2,088 research outputs found

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    A survey of random processes with reinforcement

    Full text link
    The models surveyed include generalized P\'{o}lya urns, reinforced random walks, interacting urn models, and continuous reinforced processes. Emphasis is on methods and results, with sketches provided of some proofs. Applications are discussed in statistics, biology, economics and a number of other areas.Comment: Published at http://dx.doi.org/10.1214/07-PS094 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A cognitive hierarchy theory of one-shot games: Some preliminary results

    Get PDF
    Strategic thinking, best-response, and mutual consistency (equilibrium) are three key modelling principles in noncooperative game theory. This paper relaxes mutual consistency to predict how players are likely to behave in in one-shot games before they can learn to equilibrate. We introduce a one-parameter cognitive hierarchy (CH) model to predict behavior in one-shot games, and initial conditions in repeated games. The CH approach assumes that players use k steps of reasoning with frequency f (k). Zero-step players randomize. Players using k (≥ 1) steps best respond given partially rational expectations about what players doing 0 through k - 1 steps actually choose. A simple axiom which expresses the intuition that steps of thinking are increasingly constrained by working memory, implies that f (k) has a Poisson distribution (characterized by a mean number of thinking steps τ ). The CH model converges to dominance-solvable equilibria when τ is large, predicts monotonic entry in binary entry games for τ < 1:25, and predicts effects of group size which are not predicted by Nash equilibrium. Best-fitting values of τ have an interquartile range of (.98,2.40) and a median of 1.65 across 80 experimental samples of matrix games, entry games, mixed-equilibrium games, and dominance-solvable p-beauty contests. The CH model also has economic value because subjects would have raised their earnings substantially if they had best-responded to model forecasts instead of making the choices they did

    Where do mistakes lead? A survey of games with incompetent players

    Get PDF
    Mathematical models often aim to describe a complicated mechanism in a cohesive and simple manner. However, reaching perfect balance between being simple enough or overly simplistic is a challenging task. Frequently, game-theoretic models have an underlying assumption that players, whenever they choose to execute a specific action, do so perfectly. In fact, it is rare that action execution perfectly coincides with intentions of individuals, giving rise to behavioural mistakes. The concept of incompetence of players was suggested to address this issue in game-theoretic settings. Under the assumption of incompetence, players have non-zero probabilities of executing a different strategy from the one they chose, leading to stochastic outcomes of the interactions. In this article, we survey results related to the concept of incompetence in classic as well as evolutionary game theory and provide several new results. We also suggest future extensions of the model and argue why it is important to take into account behavioural mistakes when analysing interactions among players in both economic and biological settings

    Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics

    Get PDF
    Marketing is an applied science that tries to explain and influence how firms and consumers actually behave in markets. Marketing models are usually applications of economic theories. These theories are general and produce precise predictions, but they rely on strong assumptions of rationality of consumers and firms. Theories based on rationality limits could prove similarly general and precise, while grounding theories in psychological plausibility and explaining facts which are puzzles for the standard approach. Behavioral economics explores the implications of limits of rationality. The goal is to make economic theories more plausible while maintaining formal power and accurate prediction of field data. This review focuses selectively on six types of models used in behavioral economics that can be applied to marketing. Three of the models generalize consumer preference to allow (1) sensitivity to reference points (and loss-aversion); (2) social preferences toward outcomes of others; and (3) preference for instant gratification (quasi-hyperbolic discounting). The three models are applied to industrial channel bargaining, salesforce compensation, and pricing of virtuous goods such as gym memberships. The other three models generalize the concept of gametheoretic equilibrium, allowing decision makers to make mistakes (quantal response equilibrium), encounter limits on the depth of strategic thinking (cognitive hierarchy), and equilibrate by learning from feedback (self-tuning EWA). These are applied to marketing strategy problems involving differentiated products, competitive entry into large and small markets, and low-price guarantees. The main goal of this selected review is to encourage marketing researchers of all kinds to apply these tools to marketing. Understanding the models and applying them is a technical challenge for marketing modelers, which also requires thoughtful input from psychologists studying details of consumer behavior. As a result, models like these could create a common language for modelers who prize formality and psychologists who prize realism

    Generalized asset integrity games

    Get PDF
    Generalized assets represent a class of multi-scale adaptive state-transition systems with domain-oblivious performance criteria. The governance of such assets must proceed without exact specifications, objectives, or constraints. Decision making must rapidly scale in the presence of uncertainty, complexity, and intelligent adversaries. This thesis formulates an architecture for generalized asset planning. Assets are modelled as dynamical graph structures which admit topological performance indicators, such as dependability, resilience, and efficiency. These metrics are used to construct robust model configurations. A normalized compression distance (NCD) is computed between a given active/live asset model and a reference configuration to produce an integrity score. The utility derived from the asset is monotonically proportional to this integrity score, which represents the proximity to ideal conditions. The present work considers the situation between an asset manager and an intelligent adversary, who act within a stochastic environment to control the integrity state of the asset. A generalized asset integrity game engine (GAIGE) is developed, which implements anytime algorithms to solve a stochastically perturbed two-player zero-sum game. The resulting planning strategies seek to stabilize deviations from minimax trajectories of the integrity score. Results demonstrate the performance and scalability of the GAIGE. This approach represents a first-step towards domain-oblivious architectures for complex asset governance and anytime planning
    • …
    corecore