSO. In the

case of subswarm size setting, 10 is recommended. And as long as computational resources

permit, a higher archive size is recommended.

4.5 Conclusion

In the face of increasing complexity and dimensionality of today’s application, there is a

need to improve the efficiency and effectiveness of MOPSO. Therefore, in order to improve

the performance of MOPSO, the algorithm put forward in this chapter attempts to further

emulate the conflict and coexistence between cooperation and competition in nature by

implementing both aspects into co-evolutionary model. This is accomplished by having

species compete amongst themselves for the right to represent different components, and

the winners cooperate to solve the whole problem. This proposed algorithm is validated

through comparisons with existing state-of-the-art multiobjective algorithms through the

use of established benchmarks and metrics for comparison. CCPSO was the only algorithm

to attain the true Pareto front in all test problems, and in all cases converged faster to the

true Pareto front than any other algorithm used in this research.



Chapter 5

A Distributed Co-evolutionary

Particle Swarm Optimization

Algorithm

As discussed in Chapter 4, with the growing complexity of multi-objective problems, the

computation cost for multi-objective particle swarm optimization algorithm (MOPSO) also

increases, and this problem is addressed through the decomposition of a complex problem.

In this chapter, the MOPSO is further formulated into a distributed algorithm to utilize the

large computing power available in network computers.

As a decentralized and parallel computing method, distributed algorithm uses two or

more computers communicating in a network to accomplish a common objective or task.

Ideally distributed algorithm is drastically more fault-tolerant and more powerful than the

combination of many stand-alone computers. However, if not properly designed, the perfor-

mance of distributed algorithm may degrade until worse off than its non-distributed algo-

rithm counterpart because the communication and execution cost may outweigh the benefit

of distributed algorithm. Large communication and execution cost of distributed algorithm

is usually caused by long idle time during synchronization, delayed communication, lost or

corrupted packages, and lost connection.

In this chapter, the proposed distributed co-evolutionary particle swarm optimization

93
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algorithm (DCPSO) will show how it becomes more fault-tolerant toward lost connection

with the incorporation of a revised competitive co-evolution mechanism. DCPSO also in-

corporates other mechanisms, for example, request-acknowledge message to handle lost or

corrupted packages and dynamic load balancing to minimize the idle time of computational

nodes in synchronization.

The remainder of this chapter is organized as follows: Section 5.1 gives a review of

existing distributed MO algorithms. Section 5.2 describes the principle of a revised co-

evolutionary particle swarm optimization algorithm (CPSO), which is the non-distributed

version of DCPSO. In Section 5.3, the proposed DCPSO is explained in detail, which includes

an explanation of how DCPSO is particularly resistant and efficient against lost connection

and how dynamic load balancing mechanism is implemented. Section 5.4 provides a com-

parison of CPSO with other MOEAs based upon various benchmark problems. Section

5.5 presents the test simulation on the effectiveness of DCPSO. Conclusions are drawn in

Section 5.6.

5.1 Review of Existing Distributed MO Algorithms

In distributed MO algorithm, the task is divided into subtasks that are run concurrently

to reduce total runtime. These subtasks may be run in the same computer (multiprocessor

system) or different computers connected via network (multicomputer system and computer

cluster).

It is a challenging task to successfully design a distributed algorithm. If not designed

properly, the distributed algorithm can deteriorate in performance. Two major costs in

distributed algorithm are execution time and communication time [209]. To minimize these

two costs, five important issues need to be considered in the design of an effective distributed

algorithm as shown in the following part.

1) Fault-tolerance of Distributed Algorithm: Distributed algorithm is required to be fault

tolerant due to the nature of nondeterministic failure in distributed systems [209]. Network
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errors can arise anytime in the system. However, no error should be able to interrupt,

clash the system, or prevent the system from reaching its goal. To be able to handle

lost connection, corrupted package, and other possible errors, every distributed algorithm

must have its own error correction protocol. For example, many algorithms implement a

reconnection mechanism after lost connection occurs to continue its operation because losing

a computational node causes degradation of searching capability [191] [209].

2) Synchronous and Asynchronous Distributed Algorithm: There are two types of dis-

tributed algorithm, synchronous and asynchronous. The synchronous model is easier to vi-

sualize and design. Each node will send data and wait for the synchronization of all nodes.

During waiting for synchronization, nodes are idle; and this idle time constitutes to resource

wastage. In asynchronous model, there is no minimum waiting time for synchronization be-

tween nodes. Even though asynchronous model seems to be better in term of efficiency, it

is harder to design and implement as the communications occur non-deterministically and

message delivery is not totally guaranteed [50] [209].

3) Partitioning and Load Balancing: Since each computational node has different com-

putational power, nodes take different amount of time to execute same task. In order to

assign appropriate load to each node, the task is usually partitioned into several subtasks

according to computational power of each node [12]. However, as the available computa-

tional power is changing all the time, it is essential as well to adjust the load of each node

at runtime. Dynamic load balancing will change the workload of each node according to the

available computational resource of each node [13].

4) Paradigms: There are four types of paradigms that are widely used to implement

distributed algorithms, including master-slave model, island model, diffusion model, and hi-

erarchical hybrid model. These four paradigms will be explained as follows: a) Master-slave

model (global parallelization) is easiest to visualize. The master node is responsible for the

maintenance of the population, such as performing PSO operation, computing Pareto front

and synchronization. Fitness evaluation is distributed among slave nodes. This paradigm
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is most suitable with the MO problems that have time-consuming objective function evalu-

ation [159] [209] because objective function evaluation needs to be time-consuming enough

for system to realize any speedup. b) Island model (coarse-grained parallelization) separates

population into several subpopulations. Each subpopulation evolves its solutions indepen-

dently. The good solutions may migrate across subpopulations. This model is often viewed

as a ring of connected nodes that exchange information through migration of its solutions.

The important factors to consider when choosing island model are when the solutions will

migrate, the number of migrating solutions, and the communication topology. c) Diffusion

model (fine-grained parallelization) is similar to master-slave model but each node only

holds on to a few particles. The objective function evaluation will take place concurrently

among the neighborhood. The network topology determines the effectiveness of the diffusion

model distributed algorithm because the communication cost in this model is high within

the neighborhood. Diffusion model is often implemented on a massively parallel machine

due to large inter-process communications. d) In hierarchical hybrid model, more than one

paradigm is combined to form a hybrid model. The complexity of the model depends on

the level of hybridization.

In the following part, more details of some of the existing distributed MO algorithms will

be introduced. Existing distributed MO algorithms generally show significant speedup from

their non-distributed counterparts by exploiting the parallelism of the searching process.

Kim and Zeigler [98] proposed HDGA (Hierarchical Distributed Genetic Algorithm),

which is an asynchronous distributed algorithm based on the hierarchical platform. The

algorithm initially starts with high level cluster that is responsible to search for a candidate

search space that is promising. When the candidate search space is found, the cluster will

spawn a lower level cluster to search further into the assigned space with higher accuracy.

This sequence of activities goes on until no promising region is found in the cluster, and

the cluster returns its solutions to the parent cluster. HDGA only assigns a cluster to

another computational node when promising regions are found and communications between
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clusters occur only at clusters initialization and termination; hence, it efficiently minimizes

the communication cost. Whenever lost connection occurs, HDGA is required to make

reconnection and restart the search at the low level cluster. After terminating the cluster, a

large package with all the solutions is sent to the higher-level cluster. If this large package is

corrupted or lost, the cluster will resend another large package and that may cause network

congestion.

Okuda et al. proposed DCMOGA (Distributed Co-evolutionary Multi-Objective Ge-

netic Algorithm) [138] that adapts a synchronous island model where n+ 1 subpopulations

are created (n is dimension of the objective space). The n subpopulations, called SOGAs,

are each responsible for optimizing one objective. Another subpopulation (MOGA) tries to

find the Pareto optimal solutions. Each SOGA passes the solutions back to MOGA after a

few iterations, and it is expired once no further improvement is found. The required number

of nodes in DCMOGA is restricted by the dimension of the objective space.

In 2004, Tan et al. [191] implemented DCCEA (Distributed Cooperative Co-evolutionary

EA) under synchronous island model. The population is divided into subpopulations, and

the objective evaluation and genetic operation are performed concurrently. After several

iterations, each subpopulation will synchronize with other subpopulations through sending

its non-dominated solutions. DCCEA incorporates partitioning to distribute workload to

each computational node appropriately at the initialization stage.

All above mentioned distributed MO algorithms contain behaviors that may degrade

their performance if network becomes unreliable. As in DCMOGA and DCCEA, whenever

lost connection occurs, both algorithms are required to reconnect to the lost node. Recon-

nection to nodes introduces extra overhead and availability of that node is not guaranteed.

Therefore in this work, the proposed DCPSO will focus on how to become more fault-tolerant

toward lost connection with the incorporation of competitive co-evolution mechanism.
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5.2 Co-evolutionary Particle Swarm Optimization Algorithm

The co-evolutionary particle swarm optimization algorithm (CPSO) proposed in this chapter

is similar to CCPSO in Chapter 4. There are some modifications to make CPSO more

suitable for distributed computation.

The main difference is that the assignment of decision variables to different species is

adapted by a new competition mechanism. In particular, each species will compete to rep-

resent more components of the MO problem while the eventual winners will cooperate to

achieve better solutions. In this iterative process of competition and cooperation, various

components form different groups, and each group is optimized by one winning species. The

formation of the groups and the winning species are changing during the optimization pro-

cess, which reflects the different optimization requirements in different stages of searching.

In addition, the interaction between the cooperative and competitive processes in CCPSO

take place iteratively after each cycle, this frequency can be determined by the designer

accordingly in CPSO.

5.2.1 Competition Mechanism for CPSO

To minimize the communication overhead among different species, the winning species is

directly associated with the variable instead of replacing the losing species. The rationale of

adding dimensions to winning species instead of replacing losing species here is that replacing

mechanism need to transfer particles among different subswarms through network, while

adding dimensions is just implemented inside a particle. The network transfer speed is the

bottleneck for distributed algorithms and the network throughput should be minimized. For

the ensuing discussions, the problem at hand is decomposed along the decision variables.

Also, each decision variable may be assigned to a number of species populations and a

species population may be optimizing more than one decision variable.
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Figure 5.1: Pseudocode for the competitive coevolutionary mechanism in CPSO

The pseudocode of the competitive mechanism of CPSO is shown in Figure 5.1. To

discover the most suitable problem decomposition, competitors are selected to compete

with each sj,rep. For the i-th subswarm, the representatives for other variables sj,rep, j 6= i is

selected along with competitors from subswarm i for pair competition. With regard to the

issue of competitor selection, CPSO simply selects a random particle from subswarm i for

each sj,rep, j 6= i. These competitors will then compete via the cooperative mechanism to

determine which variable should also be associated with subswarm i. The variables where

the particles from subswarm i win the competition will be associated with subswarm i. The

sj,rep which lose the competition will be updated by the new winner.

As illustrated by the algorithmic flow of the proposed CPSO in Figure 5.2, the competi-

tive mechanism is activated at a fixed frequency of Cfreq = 10. Note that the subswarms are

evolved in isolation for both competitive and cooperative processes. The algorithm employs

a fixed-size archive to store non-dominated solutions along the evolution. The archive is

updated within the cooperative or competitive process. A complete solution formed by the
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Figure 5.2: Flowchart of CPSO

subswarms will be added to the archive if it is not dominated by any archived solutions.

Likewise, any archive members dominated by this solution will be removed. When the pre-

determined archive size is reached, a recurrent truncation process [96] based on niche count

is used to eliminate the most crowded archive member.

5.3 Distributed Co-evolutionary Particle Swarm Optimiza-

tion Algorithm

The availability of powerful networked computers presents a wealth of computing resources

to solve problems with large computational effort. As the communication level in coarse-

grained parallelization is low as compared to other parallelization strategies, it is a suitable

computing model for distributed networks with limited communication speed. This paral-
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Figure 5.3: The Model of DCPSO

lelization approach is considered here, where large problems are decomposed into smaller

subtasks that are mapped into the computers available in a distributed system.

A prototype model of DCPSO with six subpopulations over three peer computers is

illustrated in Figure 5.3. As shown in the figure, subswarms are partitioned into groups

depending on the number of available peers. Without loss of generality, the six subswarms

are divided into three groups, each of which is assigned to a peer computer. Note that each

peer contains its own archive and representatives, which evolves its subswarms sequentially

in an approach similar to CPSO.

Inside a peer, the candidate solutions generated through the collaboration consistently

update the archive in the peer. The subswarms in the peer then update their correspond-

ing peer representatives once in every cycle. The cooperation among peers is indirectly

achieved through the exchange of archive and representatives between the peers and a cen-

tral server. In DCPSO, the communication time among peers is a conspicuous part of the

whole execution time. To reduce the communication overhead, the exchange of archive and
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representatives between a peer and the central server only occurs every several cycles as de-

termined by the exchange interval. Since the peers are often not identical, the cooperation

among peers will become ineffective if there is a big difference for the evolution progress

among the peers, e.g., the poor cooperation among peers may deteriorate the performance

of DCPSO. To make the peers cooperate well in the optimization process, the peers are

synchronized every several cycles as determined by the synchronization interval. Note that

the exchange and synchronization intervals in DCPSO can be fixed or computed adaptively

along the search.

In DCPSO, there is no direct communication among the subswarms. All communica-

tions are performed between the subswarm and the central server. For the subswarm, the

communication overhead does not change. For the central server, the communication over-

head increases linearly with respect to the number of computers, which is not a big issue

because the central server is dedicated to communication and generally can deal with the

communication amount in DCPSO.

5.3.1 Implementation of DCPSO

The DCPSO has been designed and embedded in a distributed computing framework that

was built upon the foundation of Java technology (J2EE). The unique advantage of Java

programming language, such as platform independence and reusability, makes the approach

attractive.

As shown in Figure 5.4, DCPSO framework consists of two main blocks, i.e., the servant

block and workshop block that are connected by remote method invocation over the inter-

net inter-ORB protocol (RMI-IIOP). The servant functions as an information center and

backup station through which peers can check their identifications or restore their working

status. The workshop is a place where peers (free or occupied) work together in groups,

e.g., the working peers are grouped together to perform a specified task, while the free ones

wait for new jobs to be assigned. The servant contains three different servers, i.e., logon
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Figure 5.4: Schematic framework of DCPSO

server, dispatcher server, and database server. The logon server assigns identification to

any registered peers. It also removes the information and identification of a peer when it

is logged off as well as synchronizes the peers information to the dispatcher server. The

dispatcher server is responsible for choosing the tasks to be executed and the group of peers

to perform the execution. It also handles the transfer of peers information to/from the

database server. Besides, the dispatcher server also synchronizes the information, updates

the peers list, and informs the database server for any modification. Whenever a task is

available, the dispatcher server will transfer the task to a group of selected peers.

The working process of a peer begins when it logs onto the server. The peer computers

are then pooled and wait for the tasks to be assigned by the server. Once a peer detects

that a task has been assigned, it will extract relevant information from the server, such as
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Figure 5.5: The flowchart of DCPSO

class name and path, as well as the http server address before loading the class remotely

from the server. Then it will be allowed to initiate the computation procedure. Figure 5.5

depicts the working process of a peer, where the description of the module “Compute”is

shown in the right part of the figure.

Once a peer starts the computation procedure, it first initializes the parameters, such as

cycle number, number and size of subswarms. The peer then creates the subswarms assigned
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to it. When it reaches a synchronization point, it suspends its searching process until the

server signals that all the peers have reached the synchronization point. At each cycle, the

peer checks whether it should exchange the archive and representatives between the peer

and server. If the conditions of exchange are satisfied, the peer initiates a session in the

server and exchanges/updates the archive and representatives between the peer and server.

The peer then evolves its subswarms sequentially for one cycle after these procedures. If the

peer meets the termination conditions, it will initiate a session to submit the results and

restores itself to the ready status. If the user cancels a running job, those peers involved in

the job will stop the computation and set themselves to the ready status.

5.3.2 Dynamic Load Balancing

As the processing power and specification for various computers in a network may be differ-

ent, the feature of workload balancing that ensures the peers are processed in a similar pace

is important in DCPSO. Besides having a long simulation time, the poor cooperation among

computers will also deteriorate the performance of DCPSO if a heavy workload is assigned

to the peer that has a relatively low processing power. Intuitively, workload balancing for a

distributed system could be difficult because the working environment in a network is often

complex and uncertain.

DCPSO assigns workload to peers according to their respective computational capabil-

ities. When a peer is first launched, it uploads its configuration information to the server,

including hardware configuration of the peer such as CPU speed, RAM size, etc. Based on

the information, the dispatch server performs a simple task scheduling and assigns different

tasks to the respective peers according to their processing powers. A dynamic load balanc-

ing strategy is also implemented to adjust the workload of each Peer at runtime using the

response time of each peer. If a peer is found to be lagging behind a few times without

improving, dynamic load balancing mechanism will signal the lagging peer to reduce its
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workload accordingly. If a peer is found to be lagging severely, it will be removed from the

system immediately.

5.3.3 DCPSO’s Resistance towards Lost Connections

As there are various unforeseen network problems, it is important to construct a distributed

algorithm that is fault-tolerant. To be able to handle unforeseen network errors, DCPSO

adopts the request-and-response package transmission protocol that guarantees that pack-

ages are sent successfully. This mechanism will avoid damaged, corrupted, or lost packages.

But it can not handle lost connection efficiently. With the competition mechanism, DCPSO

can cope well with disconnected peer as reconnection with lost peer is not necessary when

lost connection occurs. With competition mechanism, even if lost connection occurs and

the subswarm representing k-th variable terminates, competition from other subswarms will

continue to improve the value of the k-th variable. Test simulation on the effectiveness of

the competition mechanism in Section 5.5 will illustrate that the proposed algorithm is able

to derive good results even if some subswarms are missing.

5.4 Simulation Results of CPSO

In this section, five benchmark problems (ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6) are used

to compare the performance of CPSO with CCEA [194] and SPEA2 [224]. 10 independent

runs are executed on these three MO algorithms. The configuration of the algorithms is

shown in Table 5.1, and the results of the simulation are shown in Figure 5.6-5.10.

Four performance metrics (GD, S, MS, and HVR) are used to analyze the effectiveness

and efficiency of the three algorithms. CPSO is able to approximate and locate the true

Pareto front effectively in all test problems, except in ZDT3. As the true Pareto front of

ZDT3 is a discontinuous convex curve, it can be deduce that CPSO has some difficulty in

dealing with problem that has discontinuous Pareto front.



CHAPTER 5. 107

Table 5.1: Parameter settings of the different algorithms

Parameter Settings

Population CPSO: subswarm size 20
CCEA: subpopulation size 20
SPEA2: population size 100

Archive Size 100
CPSO Configuration C1 = C2 = 1

Inertia weight 0.4
EA Configuration 30 bits per decision variable

Crossover rate 0.8
Mutation rate 2/L, where L is chromosome length

Evaluations 120 000

Concerning generational distance, CPSO obtains very competitive results, which are far

better than that of SPEA2. GD results of CPSO are also better than that of CCEA in ZDT4

and ZDT6. Strength in GD highlights that CPSO is effective in escaping local minima and

efficient in converging to true Pareto front. The competition mechanism may contribute a

lot to the strength of CPSO in locating true Pareto front.

The spacing results of CPSO in all test problems are poor comparing to other algo-

rithms. Poor spacing results show that CPSO is not able to distribute the solutions evenly

along Pareto front, which may be a side-effect from the competition mechanism because

competition leads to arm-race that only promotes fitter solutions without considering the

distribution of solutions.

The MS of CPSO are much better than that of the other two MOEAs on ZDT1 and

ZDT2, while remaining competitive in other test problems. This result illustrates that

CPSO is effective in covering the whole range of true Pareto front.

The simulation results from GD, S and MS show that CPSO is effective in covering the

range of true Pareto front, but poor in achieving good distribution. From the definition
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(a) (b)

(c) (d)

Figure 5.6: Performance comparison of CPSO, CCEA and SPEA2 on a) GD, b) S, c) MS,
d) HVR for ZDT1

of the four metrics as shown in Chapter 1, there is no correlation among the metrics of

GD, S, and MS, while HVR generally correlates to all the other three metrics. The best

performance on GD and the relatively good value of S and MS resulted in the best value

of HVR for CPSO on ZDT4. HVR is the metric to measure both evenness and range of

evolved Pareto front, and the results of CPSO are relatively mediocre comparing to HVR

results of the other two MOEAs for other test problems as CPSO behaves poor in spacing

metric.
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(a) (b)

(c) (d)

Figure 5.7: Performance comparison of CPSO, CCEA and SPEA2 on a) GD, b) S, c) MS,
d) HVR for ZDT2

5.5 Simulation Studies of DCPSO

This section shows simulation studies of DCPSO to examine its efficiency of parallel imple-

mentation. The configuration of DCPSO consists of 11 PCs connected via a campus local

area network. Table 5.2 represents the specifications of all PCs used in the simulation envi-

ronment. One fastest PC is used as the server, and the other PCs are peers. The parameter

setting of DCPSO is summarized in Table 5.3.

5.5.1 DCPSO Performance

In this section, simulations are performed to examine the speedup of DCPSO in program

execution based upon the test problems of ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. The
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Figure 5.8: Performance comparison of CPSO, CCEA and SPEA2 on a) GD, b) S, c) MS,
d) HVR for ZDT3

performance of DCPSO is assessed by comparing the total runtime of DCPSO with 1-10

Peers. To minimize the bias in the simulation results, 10 independent runs with randomly

generated initial swarms were performed. The median speedup of the 10 runs for different

test problems is listed in Table 5.4, while the actual median runtime for each benchmark

problem is plotted in Figure 5.11.

It is observed from Figure 5.11 that the median runtime is reduced as the number of

peers is increased. Table 5.4 illustrates that the speedup achievable by DCPSO depends on

both the number of peers and the benchmark problem. For instance, the speedup achievable

is more significant for large problems according to the simulations. In particular, DCPSO

achieves a speedup of 6.83 for ZDT1, but only a speedup of 1.55 is obtained for ZDT6.

When the number of peers is more than 8, the increased communication cost counteracts the



CHAPTER 5. 111

(a) (b)

(c) (d)

Figure 5.9: Performance comparison of CPSO, CCEA and SPEA2 on a) GD, b) S, c) MS,
d) HVR for ZDT4

reduction of computation cost, as shown in Figure 5.11, i.e., the saturation for the speedup

of DCPSO is reached for the test problems. The speedup is initially large (maximum 50%)

and saturate as more peers are added.

Observing the result more carefully, it will be realized that the communication cost

begins to outweigh the benefit of distributing the workload when there are more than 8

peers in ZDT1, ZDT2, ZDT3 and ZDT4 and more than 4 peers in ZDT6. When the

communication cost begins to outweigh, the total runtime will start to saturate and there

is only small decrease in runtime or even slight increase as more peers are added.

5.5.2 Effect of Dynamic Load Balancing

In this section, the DCPSO with and without dynamic load balancing is tested to see whether

dynamic load balancing can increase the efficiency of the algorithm. The simulation is run
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Figure 5.10: Performance comparison of CPSO, CCEA and SPEA2 on a) GD, b) S, c) MS,
d) HVR for ZDT6

on the case of DCPSO with 3-10 peers for 10 runs to remove any bias. Average runtime of

DCPSO with and without dynamic load balancing for ZDT1 to ZDT6 are shown in Figure

5.12-5.16. All the simulation results are also listed in Table 5.5.

As shown in Figure 5.12-5.16, DCPSO with dynamic load balancing mechanism achieves

a significant speedup but saturation of speedup is still present as more peers are added.

The speedup ranges from 40% − 60%. Thus, unbalanced load assignment between peers

lead to significantly longer runtime in synchronous distributed algorithm. In ZDT1, ZDT2,

and ZDT3 cases, the runtime initially are reduced by more than 60% when dynamic load

balancing is implemented. As more peers are added, the speedup becomes less because less

workload is being distributed to each Peer. With small workloads there is small difference of

execution time between fast and slow peers. In ZDT4 and ZDT6, the speedups are generally

40%-50% when dynamic load balancing is implemented.
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Table 5.2: Specifications of the PC peers

No. of Peer Specification

1 3GHz Pentium IV RAM 512MB
2 3GHz Pentium IV RAM 512MB
3 3GHz Pentium IV RAM 512MB
4 3GHz Pentium IV RAM 512MB
5 2.5GHz Pentium IV RAM 256MB
6 2.5GHz Pentium IV RAM 256MB
7 2.5GHz Pentium IV RAM 256MB
8 2.5GHz Pentium IV RAM 256MB
9 2.5GHz Pentium IV RAM 256MB
10 2.5GHz Pentium IV RAM 256MB
11 1.6GHz Pentium IV RAM 512MB

Table 5.3: Configuration of the DCPSO simulation

Parameter Settings

Population Number of subpopulations = number of parameters
Subpopulation size is 20 particles

Archive Archive size is 100
Collaboration interval 5 iterations
Evaluations 120,000

5.5.3 Effect of Competition Mechanism

The competition mechanism is tested on whether it can prevent degradation of effectiveness

when there is a reduction of the subswarms (peers). The model of competitive-cooperation

among subswarms is an important mechanism for DCPSO to handle lost peers. In this

section, the number of objective function evaluations is kept constant, when the number
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Table 5.4: Average speedup of DCPSO for test problems and respective no. of peers

No. of Peers ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

2 2.01 2.03 1.95 1.23 1.26
3 2.31 2.18 2.51 1.29 1.33
4 2.74 2.36 2.67 1.39 1.55
5 3.16 2.41 2.88 1.37 1.53
6 4.28 3.96 3.98 1.44 1.48
7 4.97 5.38 5.68 1.52 1.49
8 6.40 6.31 6.21 1.58 1.49
9 6.83 5.31 6.59 1.56 1.47
10 6.53 6.61 6.55 1.54 1.46

Figure 5.11: Average runtime (in seconds) of DCPSO of five test problems and respective
no. of peers
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Figure 5.12: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT1

Figure 5.13: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT2

of subswarm is reduced. Each test problem will be run 10 times with full subswarms, 10

times with 2/3 of subswarms, and 10 times with 1/3 of subswarms. On Figure 5.17-5.20,

simulation results from full subswarms are on the left, from 2/3 of subswarms are in the

middle, and from 1/3 of subswarms are on the right.

For generational distance, the results from the three scenarios for all test problems have

small differences, and the evolved Pareto front is still close to the true Pareto front even

when there is a reduction of subswarms. The reduction of number of subswarms does not

have significant influence on DCPSO’s performance on GD.
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Figure 5.14: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT3

Figure 5.15: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT4

Concerning spacing metric, results from full subswarms, 2/3 of subswarms, and 1/3

of subswarms are approximately the same. In ZDT1, ZDT2, and ZDT3, the reduction of

number of subswarms causes slight degradation of spacing metric. But, there are small

improvements in ZDT4 and ZDT6, when the number of subswarms is reduced. Therefore,

the reduction of subswarms does not result in poorer distribution of solutions along Pareto

front.

For maximum spread, reduction of subswarms does not illustrate any significant negative

effect. In all test problems except ZDT6, DCPSO is able to get similar result on MS for all
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Figure 5.16: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT6

Table 5.5: Total average runtime of DCPSO with dynamic load balancing and without
dynamic load balancing for ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6

No. of Peers 3 4 5 6 7 8 9 10

ZDT1 w/o 3199 2702 2342 1728 1489 1156 1083 1134
w 1174.00 830.00 764.00 557.00 455.00 432.00 396.00 626.00

ZDT2 w/o 3199 2877 2824 1718 1265 1079 1282 1030
w 1082.00 867.00 701.00 506.00 489.00 436.00 410.00 387.00

ZDT3 w/o 3339 3143 2910 2107 1479 1351 1273 1282
w 1191.00 810.00 637.00 707.00 528.00 362.00 432.00 428.00

ZDT4 w/o 1792 1672 1689 1612 1529 1470 1491 1503
w 573.00 424.00 497.00 463.00 505.00 600.00 648.00 725.00

ZDT6 w/o 1886 1625 1639 1703 1690 1685 1704 1720
w 537.00 402.00 459.00 459.00 510.00 594.00 666.00 725.00



CHAPTER 5. 118

(a) (b)

(c) (d)

(e)

Figure 5.17: Performance comparison of DCPSO over different size of subswarms in GD for
a) ZDT1, b) ZDT2, c) ZDT3, d) ZDT4, e) ZDT6

three scenarios. In ZDT6, the reduction of subswarms causes a decrease in value of maximum

spread metric but the decrease is very small (observing the y-axis interval). Therefore, one

can conclude that competition mechanism help DCPSO cover the true Pareto front well

even when the number of subswarms is reduced.

There are slight degradation on hypervolume ratio metric in all test problems except

in ZDT4. In ZDT4, the HVR in all three scenarios are equivalent. In other test problems,

there are slight decreases in HVR (largest in ZDT6 because the Pareto optimal solutions of
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(e)

Figure 5.18: Performance comparison of DCPSO over different size of subswarms on Spacing
for a) ZDT1, b) ZDT2, c) ZDT3, d) ZDT4, e) ZDT6

ZDT6 are non-uniformly distributed along the global Pareto front, and the density of the

solutions is low near the Pareto front and high away from the front).

Comparison of the four metrics in all three scenarios highlights that the competition

mechanism is able to prevent the degradation of performance when the number of subswarms

is reduced. The results confirm that the competition mechanism is able to obtain Pareto

optimal solutions even when some subswarms are missing. Therefore with competition

mechanism, when there are lost peers, reconnection is not necessary. DCPSO will recalculate
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(e)

Figure 5.19: Performance comparison of DCPSO over different size of subswarms on Maxi-
mum Spread for a) ZDT1, b) ZDT2, c) ZDT3, d) ZDT4, e) ZDT6

its total number of cycles (objective function evaluation is kept constant) according to the

number of active peers, and no large communication cost and complication are introduced,

which leads to more efficient distributed system. DCPSO can neglect disconnected peers

and still be able to achieve good performance.
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(e)

Figure 5.20: Performance comparison of DCPSO over different size of subswarms on Hy-
pervolumn Ratio for a) ZDT1, b) ZDT2, c) ZDT3, d) ZDT4, e) ZDT6

5.6 Conclusion

MO problems often involve large computational resource and high complexity. As the avail-

ability of powerful networked computers presents a wealth of computing resources to solve

problems with large computational effort, it is desirable to utilize PSO’s intrinsic par-

allel property to formulate a distributed MOPSO algorithm. The proposed distributed

co-evolutionary particle swarm optimization algorithm achieves substantial speedup from
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non-distributed CPSO. The DCPSO has been designed to be fault-tolerant against net-

work errors, such as lost package, corrupted package, and lost connection. A dynamic load

balancing mechanism has also been incorporated into the DCPSO to further enhance its

performance.



Chapter 6

On Solving Multiobjective Bin

Packing Problems Using

Evolutionary Particle Swarm

Optimization

The bin packing problem is a NP-hard combinatorial optimization problem [5] where the

primary aim is to pack a finite number of items using the least bins possible. It also involves

a number of practical constraints and requirements to be satisfied, such as weight, centre of

gravity, irregularly shaped bins and priority items. The bin packing problem has been widely

studied due to its various applications in computer network design [20], job scheduling [206],

industrial balancing [14], aircraft container loading [128] etc.

Many computer-assisted approaches have been developed to solve bin packing problems.

Regarding waste space minimization for one to three dimensional bin packing problems,

exact solution methods based on branch and bound procedure are proposed in [170] [123]

[122]. However, these methods are only practical for moderate and/or small problems.

Besides the branch and bound method, heuristics such as next-fit, first-fit, best-fit and

bottom-left-fill (BLF) are widely used for solving bin packing problems [3] [9] [16] [68].

Heuristic approaches are particularly useful for problems with a high complexity, for which

123
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deterministic methods like the branch and bound approach are often unable to find the

solution within a reasonable amount of time. Although heuristics are fast in generating a

solution packing plan, the quality of the solution is highly dependent on the input sequence

of items.

Meta-heuristics such as evolutionary algorithms [39] [44] [69] [76] [77] [88] [112] [143] [148]

[164] [183] [218], simulated annealing [15] and tabu search [116] [177] which are probabilistic

in nature have also been applied to solve bin packing problems. Among these methods,

evolutionary algorithm (EA) is usually hybridized with a heuristic placement routine. In

this two-stage approach, EA searches for optimal input sequence of items and heuristic

placement routine determines how the input sequence of items is packed into bins.

The current literature on the bin packing problem mostly focuses on the minimization

of wasted space. In fact, there are other important objectives that need to be addressed for

bin packing problems. For example, Amiouny [3] addressed the issue of balance, to make the

center of gravity of packed items as close as possible to a target point. Amiouny concentrated

only on the issue of balance by assuming that the bin was large enough to hold all the items.

However in most bin packing problems, both minimization of wasted space and balance of

the bins needs to be achieved. For example, in the case of tractor trailer trucks loading, it

is important to utilize the maximum possible volume of each trailer and minimize the per

axle weight as trucks are subject to constraints that regulates the maximum weight per axle

that can be carried by tractor trailer trucks. For the two-objective bin packing problems

as mentioned above, there is no mathematical formulation available in literature. Therefore

a multiobjective two-dimensional bin packing model (MOBPP-2D), with minimum wasted

space and balancing of load as two objectives, is formulated in this work.

As the solution to MO problems like MOBPP-2D exists in the form of alternate trade-

offs known as Pareto optimal set, it is important to develop an effective and efficient al-

gorithm capable of finding the set of optimal packing solutions. Being a population based

statistical search method, EA is capable of capturing multiple optimal solutions in a sin-
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gle run and is very suitable for solving MO problems [195] [212]. Particle swarm opti-

mization (PSO) is based on swarming theory where all particles in the neighborhood de-

pend on their discoveries and past experiences of their neighbors. Social sharing of in-

formation offers an evolutionary advantage and aids towards solving complex optimization

problem. Although PSO is relatively new, it has been shown to offer higher convergence

speed for MO optimization as compared to canonical multiobjective evolutionary algorithms

(MOEAs) [26] [47] [130] [145]. Despite the fact that EA has been widely applied to solve

bin packing problems [39] [44] [69] [77], PSO has never been considered in the context of

solving bin packing problems. To explore the potential of combining evolutionary com-

putation and PSO concepts for MOBPP-2D problems, a new multiobjective evolutionary

particle swarm optimization algorithm (MOEPSO) is proposed in this paper. MOEPSO can

generate a variety of packing plans to satisfy different customer’s different spacing and bal-

ancing requirements. The packing solutions generated will provide important information

for resource planning and decision making.

This chapter is organized as follows: Section 6.1 describes the scenario and modeling

of multiobjective bin packing problems. Section 6.2 describes the proposed MOEPSO al-

gorithm and its various features including variable-length representation and specialized

mutation operators. Section 6.3 gives an algorithm behavior analysis of MOEPSO on mul-

tiobjective bin packing problems. A performance comparison with other algorithms is also

provided to show the effectiveness and efficiency of MOEPSO in solving bin packing prob-

lems. Conclusions are drawn in section 6.4.

6.1 Problem Formulation

As there is no mathematical model available in literature for MO bin packing problems,

a new two-objective two-dimensional bin packing model (MOBPP-2D) is formulated to

provide the basis for further discussion on test case generation and algorithm performance
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analysis in this section. The proposed MOBPP-2D problem can be described as follows:

Given an unlimited number of bins with fixed width W , height H and centre of gravity

(Φx,Φy), and J number of items with wj � W , hj � H and weight ψj , pack the items

into the bins such that space wastage is minimized and overall centre of gravity (CG) of

the bins is as close as possible to the desired CG. The second objective, minimization of

CG deviation of all bins, favors packing solutions with more balanced bins. Importance of

balanced load of each bin (minimum CGdev) is further demonstrated in section 6.1.1 and

mathematical model of MOBPP-2D is presented in section 6.1.2.

6.1.1 Importance of Balanced Load

To facilitate better understanding of the second objective (minimum CGdev), a graphical

representation of item and bin used in MOBPP-2D is shown in Figure 6.1. As shown in the

figure, minimum CGdev is achieved by minimizing di , the deviation of overall CG (xi, yi)

of the loaded bin from desired CG (xd, yd).

In the formulation of MOBPP-2D, CG constraint is considered in order to evaluate how

balanced or stabilized the bins are in a packing plan. Balanced load plays an important role

in application such as loading of containers, tractor trailer trucks and cargo airplanes. In

container loading problem, the toppling of container will lead to time wastage and high cost

in storage and transportation. However, a balanced load can help prevent the container

from toppling even if some unexpected force is applied to the side of the container. In

trailers and trucks loading, a balanced load can minimize the maximum weight per axle as

required by some road regulations and provide better fuel efficiency and better response of

the truck as a whole to the loading. Besides, trucks have to maintain their centers of gravity

low enough to withstand any tendency to topple over when driven around sharp corners.

In aircraft loading, the arrangement of cargo affects the position of center of gravity of the

aircraft, which in turn has an impact on aircraft drag. One therefore wants to balance the

load so that the aircraft will fly more safely, fly faster and use less fuel. Since the objective
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Figure 6.1: Graphical representation of item and bin

of balanced load plays such an important role in all these real world applications, it is

appropriate to incorporate it as the second objective in the mathematical formulation of bin

packing problems.

6.1.2 Mathematical Model

The definition of parameters, objectives and constrains for MOBPP-2D is given as follows.

Decision Variables

Xij ∈ {0, 1}, where i = {1, ..., I}, j = {1, ..., J}. If item j is assigned to bin i, Xij = 1,

otherwise Xij = 0;

Parameters

J = Number of items;

I = Maximum number of bins;

Symbol

dxe: The smallest integer larger or equal to x;

bxc: The largest integer smaller or equal to x;
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Attributes of Bins

Wi: Width of bin i;

Hi: Height of bin i;

Φx,i: Center of gravity of bin i in the x direction;

Φy,i: Center of gravity of bin i in the y direction;

Φd,i: Desired center of gravity of bin i in the x direction;

Attributes of Items

wj : Width of item j;

hj : Height of item j;

xj : Center of gravity of item w.r.t. the bin i in x direction;

yj : Center of gravity of item w.r.t. the bin i in y direction;

ψj : Weight of item j;

Minimization Objectives

The bin packing solutions should minimize both objectives concurrently as follows:

Number of Bins Used

K =
I∑

i=1




J∑

j=1

Xijhjwj

HiWi




(6.1)

Average Deviation of CG from Idealized CG of Bins

CGdev =
1
K

K∑

i=1

√
(Φx,i − Φd,i)2 + (Φy,i)2 (6.2)

CG of Bin after Loading

Φx,i =

∑J
j=1Xijxjψj∑J

j=1 ψj

(6.3)
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Φy,i =

∑J
j=1Xijyjψj∑J

j=1 ψj

(6.4)

Packing Constraints

For every particular item j ∈ {j = 1, ..., J}:

0 ≺ wj � Wi;

0 ≺ hj � Hi;

ψj � 0;

For all bins i ∈ {i = 1, ..., I}:
∑J

j=1Xijwjhj � WiHi;

0 � Φx,i � Wi;

0 � Φy,i � Hi;

Each item must be assigned to and only to one bin:

∑I
i=1

∑J
j=1Xij = J .

6.2 Evolutionary Particle Swarm Optimization

The proposed MOEPSO is a PSO-based algorithm which incorporates EA concepts such

as the use of mutation operator as a source of diversity. Furthermore, MOEPSO is char-

acterized by the fact that particle movement is directed by either personal best or global

best only in each instance. This is contrary to existing works where particle movement is

influenced by both personal and global best at the same time.

In this section, detailed implementation of MOEPSO is given to show exactly how

MOBPP-2D problems are tackled. The flowchart of the MOEPSO which shows various

features needed to direct the movement of the particles towards feasible solutions is presented

in section 6.2.1. Section 6.2.2 describes the design of particles variable length representation
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Figure 6.2: Flowchart of MOEPSO for solving the bin packing problem

and the implementation of bottom left fill (BLF) heuristic. As mentioned before, meta-

heuristics like evolutionary computation techniques need to be hybridized with a heuristic

placement routine to pack the sequence of items into bins. BLF heuristic is chosen in our

algorithm and the advantages of using BLF heuristic are discussed. In section 6.2.3, the

initialization process is explained in detail. Section 6.2.4 demonstrates how particle updating

mechanism (PSO operator) works. The specialized mutation operators of MOEPSO are

described in section 6.2.5. Finally, a brief introduction of archiving process is given in

section 6.2.6.

6.2.1 General Overview of MOEPSO

For the success of MOEPSO, an appropriate particle representation that can be easily

handled by PSO operator, mutation operator and BLF heuristic is necessary. Here we focus

on the variable length representation scheme because it is considered the most intuitive
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Figure 6.3: The data structure of particle representation (10 item case)

representation for a packing plan [135], and also for the considerable number of optimization

operations compatible with this encoding scheme. As shown in Figure 6.2, the first step in

the flowchart of MOEPSO is the building of initial solutions. In the initialization process,

both random and sorted sequences are packed using BLF into the form of variable length

solution particles. Once initialization has finished, the particles are evaluated against the

fitness function and ranked according to the Pareto ranking scheme. After selecting either

their personal best bin or global best bin as the velocity vector, particles are updated by

inserting the bin represented by the velocity vector as the first bin and deleting duplicate

items in other bins (PSO operation). At their new positions, the particles then undergo

specialized mutation operations. If any constraint is violated during mutation, the bins

violating constrains and the two least filled bins will be selected for repacking using BLF.

After that, all the non-dominated solutions are inserted into the archive for storage and for

the selection of global best bin in future generations.
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Figure 6.4: Saving of bins with the inclusion of the orientation feature into the variable
length representation

6.2.2 Solution Coding and BLF

Variable-Length Representation of the Particle

To devise an effective encoding strategy on which PSO operation and mutation operation

can be easily performed is important for the success of MOEPSO. In MOEPSO, order-based

variable length particle structure is perhaps the most natural representation of a solution for

bin packing problems. Each particle encodes the packing solution which includes number

of bins used and order of which the items are packed into the bin by the BLF heuristic. In

each bin, there must be at least one item and that item must not be found in any other

bins. The permutations encoded are unique for every bin. After all, this is how the problem

is presented and solved. Such a variable length representation is versatile as it allows the

algorithm to manipulate the permutation of items in each bin without affecting other bins.

And BLF check can be applied only to the changed bins.

As shown in Figure 6.3, each particle is constructed as several strings of distinct integers,
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each string representing a bin and each integer representing an item. To pack 10 items,

the particle length is 10 with each element in the range [1, 10] representing a particular

rectangular item. For the particle shown in Figure 6.3, the 10 items are packed into 3 bins,

and the order of items in each bin implies the sequence of placement using BLF heuristic.

The variable length representation also facilitates the incorporation of pbest and gbest.

As shown in Figure 6.3, pbest and gbest are encoded in the form of extra bins which are

stored in the particle memory. pbest is defined as the best bin found by the particle; gbest

is defined as the best bin found by the population.

In MOEPSO, best bin instead of best solution is chosen as pbest and gbest as the aim

is to identify the smallest natural piece of a solution which is meaningful enough to convey

information about solution quality [44]. In the case of MOBPP-2D: the bin points itself out

as the natural “information quantum”. The better each of the bins is packed, the fewer bins

needed and the lower CG deviation achieved. Therefore best bin instead of best solution

is defined as pbest and gbest to help the algorithm avoid falling into random search by

transmitting good bin among generations.

A new state variable is attached to every index in the permutation to allow the variable

length representation to be able to encode orientation of the rectangle item. In Figure 6.3,

the presence of negative sign indicates that the rectangle item is rotated by 90 degrees and

the absence indicates that the rectangle item is not rotated. The advantage of this new

representation can be seen clearly in Figure 6.4. Without rotation, the two items in Figure

6.4 have to be packed into 2 bins. With rotation, one bin is enough.

The Implementation of the Bottom Left Fill Heuristic

To generate variable length solution particles from sequence of items, a good heuristic needs

to be chosen. Generally heuristic approaches for solving two-dimensional bin packing prob-

lems are either level-oriented or bottom-left oriented. Berkey et al. [9] successfully applied
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Figure 6.5: The insertion at new position when an intersection is detected at the top

heuristic such as level-oriented next-fit, level-oriented first-fit and next bottom-left on solv-

ing two-dimensional bin packing problems. In designing meta-heuristics for bin packing,

bottom-left (BL) heuristic was widely used. Liu et al. [113] and Jakob [82] presented meta-

heuristics that hybrid bottom-left (BL) procedure with genetic algorithm for packing rect-

angles and polygons respectively. Both reported that better results were achieved through

hybridization of BL procedure with genetic algorithm. However, Hopper et al. [69] proposed

a bottom-left-fill algorithm (BLF) that was capable of filling existing gaps in partial pack-

ing layout and showed great performance in solving bin packing problems. Since next-fit,

first-fit and BL-routine tend to generate layouts with relatively large empty areas, BLF is

chosen as the decoding heuristic to be used in MOEPSO.

BLF heuristic adheres strictly to BL condition, which means no rectangle items packed

can be moved further to the bottom or to the left [82]. In BLF heuristic, a list of insertion

points as shown in Figure 6.5-Figure 6.7 is maintained to allow the algorithm to search

for available space to insert item in the bottom-left manner. Two new insertion points (at

right lower and left upper corner of the rectangle item) are inserted into the list whenever a

rectangle item is placed at an insertion point and the insertion point at which the rectangle

item is placed is deleted from the list.

When placing a new rectangle item at an insertion point, an intersection test with those

items already in the bin is carried out. As shown in Figure 6.5 and Figure 6.6, a new
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Figure 6.6: The insertion at new position when an intersection is detected at the right

Figure 6.7: The insertion at next lower position with generation of three new insertion
points

insertion point is generated at the right if there is an intersection detected at the top of the

item and at the top if there is an intersection detected at the right. The empty space is still

available for the insertion of items if the items can fit in. From Figure 6.7, if there is a lower

available space for insertion, the rectangle is inserted there instead at the newly generated

point where the intersection is detected. A new bin is generated if there is no space in

previous bins to accommodate a new rectangle item. The BLF heuristic in pseudo code is

presented in Figure 6.8. Figure 6.9 shows pseudo code to check whether the rectangle items

in a particular bin can be accommodated in the same bin when the order of insertion of

items is changed.
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Figure 6.8: Pseudo code for BLF heuristic

Figure 6.9: Pseudo code to check whether all rectangles can be inserted into the bin
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Figure 6.10: Initialization of initial solutions for the swarm of particles

6.2.3 Initialization

As shown in the flowchart of MOEPSO, the first step of the algorithm is initialization.

In evolutionary computation or particle swarm optimization, initial population is usually

generated randomly. However, instead of using randomly generated sequences for initial

solution particle generation, seeding some sorted sequences may help to capture certain

characteristic of the bin packing problem and reduce the computation time for achieving
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good results. For example, if items are ordered according to density and packed using

BLF, swap operation between the first bin and the last bin will help achieve lower CG

deviation. If items are ordered according to size, BLF heuristic can help achieve more

closely packed bins as the small items in the last part of sequence have better chance

to be inserted into the empty area among large items. Therefore in MOEPSO, some of

the sequences are randomly generated to provide more variety whereas some are initially

sorted according to some criteria, e.g. width, height, area, perimeter and density. To avoid

having repeated sequences, some sorted sequences are further partial-randomized. With the

generated sequences, variable length solution particles are built by using BLF heuristic as

shown in Figure 6.8. The whole procedure of initialization is described in Figure 6.10.

6.2.4 PSO Operator

Particle swarm optimization works by adjusting trajectories of a particle. However in a

discrete space, the meanings of concepts such as trajectory and velocity are not so straight

forward. In solving discrete space optimization problems, Kennedy defined trajectories,

velocities, etc., in terms of changes of probabilities that a bit will be in one state or the

other [91]. In Kennedy’s method, population members were not viewed as potential solu-

tions, instead they were probabilities. The value of vd for each dimension determined the

probability that a bit xk
id would take on one or zero value, but xk

id itself did not have a

value until it was evaluated: the actual position of the particle in D dimensional space was

ephemeral. However this definition can not be used in our MOEPSO algorithm as variable

length representation instead of bit representation is chosen in MOEPSO.

In particle swarm optimization, each individual in the population will try to emulate the

gbest and pbest solutions through updating by PSO equations [186]. Therefore the question

is how to emulate the pbest and gbest in our MOBPP-2D problem. Since packing quality

information is kept in the bins of each solution particle, our policy is to set best bin as pbest

and gbest, and let other bins being repacked. In this way, best bin information is kept. The
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Figure 6.11: Mechanism for updating position of particle

proposed PSO operator can be shown as the following equations.

Vid = α× Pid ⊕ (1− α)× Pgd, α = 0, 1 (6.5)

Xid = Xid + Vid (6.6)

In equation 6.5, the velocity is governed by either pbest or gbest. To choose gbest bin

or pbest bin is determined by the value of α. The chosen best bin is then used in the

determination of the movement of solution particle as shown in Figure 6.11. The chosen

best bin will be inserted into the solution particle as the first bin and any duplicate items

in other bins will be deleted.

The pbest of the particle is updated by evaluating the current solution with its previous

best solution to see whether the current solution dominates the previous best solution. The

pbest is replaced with the current best bin and the personal best solution is replaced by

the current solution if the current solution dominates the previous best solution. If both

solutions are non-dominating to each other, there is a 50% probability of the pbest being

replaced by the current best bin and the previous best solution replaced by the current best
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Figure 6.12: Mutation modes for a single particle

solution. There is no updating of pbest if the previous best solution dominates the current

solution. The selection of gbest is by the tournament niche method where a particle with

a lower niche count is selected out of two randomly selected non-dominated particles from

the archive.

6.2.5 Specialized Mutation Operators

PSO operator can help MOEPSO keep best bin information, while specialized mutation

operators constructed in this section consists of several mutation operations which attempt

to change the internal structure of the particle to further optimize the solution.



CHAPTER 6. 141

Figure 6.13: Partial swap of sequence between two bins in a particle

Figure 6.14: Intra bin shuffle within a bin of a particle

Figure 6.12 shows the whole mutation process of the particle. A random number is first

generated to determine the mode of mutation to undergo. The modes include partial swap

mechanism where sequences of items in two bins are randomly cut and exchanged, merge

bins mechanism where the items in the two least filled bins are merged into one bin, and

split bin mechanism where items in a randomly chosen bin are split into two bins. Partial

swap operation as shown in Figure 6.13 is designed to search for better packing for bins,

for example more closely packed items or smaller CG deviation. Merge bins operation help

reduce the number of bins used and split bin operation can reduce the CG deviation. There-

after, the particle undergoes another two modes of mutation where one of them randomly



CHAPTER 6. 142

rotates the rectangles in the bin, and the other shuffle the items of the bin to try to search

for an arrangement which can improve the packing configuration and the stability of the

bins. Figure 6.4 has shown how rotate can improve packing solution. The effectiveness of

shuffle operation can be seen in Figure 6.14. A feasibility check is then applied to make

sure all the constraints are satisfied. If any constraint is violated, the bins violated the

constraints and the two least filled bins (emptiest bins) are selected and eliminated from the

particle. The items which composed those bins are thus missing from the solution and we

use the BLF to insert them back in a random order. This step help make sure that all par-

ticles are valid solutions of MOBPP-2D. As shown in Figure 6.12, the specialized mutation

mechanism provides the facilities for MOEPSO to manipulate the internal bin structures of

the particle.

6.2.6 Archiving

In our algorithm, elitism is implemented in the form of a fixed-size archive to prevent the

lost of good particles due to the stochastic nature of the optimization process. The archive is

updated at each generation, e.g., if the candidate solution is not dominated by any members

in the archive, it will be added to the archive. Likewise, any archive members dominated

by this solution will be removed from the archive. One solution is said to dominate another

if it meets one of the three criteria below:

• A smaller number of bins used but an equal average deviation from desired CG.

• A smaller average deviation from desired CG but an equal number of bins used.

• A smaller average deviation from desired CG and a smaller number of bins used.

In order to maintain a set of uniformly distributed non-dominated solution particles in the

archive, the dynamic niche sharing scheme [195] is employed. The niche radius defines how

far apart two individuals should be in order for them to lower each other’s fitness. When
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Table 6.1: Parameter settings used by MOEPSO in the simulation

Parameters MOEPSO

Population Size 500
Generation Size 1000 generations or no improvement in the last 5 generations
Niche Radius 0.1

the predetermined archive size is reached, a recurrent truncation process [96] based on niche

count is used to eliminate the most crowded archive member.

6.3 Computational Results

MOEPSO is programmed in C++ based on a Pentium IV 2.8-GHz processor with 512MB

RAM under Microsoft Windows XP. The performance of MOEPSO is examined on various

test instances of the MOBPP-2D problem with varying item sizes and weights. The gen-

eration of test cases is described in detail in section 6.3.1 and the parameter settings used

by MOEPSO in performance comparison is shown in Table 6.1. MOEPSO works well in

niche radius range from 0.05 to 0.2. Too small or too large niche radius causes the algorithm

to locate less diverse and poorly distributed solutions. For the population size, the most

appropriate range for MOEPSO is from 100 to 500. Too small population results in less

diversified Pareto front and too large population leads to longer computation time.

6.3.1 Test Cases Generation

MOBPP-2D models various factors affecting the packing performance, particularly on how

the size and weight of items affect the stability of packed bins. In order to examine these

factors thoroughly, 6 classes with 20 instances each are randomly generated following the
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Table 6.2: Test cases generation

Class 1 2 3 4 5 6

wj , hj [0, 100] [0, 25] [0, 50] [0, 75] [25, 75] [25, 50]
ψj [0,20] for instance 1-10 of each class

[0,100] for instance 11-20 of each class

pattern in [9] with the addition of different weight parameter. The different combinations

of variables in 6 classes of test cases are shown in Table 6.2.

As shown in Table 6.2, wj and hj are randomly generated in different ranges for different

classes. For all the instances generated, there are 500 items to be packed. The six classes of

test cases generated can well examine MOEPSO performance on packing items with different

sizes. An example of test case generated is given in Figure 6.15.

In the sample of the input file of Class 3 1 11.txt as shown in Figure 6.15, the first row

refers to the class number of the problem. The second row refers to the number of items to

be packed. The third row refers to the indexes of the filename. The fourth row refers to the

width and height of the bin. Subsequent rows refer to the width, height and weight of the

items.

6.3.2 Overall Algorithm Behavior

Pareto Front

To analyze the performance of MOEPSO on MOBPP-2D problems, we begin by analyzing

the Pareto front generated which presents to the decision maker a set of non-dominated

solutions to derive an appropriate packing plan. Figure 6.16 shows three stages of evolution

progress of the Pareto front, namely initial (First), intermediate (Int) and final (Final) for

4 selected instances from Class 3. During the initial stage, there are a small number of
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Figure 6.15: A sample input file of Class 3 1 11.txt

non-dominated solutions scattered in the upper left region of the objective space. This

is due to the fact that the beginning solutions are generated using BLF heuristic which

tends to produce more closely packed bins. As the evolution progresses, the number of

non-dominated solutions increases and the Pareto front moves towards the final stage of the

Pareto front. The final stage Pareto front also shows that the average deviation from the

idealized CG of the bin decreases as the number of bins used increases, which proves that the

two objectives are conflicting with each other and it is a real multiobjective problem. But

it is also observed that the number of bins used is always smaller than the number of items

that is available for packing. This is so because the packing has to obey the BL-condition
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Figure 6.16: Evolution progress of the Pareto front

in MOEPSO. Only one item in each bin can not achieve a good CG deviation as the item

will be shifted to the left and the CG will not be in the center. As shown in Figure 6.17,

the bin on the right is favored over the one on the left although both have the same CG

deviation. This is because the bin on the right has more items in it, and thus will probably

give a solution which uses a smaller number of bins. The Pareto front also shows that there

is a limit to the least number of bins used. This is due to the fact that there is a so-called

continuous lower bound for number of bins used [123]. The continuous lower bound can be

obtained by allowing each item to be cut into any number of smaller pieces.

At the end of the optimization process, improvements can be observed for both the

number of bins as well as the CG deviation. There is also a good distribution of solutions
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Figure 6.17: Two bins with the same deviation from idealized CG

along the discovered Pareto front, demonstrating the effectiveness of MOEPSO for MOBPP-

2D problems.

Computational Result for Different Classes of Items

While the last section analyzes the general characteristics of solution Pareto front to show

the effectiveness of MOEPSO, this section examines how different combinations of different

sized items can affect the stability of the bins packed. As shown in section 6.3.1, class 2

consists of only small items. Class 3 consists of a combination of small and medium sized

items whereas class 4 consists of a combination of small, medium and large items. Figure

6.18 shows the box plot of average deviation of CG for the non-dominated solutions in 9

randomly selected test cases from class 2, 3 and 4. Each box plot represents the distribution

of a sample set where a vertical line within the box encodes the median, while the left and

right ends of the box encodes the upper and lower quartiles. Dashed appendages illustrate

the spread and shape of distribution, and dots represent the outside values.

In Figure 6.18, the mean deviation of CG of class 2 is consistently lower than class 3 and

class 4 with class 4 test cases scoring the highest mean deviation of CG. This result shows

that when the items are small, there is more room to arrange the items to achieve lower

stability in the bins. When there is a mixture of small and medium size items, there appears
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Figure 6.18: Average deviation for different classes of items

to be less permutation. The worst case is when there is a mixture of small, medium and

large items to pack. However, with less permutation to arrange in each bin, the problem

becomes easier where convergence is achieved faster. From the result, it could be seen that

the average deviation of CG of most solutions generated are less than half the height of

the bin. This further shows that MOEPSO is capable of generating solutions which uses a

smaller number of stabilized bins.

Effectiveness of the PSO Operator

To understand what contributes to the performance of MOEPSO, the effects of the PSO

operator is examined in this section while the impact of the mutation operator is examined

in the next section.
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Figure 6.19: Pareto front to show the effectiveness of the PSO operator (Class 3 4 14)

Figure 6.19 and Figure 6.20 shows the effectiveness of the PSO operator in populating the

non-dominated solutions along the Pareto front. From the two graphs, the PSO operator

has brought about an improvement in the spread of the Pareto front and the quality of

the non-dominated solutions. Without the PSO operator, there is no enough interaction

between the particles. The lack of social sharing of information leads to degradation in

solution quality. However, for class 3 problems, the effects of PSO operator in improving

diversity is not observed. But in most cases, the PSO operator enables the algorithm to

achieve a lower CG deviation. It is also observed that keeping the best bin will reduce

the CG deviation considerably, especially when the number of used bins is small. For class

4 problem, the presence of the PSO operator allows the MOEPSO to discover a greater

range and number of nondominated solutions. One possible reason is that the algorithm

will be trapped in local optimum without the guidance of the PSO operator. As shown in

Figure 6.19 and Figure 6.20, the PSO operator is an important operator for the success of

MOEPSO.
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Figure 6.20: Pareto front to show the effectiveness of the PSO operator (Class 4 10 10)

Effectiveness of the Mutation Operators

Specialized mutation operators are one important feature of MOEPSO. Figure 6.21 compares

the performance of the MOEPSO with and without the mutation operator for Class 3 6 16.

From the graph, it is obvious that the mutation operator bring about a major improvement

in the Pareto front in terms of spread and quality of the non-dominated solutions. This

is because the specialized mutation operator increases MOEPSOs exploration ability in

searching solution space. The above comparison is only one run of the algorithm. In order

to provide a statistical performance comparison, 10 runs of the algorithms with and without

mutation operator is analyzed quantitatively using three performance metrics widely used

by evolutionary multiobjective optimization community (GD, MS and S). However, the

computation of the GD and MS metric requires the knowledge of global Pareto front which

is unknown for all the test cases analyzed here. To provide a fair comparison, a global

Pareto front is obtained by selecting the non-dominated solutions from all the results of 10

runs of the algorithm with and without mutation.

Figure 6.22 shows the performance metric for test problem Class 3 6 16. From the
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Figure 6.21: Pareto front to show the effectiveness of the mutation operator (Class 3 6 16)

Figure 6.22: Performance for Class 3 6 16: a) GD, b) MS and c) S

performance metric of GD and MS, it is evident that the mutation operator has brought

about a significant improvement in the quality of the solutions obtained. In particular,

the incorporation of the mutation operator has allowed the algorithm to achieve better

convergence and diversity.
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6.3.3 Comparative Analysis

In this section, the performance of the proposed MOEPSO is validated against other al-

gorithms. As MOBPP-2D is a newly formulated problem and no other algorithms have

been designed for it, it is not so easy to find appropriate algorithm to compare perfor-

mance. Although many EAs have been applied to solve bin packing problems, there is no

MOEA available for solving MOBPP-2D. In addition, PSO has never been applied to solve

BPP. In this section, a PSO algorithm revised from [214] and a MOEA algorithm revised

from [189] are chosen to compare with MOEPSO as these two algorithms are easily modified

to solve MOBPP-2D and they can achieve very good result on traditional single objective

bin packing problem as shown in the following section.

In [214], the traveling salesman problem has been tackled by using PSO with much

success. New operators for the problem has been developed based on the idea of PSO where

the velocity vector of a particle is designed to be a swap sequence, and the position of a

particle is designed to be a sequence of indexes. In a sense, the velocity of the particle seems

to direct the particle towards an idealized permutation in combinatorial problems. This is

done by applying the swap sequence to the position of the particles by swapping the position

of the indexes in the sequence indicated in the swap sequence. The generation of the swap

sequence is done by comparing the best position of the particle with the current position of

the particle, where their difference in the position of the indexes is taken to be a series of

swap factors represented in the swap sequence. This concept is used for the development of

an MOPSO algorithm for comparison with MOEPSO. All above mentioned operators have

been retained with the addition of BLF to pack the sequence found into bins.

The hybrid multi-objective evolutionary algorithm (HMOEA) designed for solving the

truck and trailer vehicle routing problems [189] is found to be more suitable for use with

bin packing problem since there is some similarities between multiobjective vehicle routing

problem and multiobjective bin packing problem. The most notable features of HMOEA are
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the variable length chromosome representation, specialized genetic operators, Pareto rank-

ing and the fitness sharing features. By using a variable length chromosome representation,

a chromosome can encode a complete routing plan including the number of routes and tasks

served by the trucks, e.g., a route is a sequence of tasks to be served by a truck. Specialized

genetic operators are also designed to manipulate the variable length representation. These

genetic operators include route exchange crossover and multimode mutation. Route ex-

change crossover allows good sequences of route to be shared among chromosomes whereas

multimode mutation complements the crossover by optimizing the route information of the

chromosome by changing the task sequences within a chromosome. Pareto ranking scheme

differentiates the different chromosomes from each other according to their relative fitness

where the smallest rank is assigned for all non-dominated individuals, while the dominated

individuals are ranked inversely according to the number of non-dominated individuals dom-

inating over them. To avoid overcrowding in the solution space, fitness sharing is used to

diversify the solutions along the Pareto front. As the number of individuals increases in a

niche, the amount of competition also increases, thereby reducing the fitness of the indi-

viduals competing in that niche. During the tournament selection process, a chromosome

with a lower rank in partial order is selected for reproduction. This briefly summaries the

whole mechanism of HMOEA used in solving the TTVRP problem. The similarity be-

tween TTVRP and BPP make it quite easy to realize a MOEA algorithm using the ideas

of HMOEA to solve the bin packing problem.

Single Objective Case

To prove that MOEPSO is not only fit for newly proposed MOBPP-2D problem, a compar-

ison on the performance of meta-heuristic algorithms (EPSO, EA [189], PSO [214]) against

the branch and bound method [123] on single objective problem (minimum bins) is done by

running the algorithms against the 6 classes of test cases from [9]. EA is modified from [189]

and PSO is modified from [214] and EPSO is the single objective version of MOEPSO.
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Table 6.3 and Table 6.4 show the average number of optimal solutions obtained by each

algorithm in 10 runs. Those results highlighted in bold shows the situation where one of

the algorithms has won against the branch and bound method in terms of the number of

optimal solutions generated. Indeed, EPSO has obtained the best performance by achieving

238 optimal solutions. EA ranks second by 234 optimal solutions. PSO and branch and

bound method has similar performance by achieving 206 and 211 optimal solutions respec-

tively. The higher number of optimal solutions generated shows that EPSO is more stable

in performance across different runs of different test cases compared with the other three

algorithms.

Bi-objective Case

In this section, the performance of MOEPSO is compared against MOPSO and MOEA on

MOBPP-2D problem to illustrate their statistical behavior on test cases. As mentioned

before, MOEA is modified from [189] and MOPSO is modified from [214]. The performance

comparison of the three algorithms is done by providing a quantitative assessment on the

algorithms using the three performance metrics GD, MS and S. 10 runs are performed for

each algorithm on the two randomly selected test cases from Class 2 and 3 to study the

robustness and consistency of the algorithms. The global Pareto front (GF, needed for

computation of GD and MS) is obtained by selecting the non-dominated solutions from all

the results of 10 runs of the 3 algorithms. The parameters settings used in this part of the

analysis are shown in Table 6.5.

• Analysis for Class 2 4 14

Class 2 4 14 consists of all small items which are generated in the range of [0 25]. From

Figure 6.23, the Pareto front of MOEPSO is better as it is much spread out and nearer to

the global Pareto front (GF). Only a few nondominiated solutions are found by MOPSO.

The swap sequence operation proposed in [214] is not so effective in spreading items to
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Table 6.3: Number of optimal solutions obtained by branch and bound method, EA, PSO
and EPSO (Class 1-3)

Class deterministic EA PSO HPSO
method [123]

Class1
n=20 10 10 10 10
n=40 10 10 9 10
n=60 7 6 5 6
n=80 3 10 5 10
n=100 1 6 3 7
Total 31 42 32 43
Class 2
n=20 10 10 10 10
n=40 10 9 9 9
n=60 4 10 9 10
n=80 10 9 8 9
n=100 10 10 9 10
Total 44 48 45 48
Class 3
n=20 9 10 10 10
n=40 9 6 5 6
n=60 5 5 1 6
n=80 0 4 1 4
n=100 0 5 1 5
Total 23 30 18 31

different bins to lower CG deviation. This is because MOPSO has no bin level operation to

separate items in bins with high CG deviation to more bins.

Figure 6.24 summarizes the different algorithms statistical performance on 10 runs of

the Class 2 4 14 test case. From Figure 6.24, MOEPSO has the lowest GD which shows

that more nondominated solutions of GF are from MOEPSO. The MS metric of MOPSO is

much worse than MOEPSO and MOEA which again proves that MOPSO can only find a

few nondominated solutions each run. In the spacing metric, MOEPSO is the clear winner
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Table 6.4: Number of optimal solutions obtained by branch and bound method, EA, PSO
and EPSO (Class 4-6)

Class deterministic EA PSO HPSO
method [123]

Class 4
n=20 10 10 10 10
n=40 10 10 10 10
n=60 7 8 8 8
n=80 10 7 7 7
n=100 10 8 7 8
Total 47 43 42 43
Class 5
n=20 10 9 10 9
n=40 10 8 9 10
n=60 8 5 5 6
n=80 0 3 3 3
n=100 1 3 0 2
Total 29 28 27 30
Class 6
n=20 10 10 10 10
n=40 5 6 6 9
n=60 10 9 9 6
n=80 10 10 10 10
n=100 2 8 7 8
Total 37 43 42 43

since it scored the lowest average value. From the analysis, it can be seen that the average

performance of MOEPSO is the best among the three algorithms.

Figure 6.25 shows the evolutionary traces for the test case Class 2 4 14. Of all the 3

algorithms, MOPSO shows the worst performance as it is stuck at the local minimum and

unable to search for more non-dominated solutions in the vicinity. This is why there is no

improvement in later generations where a straight line of performance metric is observed

in the graphs. From the evolutionary traces of the metric, information is revealed on how
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Table 6.5: Parameter settings used by MOEPSO in the simulation

Parameters MOPSO MOEA MOEPSO

Crossover Rate - 0.7 -
Mutation Rate - 0.4 -
Population Size 500 500 500
Generation Size 200 200 200
Niche Radius 0.1 0.1 0.1

Figure 6.23: Pareto front of Class 2 4 14

MOEPSO searches for the best set of non-dominated solutions. MOEPSO has the best

performance since it has the best GD in 200 generations. The MS of MOEPSO indicates that

MOEPSO effectively searches the region where the global Pareto front resides. MOEPSO

dominates the spacing metric as it has the lowest value throughout the whole evolution of

200 generations.

• Analysis for Class 3 4 14
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Figure 6.24: Performance for Class 2 4 14: a) GD, b) MS and c) S

Figure 6.25: Evolutionary trajectories for Class 2 4 14: a) GD, b) MS and c) S

The test case Class 3 4 14 belongs to Class 3 and consists of mainly of small and medium

size items. From Figure 6.26, the Pareto front of MOEPSO is comparable to the one of

MOEA. Again, the MOPSO is stuck at the local minimum. From Figure 6.27, MOEPSO

and MOEA have comparable results in the performance metric GD and MS. The average

performance of MOEPSO is considered better than MOEA as MOEPSO is better in the

Spacing metric.

Figure 6.28 shows the evolutionary traces for the test case Class 3 4 14. In the evo-

lutionary traces for Class 3 4 14, MOEPSO has the best GD and MS at the end of 200

generations. In the evolutionary trace of the Spacing metric, it is observed that there are

spikes in the early generations. This may be due to the discovery of non-dominated solutions
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Figure 6.26: Pareto front of Class 3 4 14

Figure 6.27: Performance for Class 3 4 14: a) GD, b) MS and c) S

which are far away from the non-dominated solutions found in the previous generations. As

the generation progresses, there are fewer spikes as the non-dominated solutions are scat-

tered more evenly on the Pareto front. As before, MOEPSO has the best trace as compared

to the other two algorithms and MOPSO shows no improvement in its evolutionary trace

after 100 generations.
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Figure 6.28: Evolutionary trajectories for Class 3 4 14: a) GD, b) MS and c) S

In general, for all test problems, MOEPSO performed consistently well on GD metric

and does not converge on local Pareto front like MOPSO. MOEPSO also performed the

best in terms of the spacing metric as nondominated solutions are well distributed along the

Pareto front.

Algorithm Efficiency Comparison (Computational Time)

While it is important to achieve good solutions, computational cost is another issue that

must be considered in the real world. In this section, the computational efficiency of the

different algorithms is evaluated based on computational time. The three algorithms will

stop at 1000 iterations. From Figure 6.29, the MOPSO incurs the shortest computation time

among all the three randomly chosen test cases. However, the optimization result obtained

by MOPSO is inferior as compared to the result obtained by MOEA and MOEPSO. One

possible reason is that MOPSO is operating on sequence of items. After operation, they only

pack once using BLF. However, in the cases of MOEA and MOEPSO, there is a possibility

of repacking in the event of violations. Therefore MOEA and MOEPSO may take more

time. From the chart, MOEPSO takes lesser time on average compared to MOEA. From

the data set generated, Class 2 seems to be more difficult than the rest of the classes. This
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Figure 6.29: Normalized computation time for the three algorithms

is because there are all small items in Class 2. For small items, more permutation in each

bin needs to be checked to achieve a more stable configuration, whereas for larger items,

there are fewer items in each bin and therefore less permutation to be arranged to achieve

a stable configuration.

6.4 Conclusion

In this chapter, a mathematical model for MOBPP-2D is presented and the MOEPSO is

proposed to solve the problem. BLF is chosen as the decoding heuristic as it has the ability

to fill in the gaps in the partial layout. The creation of variable length data structure and

its specialized mutation operator make MOEPSO a flexible optimization algorithm which

can manipulate permutation in bin level or particle level. Multi-objective performance

tests have shown that MOEPSO performs consistently well for the test cases used in this

research. Comparison study has proven that MOEPSO outperforms MOPSO [214] and

MOEA [189] in most of the test cases attempted. The performance metric also shows
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that MOEPSO has the best average performance. In a comparison on the performance of

the meta-heuristics algorithms with the branch and bound method [123] against the single

objective bin packing problem, EPSO (single objective version of MOEPSO) also stands out

against all the algorithms. Overall, MOEPSO proved to be robust, producing good solutions

consistently despite the difficulty of the problem. Both single objective and multiobjective

bin packing problems can be easily handled using MOEPSO, which demonstrated that

MOEPSO is a good candidate for solving real world bin packing problem.
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Conclusions and Future Works

This work has explored and improved particle swarm optimization techniques for MO func-

tion optimization as well as expanded its applications in real world bin packing problems.

Three new PSO algorithms have been proposed and good performance improvement on stan-

dard MO function optimization test cases has been achieved. The successful application of

key PSO concept in solving bin packing problems proves that PSO is a good candidate for

solving discrete real world combinatorial optimization problems.

7.1 Conclusions

This work contributes towards the design and application of MOPSO algorithms. The

impact of fuzzy gbest, local search, coevolution and distributed computation on the perfor-

mance of MOPSOs has been investigated.

In Chapter 3, a new memetic algorithm of FMOPSO has been designed within the

context of MO particle swarm optimization. In particular, two new features in the form

of fuzzy global-best and synchronous particle local search have been proposed. The syn-

chronous particle local search performs directed local fine-tuning, which helps to discover a

well-distributed Pareto front. The fuzzy global-best models the uncertainty associated with
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the optimality of global-best, thus helping the algorithm to avoid undesirable premature con-

vergence. The proposed features have been examined to show their individual and combined

effects in MO optimization. The comparative study showed that the proposed FMOPSO

produced solution sets that are highly competitive in terms of convergence, diversity and

distribution.

The algorithm CCPSO put forward in Chapter 4 attempts to further emulate the conflict

and coexistence between cooperation and competition in nature by implementing both as-

pects into co-evolutionary model. This is accomplished by having species compete amongst

themselves for the right to represent more components, and the winners cooperate to solve

the whole problem. This proposed algorithm is validated through comparisons with existing

state-of-the art multi-objective algorithms through the use of established benchmarks and

metrics for comparison. CCPSO was the only algorithm to attain the true Pareto front in

all test problems, and in all cases converged faster to the true Pareto front than any other

algorithm used in this research.

As the availability of powerful networked computers presents a wealth of computing re-

sources to solve problems with large computational effort, a distributed MOPSO algorithm

is formulated in Chapter 5 utilizing PSO’s intrinsic parallel property. The proposed dis-

tributed co-evolutionary particle swarm optimization algorithm achieves substantial speedup

from non-distributed version. DCPSO has been designed to be fault-tolerant against net-

work errors, such as lost package, corrupted package, and lost connection. A dynamic load

balancing has also been incorporated into DCPSO to further enhance its performance.

In Chapter 6, a mathematical model for MOBPP-2D is presented and the MOEPSO is

proposed to solve the problem. BLF is chosen as the decoding heuristic as it has the ability

to fill in the gaps in the partial layout. The creation of variable length data structure and

its specialized mutation operator make MOEPSO a flexible optimization algorithm which

can manipulate permutation in bin level or particle level. Multi-objective performance tests

have shown that MOEPSO performs consistently well for the test cases used in this research.
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In a comparison on the performance of the meta-heuristics algorithms with the branch and

bound method against the single objective bin packing problem, EPSO (single objective

version of MOEPSO) also stands out against all the algorithms. Overall, MOEPSO proved

to be robust, producing good solutions consistently despite the difficulty of the problem.

Both single objective and multiobjective bin packing problems can be easily handled using

MOEPSO, which demonstrated that MOEPSO is a good candidate for solving real world

bin packing problem.

7.2 Future Works

Despite the fact that MOPSOs started to be developed less than ten years ago, the growth

of this field has exceeded most people’s expectations. Although different means of enhancing

MOPSO has been studied in this work, these studies barely scratched the surface of what

is left to be addressed. Although detailed analysis of issues related to the application of

MOPSOs have been provided in this work, most discussions are based on empirical results

on benchmark test problems. In addition, computational efficiency is considered only in

terms of the number of function evaluations. Since the number of evaluation is not the best

indicator of efficiency especially when evaluation cost is low, one immediate extension would

be to consider the computational time complexity of the proposed mechanisms. Certainly,

it would also be desirable to apply the proposed techniques to a larger number of real-world

problems in the near future.

Like most existing work, this research has concentrated on MOPSO algorithm. On the

other hand, it has been shown that hybrid algorithms can be very effective [18, 149]. The

motivation behind hybrid methods is that a single method may not be enough for dealing

with complex real world problem. Two or more methods can complement each other when

carefully combined. Therefore another promising research area is to hybridize MOPSO

with other computation techniques. For example, the hybridization of MOPSO and neural
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network (NN) can help further utilize high convergence speed of MOPSO and modeling

ability of NN on solving complex optimization problems.

Many real-world applications are characterized by a certain degree of noise, manifesting

itself in the form of signal distortion or uncertain information. Despite the growing research

on different MOPSO algorithms, the practical issue of noise handling has rarely been ad-

dressed by the MOPSO community. Design of noise handling techniques for MOPSO will be

worth investigation. Surrogate models have been applied in the domain of SO optimization

to find robust solutions, it has yet been studied for MO problems. Therefore one possible

noise handling technique for MOPSO is to apply surrogate models in the optimization of

noisy fitness functions where noise may be filtered out through the approximation process.
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